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1 Introduction 2)A sequencex,} in X converges tox if and only if
S(Xn,Xn,X) — 0 asn — . That is for eacke > 0, there

Throughout this paper denote all natural numberd\oy exists a natural number, such that for alin > ng, we

and all real number byR. The work in this paper is haveS(xn,x,,X) < € and we donate this by lign,e Xy = X.

inspired by Samet's generalization of Banach’s 3)A sequencéx,} in X is called a Cauchy sequence if for

contraction principles in a metric space by introducing eachs > 0, there exists a natural numbey such that for

a-y-contraction in 1. In this paper study the existence all n,m> ng, we haveS(xn, Xn, Xm) < €.

of a fixed point for ar-y-contractive self mappin@ on 4)An S-metric spacéX, S) is said to be complete if every

an S-metric space. Many recent results in the past fewCauchy sequence is convergent.

years showing the existence of a fixed point for a

contractive self mapping in deferent types of metric  These next two lemmas are very useful for our

spaces, see?],[4],[5].[6], [7].[8].[9].[10]. In this paper,  purpose.

we give a generalization of the results @] [in the

S-metric space. First, we start by giving a few definitions.

Definition 1. Let X be a nonempty set. An S-metric space S(x,%,y) = Sy, Y, X)

on X is a functionS: X® — [0,») that satisfies the

following conditions, for allx,y,z,t € X : forall x,y € X.

(i) S(x,y.2) >0,

(i) S(x,y,z) =0ifand only ifx=y =z

(ii)) S(x,Y.2) < S(x,xt) + Sy, y.t) + S(z,2t)

The pair(X,S) is called an S-metric space.

Lemma 3[3] In an S-metric space, we have

Lemma 4[3] Let (X,S) be an S-metric space. ¥ — X
andyn — Y, thenS(xn, X, Yn) — S(X, X,y).

Here some examples of such space which weréDefinition 5. [1] Denote by ¥ the family of

presented ing]. nondecreasing functiong : [0, +o) — [0,+) such that
1)Let X = R" and ||.|| a norm on X, then Y, Y"(t) < +oo for eacht > 0, wherey" is the n-th
S(x,y,2) = |lyz— 2X|| + ||x+ Y| is an S-metric space. iterate ofy.

2)l,et X = R" and ||.|| a norm on X, then

S(x,Y,2) = ||x—2|| + ||y — Z|| is an S-metric space. Also, this next lemma is very useful for our purpose.

3)LetX be a nonempty sed, the ordinary metric space on | emma 6[1] For every functiony : [0,+c) — [0, +c0)
X, then§(x,y,z) = d(x,2) +d(y,z) is an S-metric space.  the following holds:

Definition 2.[3] Let (X, S) be an S-metric space. if ¢ is nondecreasing, then for each > O,
1)A subsetA of X is said to be S-bounded if there exists limp_, 1. Y"(t) = 0 implies thaty(t) < t.

r > 0 such thaB(x,x,y) <r forall x,y € A.
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Now, we define thex--contractive self mapping in
S-metric space.

Definition 7. Let T be a self mapping on a complete S-

metric spacéX,S). We say thal is o-y-contractive self
mapping if there exists a functiam: X x X x X — [0, »)
andy € W such that for alk,y € X we have

a (%% Y)S(Tx, Tx, Ty) < Y(S(x,x,Y)).

Definition 8. Let (X,S) be a S-metric space and
T : X — X be a given mapping. We say that is
a—admissible ifx,y,z € X, a(x,y,z) > 1 implies that
a(Tx, Ty, Tz) > 1.

Example:
Let X = [0,), d the ordinary metric space oX, then
S(x,y,z) = d(x,z) + d(y,z) is an S-metric space. Let
a X x X x X —1[0,0) defineT by:

Tx= /X,
and definex by
ax,y,z) = gnex{xy}-z jf max{x,y} >z

and
a(x,y,z) =0 if max{xy} <z

Itis easy to see thdt is a —admissible.

2 Fixed point of a-y-contractive self
mapping in S-metric space

Hence, by induction on we get,

S(%n, %, Xn+1) < Y'(S(X0,%0,%1)) for all neN.

