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1 Introduction of the method. In order to achieve high algebraic order the

numerical methods must have many steps or many stages
The approximate solution of special second order initialor both of them. We note that many steps methods are
value problems of the form : proposed in some cases (s&€]]. Additionally the new

proposed family of methods has some more benefits like

q’(x) = f(x,q), q(xo) = and d(x) =g, (1) the very good behavior on the numerical solution of

problems with periodical and /or oscillating solutions.
is studied in this paper. Special attention is given for theThe benefits are the result of important properties which
problems of the form1) with solutions with periodical this family has like the vanishing of the phase-lag and its
and/or oscillating behavior. derivatives.

The special characteristic of the mathematical models  The paper has the following form:
of the form () is the consistent of systems of second
order ordinary differential equations from which the first —In Section 2 we present the theory on the phase-lag
derivativeq does not appear explicitly. analysis of symmetric multistep methods.

We will investigate a family of Runge-Kutta type = —The development of the new Runge-Kutta type tenth
(4-stages) two-step method is introduced. With this algebraic order two-step method with vanished
family we avoid the many steps method since in these phase-lag and its first, second, third, fourth and fifth
cases we need unstable methods (for problems with derivatives is presented in Section 3.
periodical and /or oscillating solutions), like Runge-taut —In Section 4 based on a model problem we study the
or Runge-Kutta-Nystdm methods, for the first steps of the  local truncation error of the new method and using
method. This creates serious computational problems other similar methods of the literature we present the
since increase the computational time and the instalsilitie =~ comparative local truncation error analysis.
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—The definition of the stability interval (interval of Definition 1.[1] The multistep method 2) is called
periodicity) of the produced method is presented inalgebraic of ordek if the associated linear operatbr
Section 5. For the investigation of the stability given by @) vanishes for any linear combination of the
properties we use scalar test equation with frequencyinearly independent functions &, x2, ..., xk+1,
different than the frequency of the scalar test equation

used for the phase-lag analysis ~ If 'we apply the symmetric @step method,
—In the Subsection 6.1 we present the Local Error(i=—m(1)m), to the scalar test equation

estimation. This is based on methods with similar B )

characteristics but with different algebraic order and qa =—-¢q (4)

—The approximate solution of the coupled differential e following difference equation is obtained :
equations arising from the Schrodinger equation is
presented in Section 6.2.

—Finally, in Section 7 we present some conclusions.  An(V) Onsm+ ... + A1(V) Onr1 + Ao(V) On

We note here that the numerical solution of the +A1(V)On—1+ .- +An(V)gn-m =0 (5)

coupled differential equations arising from the \herey — @h, his the stepsize and;j(v) j = 0(1)m are
Schrodinger equation is an important problem for theyoynomials ofv.

computational chemistry which is a part of information * The equation :

sciences.
An(V)AM 4+ Ag(V) A 4+ Ag(V)
2 Phase-lag Analysis for Symmetri@ m-Step FA WA T L AR(VA ™ =0. (6)
Methods is called characteristic equation and is associated Wwj)th (
Consider the 2+Step methods Definition 2.[16] We say that a symmetr&m-step method
with characteristic equation given bg)(has an interval
m m of periodicity(0,v3) if, for all v € (0,v3), the rootsA;,i =

Y Gilngi = hzl > bi f(Xnsis Ongi) ()  11)2mofEq. 6) gatisfy; 0 '

I=—m I=—m
for the numerical solution of the initial value problet.( A =€V 2, =€) and|A| < 1,i=3(1)2m (7)

We have the following:
wheref(v) is a real function of v.

1.In order to solve numerically the initial value problem o ) )
(1) we divide the integration ar€a, b] into m equally Definition 3.[14], [15 For any symmetric multistep
spaced intervals i.e{x}™ . € [ab]. Within these method which is associated to the characteristic equation

intervals we apply the metho®) The integration (6) the phase-lag is the leading term in the expansion of

area is defined based on the physical characteristics of

the specific problem. t=v-6(v) (8)
2.We define the quantityh as h = |x1 — X, i . : .

i =1—m(1)m— 1. This quantity is called stepsize of :Tgezvpﬂ?:; v(i mpgaﬁglé"f‘g is p, if the quantity

integration.
3.For the multistep method given bg)(the number of  Dpefinition 4.[2] If for a method the phase-lag is vanished

steps, which are used for the integration, is equal to(j.e. equal to zero), then this method is calfghse-fitted
2m. This is the reason that this is callednzstep

method). Theorem 1[14] The symmetric2k-step method with
associated characteristic equation given bg) (has
Remarldf c_j = ¢ andb_j = b;, i=0(1)mthen the phase-lagorder p and phase-lag constant c given by
method @) is called symmetric h-step method. b
—eP2 L O(vPHY) = 2 9
RemarkThe linear operator, which is associated with the +O( ) P ©)

