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Abstract: The notion of omega chaos was introduced by S. Li in 1993 for continuous maps of compact metric spaces by three
conditions: 1. the set difference of omega limit sets is uncountable, 2. intersection of omega limit sets is nonempty and3. each omega
limit set of the point from the omega scrambled set is not contained in the set of all periodic points. It was also pointed that the
third condition is superfluous for continuous maps of the compact interval. As a main result of this paper it will be shown that the
third condition is essential even in one dimension by construction of two examples of homeomorphisms on one dimensionalarcwise
connected space having two point set or infinite respectively that satisfies first and second condition but the third condition is not
fulfilled from the definition of omega chaos.
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José Sousa Ramos.

1 Introduction

Within the last forty years numerous papers and books
have been devoted to the research of discrete dynamic
systems. The main aim of the theory of discrete dynamic
systems is focused the understanding of what the
trajectories of all points from the state space look like.
Mostly the periodic structures and asymptotic properties
of the orbit were studied. Many authors were fascinated
by those motions which are not only periodic but also are
not quasi-periodic. These movings were assumed to be
unpredictable or sensitive to initial conditions, later
named aschaotic. There appeared many notions of chaos,
starting with the famous paper by T.Y. Li and J. Yorke
[14] in 1975. Later on, several notions of chaos motivated
by diverse aspects were introduced (for more see e.g. [4]
and references therein). Many natural questions arose.
Which notion of chaos is the best one, or stronger then
others (see e.g. [6,7,15] and references therein)? Which
condition from each notion of chaos is the best one and
which one is superfluous (see e.g. discussion on

conditions of Devaney’s chaos [3,1,17])? For this
purpose, the following conventions are recalled.

Let (X,d) be a metric space with metricd and
C(X,X) the set of all continuous mapsf : X → X. Let
f ∈ C(X,X), x ∈ X andn be a positive integer. Then-th
iteration ofx under f is denoted byf n, the set of all fixed
points of f by Fix( f ), the set of periodic points off by
Per( f ). The sequence{ f n(x)}∞

n=0 is the trajectory ofx,
and the setω f (x) of all limit points of the trajectory is the
ω-limit setof x.

The main aim of the is paper is focused on the notion
of omega chaos, and necessity of its third condition,
introduced by S. Li in 1993 [13]:

Definition 1.Let f ∈ C(X,X) and S ⊂ X contain
uncountably many points. We say that f isω-chaotic and
S isω-scrambled set for f if for any distinct x,y∈ S:

1.ω f (x)\ω f (y) is uncountable,
2.ω f (x)∩ω f (y) is nonempty,
3.ω f (x) is not contained in the set of periodic points.

This notion of chaos is not well understand today,
many open questions remains unsolved since this problem
is related the understanding of the set of all omega limit
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sets. In [15] authors discussed omega chaos for the circle
maps. [11,10] studied cardinality of omega scrambled
sets and relations to the chaos in the sense of T.Y. Li and
J. Yorke. Later in [16,2] authors discussed Lebesgue
measure of omega scrambled sets for continuous maps on
the interval. Recently in [12] the specification property
was compared to the omega chaos and in [8] the notion of
omega chaos was transferred to from individual dynamics
to collective one. It is worthy to note that there is no
omega chaos for each minimal map, that is each omega
limit set equals to the whole space, since minimal maps
form a huge class of dynamic systems, see e.g. [9] and
references therein. Other papers related to the notion of
omega chaos are not known to the author.

As it is noted in [13] the third condition from the
Definition 1 is superfluous for continuous maps on the
unit closed interval (compact). Motivated by questions
and remarks above, the goal is to study the third condition
of omega chaos and discuss its necessity on spaces that
are not homeomorphic to the interval. The following
definition will be used for simplicity (the third condition
from Definition1 was excluded):

Definition 2.Let f ∈ C(X,X) and S⊂ X contain at least
two points. We say that f isω⋆-chaotic and S is
ω⋆-scrambled set for f if for any distinct x,y∈ S:

1.ω f (x)\ω f (y) is uncountable,
2.ω f (x)∩ω f (y) is nonempty,

In particular, f is ω⋆
2-chaotic orω⋆

∞-chaotic if there is an
ω⋆-scrambled set containing two or infinitely many points.

