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Abstract: The notion of omega chaos was introduced by S. Li in 1993 faitinnous maps of compact metric spaces by three
conditions: 1. the set difference of omega limit sets is um¢able, 2. intersection of omega limit sets is nonempty &rehch omega
limit set of the point from the omega scrambled set is not @ioed in the set of all periodic points. It was also pointedt e
third condition is superfluous for continuous maps of the gaah interval. As a main result of this paper it will be showattthe
third condition is essential even in one dimension by caresion of two examples of homeomorphisms on one dimensiaralise
connected space having two point set or infinite respegtitl@t satisfies first and second condition but the third daomiis not
fulfilled from the definition of omega chaos.
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This paper is dedicated to the memory of Professorconditions of Devaney's chaos3,[L,17])? For this
José Sousa Ramos. purpose, the following conventions are recalled.

Let (X,d) be a metric space with metrid and

) C(X,X) the set of all continuous mapk: X — X. Let

1 Introduction f € C(X,X), x € X andn be a positive integer. The-th
iteration ofx underf is denoted by", the set of all fixed

Within the last forty years numerous papers and bookgoints of f by Fix(f), the set of periodic points of by

have been devoted to the research of discrete dynamier(f). The sequencgf"(x)};,_, is the trajectory of,
systems. The main aim of the theory of discrete dynamicand the setws (x) of all limit points of the trajectory is the

systems is focused the understanding of what thew-limitsetof x.

trajectories of all points from the state space look like. The main aim of the is paper is focused on the notion
Mostly the periodic structures and asymptotic properties

of the orbit were studied. Many authors were fascinatedi?]ftrgEjnuecgead ESE‘SOSLi ;nfgggjt{:se].ssny of its third condition,
by those motions which are not only periodic but also are ' '

not quasi-periodic. These movings were assumed to b@efinition 1.Let f € C(X,X) and Sc X contain
unpredictable or sensitive to initial conditionslater  yncountably many points. We say that fuischaotic and
named aghaotic There appeared many notions of chaos, 5 iscw-scrambled set for f if for any distinctxe S:

starting with the famous paper by T.Y. Li and J. Yorke ,

[14] in 1975. Later on, several notions of chaos motivated 1-@f(X)\ @ (y) is uncountable,

by diverse aspects were introduced (for more see dlg. [ 2@ (X) Nax(y) is nonempty, o

and references therein). Many natural questions arose. 3:@(X) is not contained in the set of periodic points.
Which notion of chaos is the best one, or stronger then

others (see e.g6[7,15] and references therein)? Which This notion of chaos is not well understand today,
condition from each notion of chaos is the best one andnany open questions remains unsolved since this problem
which one is superfluous (see e.g. discussion oris related the understanding of the set of all omega limit
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sets. In L5 authors discussed omega chaos for the circleProofLetW = A UA, UC where
maps. L1,10] studied cardinality of omega scrambled . )
sets and relations to the chaos in the sense of T.Y, Li and't = {(%SiN(7/x) +0.5) € R? : x¢€ (0,1)},
J. Yorke. Later in 16,2] authors discussed Lebesgue A; = {(—x,sin(7r/x) —0.5) € R? : x € (0,1)},
n;easure 01; omega slcram]{bl]edhsets forfcontinuous mMaps O = [—1,1] x {0} U {1} x [-2,-0.5] U
the interval. Recently in12] the specification property
was compared to the omega chaos andjriHe notion of U0} x[-2,1.5] U {1} x[-2,05],
omega chaos was transferred to from individual dynamicssee Figurel. Now define homeomorphisB: W — W by
to collective one. It is worthy to note that there is no
omega chaos for each minimal map, that is each omega { P15 © P1, 0 P1,(X), If X € Ay,
limit set equals to the whole space, since minimal maps P(X) = { P2, 0 P2, 0 P2, (X), if X € Ag, (1)
form a huge class of dynamic systems, see @panhd X, if xeC
references therein. Other papers related to the notion of
omega chaos are not known to the author. where
oo . . . plg:A1_>(1700)
As it is noted in [L3] the third condition from the
Definition 1 is superfluous for continuous maps on the such that
unit closed interval (compact). Motivated by questions )
and remarks above, the goal is to study the third condition (%, sin(1t/x) + 0.5) — (1 —tan((11/2)x — 11/2)),
of omega chaos and discuss its necessity on spaces that (100 1
are not homeomorphic to the interval. The following P - (1,00) = (1,e0)
definition will be used for simplicity (the third condition such that
from Definition1 was excluded):

