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Abstract: The lattice Boltzmann equations for the linear diffusiond®king in cases of D2Q5, D2Q7 and D2Q9 lattices are congidere
Families of the numerical schemes with the dependence dargearameter are introduced. The stability analysis oEs®@s is
performed in parameter space. The stability is studied migaily by von Neumann method. Optimal parameter valuetfepresented
families are defined.

Keywords: lattice Boltzmann method, linear diffusion, stability,.vbleumann method

1 Introduction [14,15], Burgers — Huxley equationlf, Lorenz system
[16] and nonlinear hyperbolic system$7. In this type
Nowadays the lattice Boltzmann method (LBM) has ofnumeri_callsch'emes thg solutio.n of PDE is obtai!’led asa
established itself as a powerful tool for the numerical SUM of distribution functions which are the solutions of
solution of a wide range of physical problems. In the LBE'S: The ~formulas for —equilibrium distribution
LBM the values of functions describing physical processfunctions and parameters of LBE's are defined so that the
on macrolevel (such as density, temperature, energy etdyapman — Enskog expansion method led to the initial
are calculated from the values of distribution functions of PDE- o .
fictitious particles, introduced at each node of the lattice ~ The motivation of the research work is caused by the
in physica| space. The evolution of the distribution HECESSity of the investigation of LBE's for linear diffusio
functions is governed by the system of discrete kineticequation (LDE) presented in other papers. The
equations called lattice Boltzmann equations (LBEP].  investigation of such LBE's were performed only by
One of the main applications of LBM is the comparison of numerical solutions of test problems. In
computational fluid dynamics (CFD), where it has proventhis paper the comparison of the schemes is performed
successful to solve problems for weakly compressibledue t0 its stability properties.
viscous flows 1,2,3] and much more complex situations The main objective of the paper is investigation and
as multiphase and multicomponent flowg5], flows in comparison of LBE's for LDE in parameter space due to
porous media ,7] and free surface flows8[. The its stability properties. Another objective is to find the
popularity of the LBM is based on its straightforward parameter values, which are optimal for stabilization of
parallelism, due to the explicit nature of LBE with the numerical schemes.
intensive local computation. The method is successfully In this study the single relaxation time (SRT)
adopted for computations on single and multiple LBE-based numerical schemes for the solution of LDE
graphical processing units (GPU) using Compute Unifiedare considered. The investigation of these schemes is
Device Architecture (CUDA) technolog®]10,11]. restricted to two-dimensional problems in the absence of
Recently, the LBM shows potentials to solution of internal sources. The schemes introduced18 19,20,
linear and nonlinear partial differential equations (PEE’ 21,22,23,24,25,26,27,28,29,30] are investigated. For
such as Laplace equatiorid], Korteweg — de Vries D2Q5, D2Q7 and D2Q9 lattices the families of
equation [L3,14], Korteweg — de Vries — Burgers equation LBE-based schemes with the dependence on external

* Corresponding author e-mageral983k@bk.ru

(@© 2015 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.12785/amis/090404

1688 NS 2 G. V. Krivovichev: Numerical Stability Analysis of Lattid@oltzmann...

scalar parameters are introduced. The optimal values ofl) by the Chapman — Enskog expansion method with the

the parameters for all families are obtained using the vorusage of 8) and @) [18].

Neumann method. It must be noted, that in the paper we In the case of the advection-diffusion equation:

restrict the analysis to the case of SRT LBEs. The 5

multiple-relaxation-time (MRT) LBEs and its stability C _

properties are considered i87,38,39]. at +Ule=DAc, ©)

The paper is organized as follows. In Section 2 LBE’s i , , ,

for the solution of LDE are considered. In Section 3 the WhereU is the velocity of the fluid, the expressions for

problem for the stability investigation is considered. In fi<eq> have more complex forms tham)( due to the

Section 4, the results of the stability analysis aredependence on hydrodynamical macrovariatiles,r)

discussed. A summary is given in Section 5. and density(t,r) [30]. It must be noted, that LBE for the
simulation of 6) can be used for the simulation df)(in
the case of zero velocity = 0[25,26,27,28,29.

2 L attice Boltzmann Equations for Linear The velocitiesV; are introduced in the following form:

Diffusion Vi=Vvi,i=1,...,n,whereV =1/t andv; are the lattice
vectors. In the paper the following lattices are considered

The system of LBE’s with SRT Bhatnaghar — Gross — 1) D2QS lattice:

Krook collision term has the following form: v1=(0,0),v2 = (1,0),v3 = (0,1),v4 = (—1,0),vs = (0, —1).