As a main result it will be shown that the third
condition from the Definition1 could not be omitted in a
general one dimensional spaces, twoω⋆-chaotic examples
will be constructed in Theorem1 and Theorem2.

2 Main results

The construction in the proof of the following theorem
joins two shifted copies of Warsaw circles (see Figure1)
and define map on it in such a way that each point from
the principal part is tending to the limit line having it as
its omega limit set and the map is identical on the limit
line. That shows that the third condition from the
Definition 1 of omega chaos is essential in general. The
idea of the proof was extended in Theorem2 to get
infinite ω⋆-scrambled set in one dimension where again
the third condition from the omega chaos is not fullfiled.

Theorem 1.There is one dimensional arcwise connected
space W and homeomorphism P on W such that P isω⋆

chaotic. Moreover eachω⋆-scrambled set contains two
points and the third condition from the Definition1 is not
satisfied.

Proof.LetW = A1∪A2∪C where

A1 = {(x,sin(π/x)+0.5)∈ R
2 : x∈ (0,1)},

A2 = {(−x,sin(π/x)−0.5)∈R
2 : x∈ (0,1)},

C = [−1,1]×{0} ∪ {−1}× [−2,−0.5] ∪

∪ {0}× [−2,1.5] ∪ {1}× [−2,0.5],

see Figure1. Now define homeomorphismP : W →W by

P(x) =







p13 ◦ p12 ◦ p11(x), if x∈ A1,
p23 ◦ p22 ◦ p21(x), if x∈ A2,
x, if x∈C

(1)

where
p13 : A1 → (1,∞)

such that

(x,sin(π/x)+0.5) 7→ (1− tan((π/2)x−π/2)),

p12 : (1,∞)→ (1,∞)

such that

x 7→ (x−1)/(1+(x−1)2)+ x,

p11 : (1,∞)→ A1

such that
x 7→ (1/x,sin(πx)+0.5)

and
p23 : A2 → (1,∞)

such that

(−x,sin(π/x)−0.5) 7→ (1− tan((π/2)x−π/2)),

p22 : (1,∞)→ (1,∞)

such that

x 7→ (x−1)/(1+(x−1)2)+ x,

p21 : (1,∞)→ A2

such that
x 7→ (−1/x,sin(πx)−0.5).

It is easy to see that for anyx1 ∈ A1 and that for any
x2 ∈ A2 is

ωW(x1) = {0}× [−0.5,1.5],
ωW(x2) = {0}× [−1.5,0.5]. (2)

Next put S= {x1,x2} where x1 ∈ A1 and x2 ∈ A2 are
arbitrarily chosen points. Since

1.ωW(x1) \ ωW(x2) = {0} × [0.5,1.5] and
ωW(x2) \ ωW(x1) = {0} × [−1.5,−0.5] is
uncountable,

2.ωW(x1)∩ωW(x2) = {0}× [−0.5,0.5] is nonempty,
3.ωW(x1) andωW(x2) is contained in the set of periodic

points sinceωW(x1)∪ωW(x2)⊂ Fix(W),
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Fig. 1: Warsaw circleW.

the setS is ω⋆-scrambled. Hence the mapW is ω⋆
2-chaotic

and due to (2) and the fact thatωW(c) = {c} for anyc∈C,
anyω⋆-scrambled set contains exactly two points.

Remark.Let us note that analogous construction could be
done in two dimensional space[0,1]× [0,1] motivated by
the Crooked Warsaw circle. It could be defined a
triangular map F : [0,1]2 → [0,1]2 where
F(x,y) = ( f (x),g(x,y)) in such a way thatF(Ai) = Ai+1
whereAi = [(22 − 1)/2i+2,1/2i]× [0,2/3], i ∈ N∪ {0},
F(B j) = B j+1 where B j =

[1/2 j+1 + 1/23( j+1),(22 − 1)/2 j+2 − 1/23 j ] × [2/3,1],
j ∈ N andF will be unimodal on the rest of[0,1]× [0,1],
henceF will be identical on{0}× [0,1] (for more about
triangular maps see e.g. [5] and references therein). Then
for a ∈ A1 and b ∈ B1 it is ωF(a) = {0}× [0,2/3] and
ωF(b) = {0}× [1/3,1] showing thatF is ω⋆

2 chaotic and
the third condition from the Definition1 is not satisfied.