Multistep Method ), is given by: where

Po = 2Am(v) cogmv) + ...+ 2Aj(v) cogjV) + ... +Ag(V)

k m and R = 2mPAn(V) + ... + 2j2A[ (V) + ... + 2A1(V).
LX) = 3 cqx+in)—h2 S big(x+ih) 3) :
i=—k i=—m Remarki-or the direct calculation of the phase-lag for any
symmetric 2n-step multistep method we use the formula
whereq e C2, 9.
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Remarkin our study we use symmetric two-step methods.
Considering that their characteristic polynomials aregiv .
by Aj(v) j = 0,1, the phase-lag of ordgrwith phase-lag Fourth Derivative ofthe PhaseLag = 9°PL =0 (16)
constant are given by: ov*
2A
P2 opt) = 2A) gc;\s((vg;Ao(v) (10) o
1
Fifrh Derivative ofthe Phase Lag = Ev 0 (17

3 The New Proposed Tenth Algebraic Order
Runge-Kutta Type Two-Step Method with
Vanished Phase-Lag and Its First, Second,
Third, Fourth and Fifth Derivatives

Consider the hybrid family of two-step methods

GM%:( Qn+1+aOQn+ qnl
h?2

+4992(41fn+1 682f,— 271fy 1

50n4+1+ 14600 — 47001

104(

)
)
)
+ 055 ~59fns1+ 1438, + 2531, 1)

Gn =t —arh’ (fn+1
—af,

RN R INEES Ay

Ont1+ @00+ 01 = h? lbl (fre1+ fao1)

+%+Tn%)]

wherefi =q’ (x,q),i = —1(%) 1anda,i=0(1)2bjj=
0(1)2 are free parameters.
We require the above Runge-Kutta type methbt) (

+bg an-i-bz(ﬁ1 (12)

to have vanished the phase-lag and its first, second, third,
fourth and fifth derivatives. Therefore, the following

system of equations is produced :

1T,
Phase-Lag(PL) = = -2 =0 (12)
2Ty
. N oPL
FirstDerivative ofthe PhaselLag = v 0 (13)
N 9%PL
Second Derivative ofthe Phasd.ag = o2 = 0 (14)
. _— °PL
Third Derivative ofthe Phase Lag = v 0 (15)

where

15 3v? 11
To=2(1+v? (b1+b°alvz (26 208) b (104 832)))

cos(v)+a2+v2(bo <1+a1v2( 4ag + %-‘r %))

+bp (%—%4-73))
)

32 32
T = 1+v2<b1+boa1v2 (26 208) +b (104 832)

If we solve the above system of equatioA®)¢(17),
we produce the coefficients of the new obtained Runke-
Kutta type method ag, az, ap, bg, by, bo. There are cases
that the formulae of the coefficients are subject to heavy
cancellations for some values |of (for example when for
some values dfv| the denominators of the formulae of the
coefficients are equal to zero). For these cases Taylosserie
expansions should be used.

In Figure 1 we present the behavior of the coefficients
of the new method.

The local truncation error of the new developed
Runge-Kutta type method 1{) (mentioned as
ExpTwoStepRKID) is given by:

8641
LT EExpTwoStepRKID = mg < 2
16¢2qtY 1+ 15¢4q® + 205

+15¢°q” +69'°q7 + (plzqn> +0(h¥)  (18)

4 Comparative Local Truncation Error
Analysis

In order to study the behavior of the Local Truncation
Error we consider the test problem

q'(x) = (V(x) =Ve+G) q(x) (19)

where (1) (x) is a potential function, (2 is the constant
value approximation of the potential on the specific point
X, (3) G =V, — E and (4)E is the energy.

We will investigate the local truncation error of the
following methods:

(@© 2016 NSP
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Fig. 1: Behavior of the coefficients of the new proposed method

for several values of = gh.

4.1 Classical Method (i.e. the methddly with
constant coefficients)

8641

LTEcL = ~ 5706022400

B2 o) (20)

4.2 The New Proposed Method with Vanished
Phase-Lag and its First, Second, Third, Fourth
and Fifth Derivatives Produced in Section 3

LT EExpTwoSte pRKIO =

67060224008 "

+6¢7ah? + 15¢*q + 200°

+15¢%ah + 6900k + qolzqn) +o(h%) (1)

The Local Error Analysis is based on the following

procedure :

-t is easy to see that the formulae of the Local
Truncation Errors consists of derivatives of the
functiong. Consequently we calculate the expressions
of these derivatives which are based on the test
problem @9). We present some of the expressions of
the derivatives of the functiogin the Appendix.