Fix € > 0, let nle) € N such that

€ :
Yn=n(e) Y (S(X0,X0,X1)) < > Now, let n,m € N with

m > n > n(g), by the triangle inequality property of the
S-metric space we deduce,

m-2

S(%n, X0, Xm) <2 5 S(X,%, Xi1) + S(Xm-1,Xm-1, Xm)

1I=n

)
m-1
<25 (S0, x0.x)) + Y™ H(S(x0, %0, X1))
k=n

<2 Y @Sk xoa) < 2% 5 =&

n>n(e)

Thus, {x,} is a Cauchy sequence. Sin¢X,S) is a
complete, there exish € X such that lim_ X, = a.
Also, sinceT is continuous we have

a= nILmenJrl = MLLTX” =Ta
Thus,T has a fixed point as desired.

In our next theorem we omit the continuity
hypothesis.

Theorem 1.2.Let T be ana-y-contractive self mapping
on a complete S-metric spacgX,S), and ¢ € ¥,
satisfying the following conditions:

(i) T is a-admissible;

In this section we prove the existence of a fixed point for ji) there exists € X such thaix (xo, Xo, TXo) > 1;

ana--contractive self mapping.

Theorem 1.1.Let T be ana-y-contractive self mapping
on a complete S-metric spad¥,S), where ¢ € ¥,
satisfying the following conditions:

() T is a-admissible;

(i) there exists¢ € X such thair (xp, X, TXg) > 1;

(iii) T is continuous.

Then,T has a fixed point.

Proof. Consider the sequence{x,} defined by
X1 =TXo, % = Txg = T%X0, . X = TXn-1 = T, "+~ .
By assumption we know that (xg, %o, TXg) > 1, hence
sinceT is a-admissible, thereforey (x,x1,%2) > 1. So,
using the fact thal is a-admissible and by induction on
nwe conclude that

a (Xn7 Xn, Xn+1) Z 1

Now, since fom € N we havea (xn,Xn,Xn+1) > 1 and
T be ana-y-contractive we deduce,

S(Xn, Xn, Xn+1) = S(TXn—1, TXn—1, TXn)
< o (Xn—1,%1—1, %) S(TXn—1, TXn—1, TXn)

< P(S(Xn-1,%1-1,%n))-

1)

(i) if {x} is a sequence inX such that
o (Xn, Xn, Xn1) > 1 for all n € N and x converge tox,
thena (xn,%n,X) > 1 foralln € N.

Then,T has a fixed point.

Proof. Using all the notations in the proof of Theorgm
and by that proof, we know thdk,} converges say ta €
X. and for alln € N we have,

a (Xn, Xn, ) > 1.
So, by using Lemma, we deduce that,
S(Ta,Ta,a) < 25(Ta, Ta, Txn) + S(a,a,%+1)
< 28(Txn, Txn, T@) +S(a,8,Xn+1)
S Za(xn7xn7a)S<TXn7TXn7Ta) +S(a7 a7xn+1)
S Zw(S(Xn,Xma)) +S<a7 a7xn+1)~

Sincey is continuous at 0 and when we take the limit as
n — +c we obtain §(Ta,Ta,a) = 0. Hence,Ta = a.
Hence,T has a fixed point as required.

@)

Next, we prove the following corollary.
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Corollary 1.3. Let T be a self mapping on a complete S- S(Tx, Tx, Ty) < a(x,x,y)S(Tx, Tx, Ty) < S(x x¥), {x,y} C [0, 1]
metric spacegX,S), T is a-admissible, and there exists and similarly,

Xo € X such thata (X, %o, TXg) > 1 and there existk €
[0,1) such that for alk,y € X we have

a(xx,y)S(Tx, Tx, Ty) < LS(X,X,y),

thenT has a fixed point.

S(Tx, Tx, Ty) < a(X,X,y)S(Tx, Tx, Ty) < %S(x,x.,y),{x,y} N[2,3] #0.

Note that in this case our fixed point isdndL = %

Remark:

In closing, we want to bring to the reader’s attention that
a does not have to be defined ¥, it should be enough
defininga onX2.

Proof. Considery(t) = Lt, it is not difficult to see that
Y € W. Also, by the remark in section 3 o8], we know
thatT is continuous. Thus, all the conditions of Theorem
2 are satisfied. Therefor&, has a fixed point.
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