Theorem 2.There is one dimensional arcwise connected
spaceX and a homeomorphismH onX such thatH is ω⋆

∞
chaotic and the third condition from the Definition1 is not
satisfied.

Proof.Let Xi be the one dimensional arcwise connected
space defined as follows for anyi ∈ N (so called Warsaw
circle, see Figure2): Xi = Ai ∪Bi ∪ [−3,1]×{0} were

Ai =

{(

x,sin(π/x)−1+
2i −1

2i

)

∈ R
2 : x∈ (0,1)

}

,

Bi = {1}×

[

−3,−1+
2i −1

2i

]

,

Ci = {0}×

[

−3,
2i −1

2i

]

.

Now, homeomorphismshi on eachXi will be defined
by

hi(x) =

{

hi3 ◦hi2 ◦hi1(x), if x∈ Ai
x, otherwise (3)

where
hi3 : Ai → (1,∞)

such that
(

x,sin(π/x)−1+
2i −1

2i

)

7→ (1− tan((π/2)x−π/2)),
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Fig. 2: Warsaw circlesXj .
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hi2 : (1,∞)→ (1,∞)

such that

x 7→ (x−1)/(1+(x−1)2)+ x

and
hi1 : (1,∞)→ Ai

such that

x 7→

(

1
x
,sin(πx)−1+

2i −1
2i

)

.

Let X∞ be the one dimensional space arcwise
connected space defined as follows:
X∞ = A∞ ∪B∞ ∪ [−3,1]×{0} were

A∞ = {(x,sin(π/x)) ∈ R
2 : x∈ (0,1)},

B∞ = {1}× [−3,0],

C∞ = {0}× [−3,1].

Analogously, homeomorphismh∞ on X∞ will be defined
by

h∞(x) =

{

h∞3 ◦h∞2 ◦h∞1(x), if x∈ A∞
x, otherwise (4)

where
h∞3 : A∞ → (1,∞)

such that

(x,sin(π/x)) 7→ (1− tan((π/2)x−π/2)),

h∞2 : (1,∞)→ (1,∞)

such that

x 7→ (x−1)/(1+(x−1)2)+ x

and
h∞1 : (1,∞)→ A∞

such that
x 7→ (1/x,sin(πx)).

Next, by collapsing
(

∞
⋃

n=1

{0}×

[

−3,
2n−1

2n

]

×

{

1
n

}

)

∪ {0}× [−3,1]×{0}

into {0} × [−3,1] × {0} we get a metrizable space.
Denote it byX. One can think about it as a subspace of
R

3, see Figure3. The topology onX is given by the
metric inherited fromR3. The spaceX can be imaginated
as a union of slicesXj with common interval
{0}× [−3,1]×{0}, here j ∈N∪{∞}. The spaceX is one
dimensional arcwise connected since each sliceXj is.

Now the mapH on X will be defined in such a way
thatH restricted on eachXj equals toh j . Obviously,H is
homeomorphism since eachh j is.

Finally, put S= ∪∞
i=1xi where xi ∈ Ai is arbitrarily

chosen point for anyi. The setS is ω⋆
∞-scrambled since:
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Fig. 3: The spaceX.

1.if n> m thenωH(xn)\ωH(xm) = {0}× [a,c]×{0} is
uncountable as well as
ωH(xm) \ ωH(xn) = {0} × [b,d] × {0}, here
a = (2n − 1)/2n, b = −2+ a, c = (2m− 1)/2m and
d =−2+ c,

2.if n> m thenωH(xn)∩ωH(xm) = {0}× [c,b]×{0} is
nonempty,

3.ωH(xi) is contained in the set of all periodic points
since eachωH(xi)⊂ {0}× [−3,1]×{0}⊂ Fix(H).

Ending the proof.
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