2) D2Q7 lattice:
& vi=(0,0),v2 = (1/2,v3/2),vs = (-1/2,V/3/2),
— (et ), (1) Va=(-1,0),vs = (-1/2,—v/3/2),

wheret is the time,dt — time stepr = (X,y) — node of Ve = (1/2,—/3/2),v7 = (1,0).
the lattice (grid in physical space) with lattice spacing .

fi,i=1,...,n,ne N —distribution functions of fictitious 3) D2Q0 lattice:
particles with velocitiesV;, which can move without v;=(0,0),vo = (1,0),v3=(0,1),v4 = (—1,0),vs = (0,—1),
interactions between neighbouring lattice nodes during Ve =(1,1),v7 = (~1,1),vg = (—1,~1),ve = (1, -1).
one time step,r is the dimensionless relaxation time
(t = A/dt, where A is the relaxation time),fi<eq> —
equilibrium distribution functionsg(t,r) is the solution

of LDE (concentration). : - . ;

It must be noted, that in LBE’s for CFD problems LDE simulation n the stationary regime. .

A o ) (eq) i The expression for the coefficie@ depending on
equilibrium distribution functionsf; ™ are chosen in a |5tice parameter$, 5t and LBE parameter can be
way for approximation of Maxwell's distribution gpizined by the Chapman — Enskog method application

functions at small values of Mach numbérZ2, 3]. But for to (1). The expression fdb has the following form:
the applications of LBM to the solution of LDE, which

fi(t+ 8t,r +V;dt) = fi(t,r)—%(fi(t,r)—

It must be noted, that one of the main applications of the
LBE-based numerical schemes for LDE is the simulation
of of Laplace and Poisson equatio22[26,27,28,31] by

has the following form: 1\ yi2
o (+-2) 2
ac 2) ot
— =DAc, (2)
ot wherey is the dimensionless parameter, whose values can

differ for every type of LBE.

2.1. The case of D2Q5 lattice. In the paper of D. A.
Wolf-Gladrow [18] the LBE with the following parameters
values is introducedM; = 0,Wo 345 =1/4,y=1/2. It

whereD is the diffusion coefficient, the expressions for
fi<eq> has to obey the following constrairit§, 24,25):

n n
c(t,r) = Z\ fi(t,r) = Zl fi<eq> (t,r). (3) must be noted that the caseWf = 0 corresponds to the
is i= D2Q4 lattice.
In the papers of C. Huber et &(,21] the following
For the validity of the formula3) the expressions fdri<eq) parameter values were proposedW; = 1/3,
can be chosen in the following form: Wo345=1/6,y=1/3. In the paper of S. Chen et dq]
for the simulation of the equation for one component of
fi(efv =Wc(t,r), () the vorticity vector, which has the forns); the LBE with

W =1/5,i=1,...,5 y=2/5is introduced.

whereW > 0 are weights, which satisfy the following  2.2. The case of QD[3]2Qh7 l?t|t|ice. In the paper OfIC-
.. h . Ponce-Dawson et aPp] the following parameter values
cond|t|on.zlvvI = 1. The LDE @) can be obtained from introducedW — 1/7,i = 1,...,7, y= 3/7. R. Blaak
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and P. M. A. Sloot in 24] presented a LBE with the values of the maximums of absolute values of eigenvalues

following parametersiy =1/2,W,  7=1/12,y=1/4. of the transition matrix of finite-difference scheme. The
2.3. The case of D2Q9 lattice. In [24] the following obtained LBEs with optimal values are compared with

set of parameters values is introducedj = 4/9, LBEs presented in other papers.

\/\/2737475 = 1/91W6777879 = 1/36, y= 1/3. It must be noted,

that these values are used in LBM application to the

simulation of incompressible viscous Newtonian fluld [ 3 \VVon Neumann Stability Analysis
2,3,4. X. He et al B0 construct LBE for

heat-convection problems by the discretization methodrhe system1) in dimensionless form can be written as:
proposed in 32,33. The following parameter values 1
Wi =0, Wozas = 1/6, Wez80 = 1/12, y = 2/3 are  /(t' + 1, r'+v;) = f/(t',r') — =(f/ (t',r") —
obtained. In £6,27,28] the proposed LBE's are used for T
the simulation of the Poisson — Boltzmann equation and — fi<eq> (c(t',r"))), (6)
in [25,29] for the simulation of the heat equation. T . . .