X (x—1)/(1+ (x— 1)) +x,
Definition 2.Let f € C(X,X) and SC X contain at least
two points. We say that f igv*-chaotic and S is Py © (L,00) = A
w*-scrambled set for f if for any distinctxe S: such that

1.of () \ @y (y) is uncountable, X — (1/x,sin(rx) +0.5)

2.0 (X) Nwr (Y) is nonempty, and

A — (1,00
In particular, f is w3-chaotic orwg-chaotic if there is an Pzg 1 Az = (1,)

w*-scrambled set containing two or infinitely many points. such that

As a main result it will be shown that the third (=x,sin(11/x) — 0.5) — (1—tan((1/2)x — 11/2)),
condition from the Definitiorl could not be omitted in a .
general one dimensional spaces, Gchaotic examples P2; * (1,00) = (1,0)
will be constructed in Theorethand Theoren?2. such that

X (x—1)/(1+ (x—1)?) +x,
2 Main results P2, (1,00) = Ay
The construction in the proof of the following theorem such that .
joins two shifted copies of Warsaw circles (see Figlire X+ (=1/xsin(nx) - 0.5).
and define map on it in such a way that each point from It is easy to see that for amgt € A; and that for any
the principal part is tending to the limit line having it as x, € Ay is
its omega limit set and the map is identical on the limit
line. That shows that the third condition from the ww(x1) = {0} x [-0.5,1.5], @
Definition 1 of omega chaos is essential in general. The ww(xz) = {0} x [-1.5,0.5].
idea of the proof was extended in Theorénto get
infinite cw*-scrambled set in one dimension where againNeXt putS = {x1,x2} wherex; € A; andx, € A; are
the third condition from the omega chaos is not fullfiled. arbitrarily chosen points. Since

Loww(x) \ ww(X2) {0} x [0.5,15] and

Theorem 1There is one dimensional arcwise connected ¢y (x2) \ wy(x1) = {0} x [-15-05 s
space W and homeomorphism P on W such that @*is uncountable,

chaotic. Moreover eaclw*-scrambled set contains two 2.aw(x1) Naww(x2) = {0} x [-0.5,0.5] is nonempty,
points and the third condition from the Definitidns not 3.aav(x1) andww(x2) is contained in the set of periodic
satisfied. points sincewy (1) Ut (X2) € Fix(W),
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Fig. 1: Warsaw circl&Vv.

the setSis w*-scrambled. Hence the m#pis w;-chaotic
and due to2) and the fact thatyy (c) = {c} foranyce C,
any w*-scrambled set contains exactly two points.

Remarl_et us note that analogous construction could be
done in two dimensional spa¢@, 1] x [0,1] motivated by
the Crooked Warsaw circle. It could be defined a
triangular map F : [0,12 — [0,1> where
F(y) = (f(x).0(xY)) In such a way thaf:(A) = A3
where A, — [(22 -1)/2%2,1/2'] x [0,2/3], i € NU {0},
F(Bj) = Bji1 where Bj =
[1/2i+1 4 1/280+D) (22 _ 1)/2i+2 _ 1/281] % [2/3,1],
j € NandF will be unimodal on the rest db, 1] x [0,1],
henceF will be identical on{0} x [0,1] (for more about
triangular maps see e.dh][and references therein). Then
forac A andb € By it is we(a) = {0} x [0,2/3] and
wr (b) = {0} x [1/3,1] showing thafF is w; chaotic and
the third condition from the Definitiofh is not satisfied.

Theorem 2There is one dimensional arcwise connected
spaceX and a homeomorphisiti on X such thatt is wz
chaotic and the third condition from the Definitidns not
satisfied.

ProofLet X; be the one dimensional arcwise connected
space defined as follows for ang N (so called Warsaw
circle, see Figur@): Xi = AjUB; U[-3,1] x {0} were

A = {(x,sin(n/x) 1+2IT1) eR?: xe (0,1)}7

B = {1} x [3 1+2|T1},

C = {0} x [—3,22—71} .

Now, homeomorphismis; on eachX; will be defined
by
o J higohi,ohi (x), if xe A
hi(x) = {X,3 © T otherwise (3)

where
hi3 A= (1, 00)
such that

(x,sin(rr/x) -1+ ZIT_Il) — (1—tan((rr/2)x— 11/2)),

0

01 02 03 04 05 06 07 08 09 1

0

01 02 03 04 05 06 07 08 09 1

0

01 02 03 04 05 06 07 08 09 1

X1

0
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Fig. 2: Warsaw circleX;.
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hi, : (1,00) — (1,)

such that
X~ (x—1)/(1+4 (x— 1)2) +X
and
hi, : (1,00) = A
such that

i
X ()—t,sin(nx) -1+ 2—1) .