2.4, Parametrical families of LBE's. As it is known  Wheret’,r'.c’f/ are dimensionless variables.
(for example, see 34)) the existence of the scalar __INe dimensionless syster§)(is a system of linear
numerical parameter in the family of finite-difference d'ffe_f?nc_e equations with constant coefficients. For its
schemes provide the opportunity to control some Stability investigation the von !\]eqmann mgthod can be
important properties such as stability, dispersion,uSed BSl. Let f; are the equilibrium solutions of6]
dissipation etc. In most cases scalar dimensionles/hich correspond to the constant solution of the
numerical parametes € [0,1] is introduced by addition ~dimensionless LDE' = 1: f; = fi(eq)(l) =G = cond.
and subtraction of the product of the term of scheme on  The solutions of Eq. &) can be presented in the
the parameter. In?4] two parametrical families of LBE’s  following form:
are proposed — for the cases of D2Q7 and D2Q9 lattices. P o

The weightsW of the equilibrium distributions are fi(t,r) =fi+ofi(t,r), (7
E%gﬂézdezﬁg]ni%%nztfrgga;fgﬂixggg tphui Crlnhoargrg?rlless where 5f{ are the deviations offf from the constant
weights on the rest particles (weighty for lattice  €quilibrium solutionsf;.

velocity v = 0). By varying of 0 (0 < 0 < 1) one can After substitution of ) in (6) and with the usage of
define a whole family of models witWy = o and  (3) and @), the system fo5 f{ can be obtained:

W, 7= (1-0/6) for the model D2Q7. The LBE's 1

discussed in43 and [24] belong to this family witho O (t' +1,r" +vi) = S/ (t',r) — Z(8F(t',r') -

values of Y7 and 12, respectively. n

The LBE family for D2Q9 lattice is introduced by —W z 5f;)(t/7r/)), (8)
Wy =0, Wo345=(1-0)/5 Ws789 = (1—0)/20 and p=1
y = 3(1— 0)/5. The LBE's from P4] corresponds to
o = 4/9. As it can be seen, there is no way to obtain
LBE’s from [30] from this family.

In this paper, a new parametrical family for the case T4 e\ ey /T
of D2Q5 lattice is proposed. This family is determined by SR (t,r) =R(U)explisr), ©
the following weightsWy = 0, W 345 = (1—-0)/4.Such  wherei2 = —1, S= (6,8,)7, 6,6 € [, 7. After the
representation df dependence o can be justified by  sypstitution of 9) in (8), the system for(t') can be
the fact that such expressions Wirsatisfy the conditions  gptained:

According to the von Neumann method, the solutions of
(8) can be presented in following form:

n
n Ft'+1) =Y GipFp(t), (10)
W20 SW-1 (1= 2 Gobl0)
- whereG;j, are the components of transition mat@x
which are imposed ok due to the 8) and @). By the
method of Chapman — Enskog expansion the following { exp(—iSvT) (1_ 14 W.) i—p
Gip _ I I I

expression foly can be obtained; = (1— g)/2. The case ror

of 0 = 0 correspond to the LBEs froni§], case ofc =
1/5 to LBEs from [L9] and case ob = 1/3 — to LBEs
from [20,21]. The problem for the stability investigation of the
One of the main problems in the investigation of equilibrium solution of 6) is reduced to the stability
numerical schemes is the determination of optimal valuesnvestigation of the null solution of systeml1(@).
of a. In this paper the problem is solved by the stability According to the spectral criterior39], the solution will
analysis of the LBEs in space of the parameteando. be stable, if the absolute values of all eigenvalues afe
In this paper optimal values correspond to the minimalless than unity. The eigenvalue problems férwere

exp—iSy )Y, i#p.
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I ; T ;
solved numerically by applying the QR-algorithm using 091
FORTRAN90 EISPACK routines3p). sl
The stability investigation is performed in
two-dimensional space of the parametérso) with the *3
interval from /2 to 100 fort values. In the domain of o

parameter valuefd /2,100 x [0,1] the uniform grid with
500x 500 nodes was constructed, in the two-dimensional
space (8, 6,) uniform grid with 200x 200 nodes was
considered. For every node, o) the value of function
A(t1,0)

%
%
x
e}

N (Tv U) = (gz%;g(miaxvu(r, g, exa Q/)Da (11) 0 10 26 36 4}) 5}) 6:2) 76 86 9}) 100

was calculated, wherg are the eigenvalues of matié.

For the definition of optimal values @ the minimal
values of A are obtained by simple search on the
constructed grid in parameter space.

1 T T T T

Fig. 3. Isolines ofA for the case of D2Q9 lattice.
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Fig. 4. Plots ofA for the case of D2Q5 lattice at fixed
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c=1/5;4—0=1/3.
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Fig. 5. Plots ofA for the case of D2Q?7 lattice at fixed
valuesofg. 1 —0=0=0.3489;2 —0=1/2;3 —
Fig. 2. Isolines ofA for the case of D2Q7 lattice. o=1/7.
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10029 value of A is equal to 0.9898 and it occurs when
0 =0 = 0.3489,7 = 1/2, meaning that the minimum is
realized on the lower boundary of thredomain. It must
0.998 be noted, that = 1/2 corresponds to the case Bf= 0,
meaning that LBEs with optimal parameter can be
0,996 1 applied to the linear diffusion modelling for small values
of D.

The minimal value for the case of=1/7 [23] is equal
0992 — to 0.9965 and realized at= 1/2, as for the case of the
—3 scheme witlo'.

0.990 1 For the case ofr = 1/2 (Blaak and Sloot LBEsZ4))
A pA pA A ne the minimal value is realized at= 17.19 and it is equal
. to 0.9914.
After the analysis of the results of numerical
calculations it can be noted, that due to the stability
Fig. 6. Plots of/A for the case of D2Q9 lattice at fixed  criterion A the system of LBE’s fromZ4] has a good
valuesofo. 1 —0=0=0.3939;2 —0 =4/9; 3 — stability properties for the case of moderate values,of
scheme from3d]. than other considered schemes. For the case of small
values of D scheme with optimal valuesg can be
recommended for practical computations.
4 Numerical Results 4.3. D2Q9. The LBEs with optimal parameters
corresponds to the following values: = @ = 0.3939,
The plots of the isolines of are presented at Fig. 1-3 for T = 21.60 and the minimal value of is equal to 0.9914.
D2Q5, D2Q7 and D2Q9 lattices. The minimum points areFor the LBEs witho = 4/9 [24] the minimal value is
marked by the red circles. Due to the lack of the analyticalequal to 0.9916 at = 25.62. As it can be seen from Fig.
representation of function (7, o) all the propositions on 6, plots for the presented LBEs are close to each other.
minimum points of all schemes for the cases of all lattices  The plot for the analog oft (which depend only om)
must be considered as a results of numerical calculationsfor the LBEs from BQ] is presented at Fig. 6. Plot

4.1. D2Q5. For the case of the D2Q5 lattice the analysis demonstrates that the minimal value for this
minimal value ofA is equal to 0.9929 and corresponds to LBEs is less than the minimal values for the schemes
o =10 =0.4221,1 = 34.28. For the fixed value of = ¢ presented above. The minimal value for this scheme is
the values ofA that are greater than unity occur near the equal to 0.9899 and realized at= 31.65. It means that

1,000 <

0,994

boundary values = 1/2 andt = 100. this LBE-based scheme is a more preferable for
For the case of = 0 (Wolf-Gladrow’s schemelfg]), simulations due to its stability properties according te th
A is equal to unity in the range®< 7 < 84.02 andA > 1 criterion A(1,0), than LBEs from the parametrical
whent > 84.02. family presented inZ4).
In the case ofoc = 1/3 (LBEs from [20,21]) the There is no scheme in presented parametrical family

minimal value ofA is equal to 0.9934 and correspond to for this type of lattice which can be considered as optimal
T = 27.04. As for the case ob = T, the values ofA for the case of small values BX.
greater than unity occurs near the boundaries of the
range (Fig. 4).
For the case o0& = 1/5 [19] the minimal value ofA 5 Conclusion
is equal to 0.9955 and is realizedmt 16.14, the values
of A greater than unity are realized near the boundary  The paper is dedicated to the stability analysis of LBEs in
100. 2D. Parametrical families of numerical schemes are
The plots ofA with fixed values ofo, correspondsto presented for the cases of D2Q5, D2Q7 and D2Q9
LBEs discussed above, are presented in Fig. 4. As it camattices. Stability analysis is performed based on the von
be seen, the scheme based on LBEs frd@0 41] is Neumann method. The optimal values of parameter
"closer” (with respect to stability properties in terms of correspond to the minimal values of functigh(t, o),
stability criterion/\) than other presented schemes to thewhich is chosen as stability criteria in this paper, are
scheme with optimal parameter. It must be noted that obtained.
for the values of closer to 12 (correspond to the case of As the result of the numerical computations, LBEs for
small values oD) the scheme of S. Chen et diY has the D2Q5 and D2Q7 lattices with good stability
good stability properties. properties are obtained. For D2Q5 lattice family the
4.2. D2Q7. The results of calculations (see Fig. 5) scheme from19] can be considered as optimal for small
demonstrate, that for all presented LBEs the valued of values of diffusion coefficienD. For moderate values of
are less than unity when is closer to ¥2 and greater D the optimal value of parameter is presented in the
than unity wherr is closer to 100 (Fig. 5). The minimal article. In the case of D2Q7 family optimal scheme for
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