2I
Let X» be the one dimensional space arcwise
connected space defined as follows:
Xeo = Acs UBw U[—3,1] x {0} were
Aw = {(x,sin(T/x)) € R? : x€(0,1)},
B. = {1} x [-3,0], Fig. 3: The spac&.
Co = {0} x [-3,1].
Analogously, homeomorphisim, on X., will be defined ) .
by Lif n > mthenwy(Xn) \ wg(xm) = {0} x [a,c] x {0} is
Peog © Neo, © Peo; (X), i X € Ao uncountable as well as
o () = {x, TN otherwise () @a(m) \ () = {0} x [b,d] x {0}, here

a=2"-1/2" b=-2+4+4a,¢c=(2"-1)/2™ and

where d=-2+c,
Poo Ao — (1, 0) 2.if n> mthenows (Xn) N s (Xm) = {0} x [c,b] x {0} is
such that nonempty,

3. () is contained in the set of all periodic points
since eachwy (X ) C {0} x [—3,1] x {0} C Fix(H).

Ending the proof.

(x,sin(1/x)) — (1—tan((1r/2)x— 11/2)),
hoo, 1 (1,00) — (1,00)

such that
X (Xx—1)/(1+ (x—1)?) +x Acknowledgement
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x> (1/x, sin(1x)). was also supported by the Grant Agency of the Czech
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Next, by collapsing

® 2n—-1 1
(U{O} X [_S’T] X {ﬁ}) U {0} x [-3,1] x {0}
n=1 [1] J. Banks, J. Brooks, G. Cairns, G., Davis and P. StaceyerAm

into {0} x [-3,1] x {0} we get a metrizable space. __ Math. Monthly99, 332-334 (1992).
Denote . One can hrk abot L2 a subspace of 211 o006 . S o Cheas [0 e
R3, see Figure3. The topology onX is given by the e .
metric inherited fronR3. The spacé& can be imaginated 4] gofli%:tiw,s:;wﬁ/lv;;r?gsi _21%0(32'C;SSN 0-8133-4085-3.
?8} 3[ %nﬁr; {c(;f} hsé'f:jsé(&uv?g]} 'Ic'ﬁrensn;)c;r(]:égri]steorxgl [5] G.L. Forti, L. Paganoni, J. Smital, Bull. Aust. Math.S61,
. o N Je . 395-415 (1995).
dimensional arcwise connected since each sficis. (1995)

References

- - : [6] J.L.G. Guirao and M. Lampart, Chaos, Solitons & Fractals
Now the mapH on X will be defined in such a way
that H restricted on eacK; equals toh;. Obviously,H is
homeomorphism since eabhis.
Finally, put S= U 1 wherex; € A is arbitrarily
chosen point for ani The setSis w;-scrambled since:

24, 1203-1206 (2005).

[7]J.L.G. Guirao and M. Lampart, Chaos, Solitons & Fractals

28, 788-792 (2006).

[8] J.L.G. Guirao, D. Kwietniak, M. Lampart, P. Oprocha and A

Peris, Nonli. Anal.: Theo., Meth. and Appil, 1-8 (2009).

(@© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 5, 2303-2307 (2015)www.naturalspublishing.com/Journals.asp

NS P 2307

[9] S. Kolyada and L. Snoha, Scholarpedia, 4(11): 5803 (2009

[10] M. Lampart, Real Anal. EX27, 801-808 (2001).

[11] M. Lampart, Acta Math. Univ. Coni72, 119-129 (2003).

[12] M. Lampart and P. Oprocha, Topol. and its A6, 2979-
2985 (2009).

[13] S. Li, Trans. Amer. Math. So&39, 243-249 (1993).

[14] T. Y. Liand J. A. Yorke, Amer. Math. Monthlg2, 985-992
(1975).

[15] M. Miyazawa, Tokyo J. Math25, 453-458 (2002).

[16] J. Smital and MStefankova, Disc. and Cont. Dynam. Sys.
9, 1323-1327 (2003).

[17] M. Vellekoop and R. Berglund, Amer. Math. Monthiy01,
353-355 (1994).

Marek Lampart
is Associate Professor
at Department of Applied
Mathematics and  Junior
Researcher at IT4lnnovations
VSB-Technical  University
of Ostrava, Czech Republic.
He received the PhD degree
in “Pure Mathematics” at the
Silesian University of Opava
(Czech Republic). He s

referee of several international journals in the frame of

pure and applied mathematics. His main research interests
are: dynamical systems on compact metric spaces,
applied dynamical systems in economy and mechanics.

(@© 2015 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

	Introduction
	Main results