—Based on the above step of the algorithm, new
formulae of the Local Truncation Errors are produced
which are based on the expressions of the derivatives
of the functionq given in the Appendix. It is easy to
see that these new formulae of the Local Truncation
Errors are dependent on the quan@and energy.

—Consequently, the above mentioned formulae of the
Local Truncation Errors leads to expressions of the
Local Truncation Error which contain the parameter
G (see (9)). Our investigation is based on two cases
for the paramete® :

1.First CaseV, — E = G = 0. The physical meaning
of this case is that the Energy and the Potential are
closed each other. Consequently, all the terms of
G"'n > 1 are approximately equal to zero.
Therefore, approximately equal to zero are all the
terms in the formulae of the local truncation error
which contain powers of5 (i.e. which contain
G"'n > 1). Consequently, in this case the
expression of the local truncation error is equal
with the term which contain only the power 6P
i.e. which contain free fronG terms. Due to the
fact that the free fron® term of the expression of
the local truncation error for the classical method
(constant coefficients) is equal with the free from
G term of the expression of the local truncation
error for the methods with vanished the phase-lag
and its first, second, third, fourth and fifth
derivatives, the asymptotic behavior of the local
truncation error for the classical method and the
asymptotic behavior of the local truncation error
for the methods with vanished the phase-lag and
its first, second, third, fourth and fifth derivatives
is the same. Consequently, for these value&pof
the methods are of comparable accuracy.
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2G >> 0 or G << 0. Therefore,|G| is a large 5 Stability Analysis
number. It is easy to see that the most accurate

methods are the methods with expressions of th@, order to study the stability properties of the new
local truncation error which contain minimum proposed Runge-Kutta type method we consider the

power ofG. following scalar test equation :
—Finally the asymptotic expressions of the Local

Truncation Errors are presented. q = —w?q. (24)

The following asymptotic expansions of the Local  |¢is easy to see that the above scalar test equation has
Truncation Errors are obtained based on the analysu§requency () which is different than the frequency of the
presented above : scalar test equation for the phase-lag analygjswhich

was studied above i.e # @.
If we apply the new proposed Runge-Kutta type
4.3 Classical Method method to the scalar test equati@#( we have following
difference equation:

AL(S,V) (Gn+1+0n-1) +Ao(SV) =0  (25)
8641 1 +
LTEoL = — = 112 q(x) G®+--- | + O (K4
67060224000 ( (™) where
(22)
_ _ Au(s ) = 1+ by 4 22002
4.4 The New Proposed Method with Vanished 26
Phase-Lag and its First, Second, Third, Fourth _3%hoay | 11bs®  3s'hy
and Fifth Derivatives Produced in Section 3 208 104 . 86?332
Ag(s,v) = ay + by — 4s*bpagag + Tzal
5bga;s* 63s*h,  73bys?
8641 ., +og t oo - S (26)
LT EExpTWOStepRKIO = _mg
o d d° wheres= wh andv = ¢gh
2559 £ a0 +559(x) a(x) Based on the above and on the Section 2 we have the
following definitions:
2 2 3
+10(@ g(x)) q(x)+ 15@9()() &g(x) a(x) Definition 5.(see [L6]) We call P-stable a multistep

4 method with interval of periodicity equal {0, «).

d
+6d—x49<x>g<x>q<X>>GZ*'“+O<h1“) @) .
Definition 6.We call singularly almost P-stable a

) ~ multistep method with interval of periodicity equal to
From the above analysis we have the following (0 ) S1,

theorem:

] ) RemarkThe term singularly almost P-stable method is
Theorem 2. -Classical Method (i.e. the method1)  applied whenw = ¢ i.e. only in the cases when the
with constant coefficients): For this method the error frequency of the scalar test equation for the stability

increases as the sixth power of G. _analysis is equal with the frequency of the scalar test
—Tenth Algebra|c Order TWO-Step Method with equation for the phase_'ag ana'ysis'

Vanished Phase-lag and its First, Second, Third,

Fourth and Fifth Derivatives developed in Section 3: Thes— v plane for the method obtained in this paper

For this method the error increases as the Seconds shown in Figure 2.

power of G.

So, for the approximate integration of the time
independent radial Scbdinger equation the New
Obtained Tenth Algebraic Order Method with Vanished
Phase-Lag and its First, Second, Third, Fourth and Fifth
Derivatives is the most efficient from theoretical point of

view, especially for large values (| = [Vc — E|. 1 whereSis a set of distinct points

RemarkThe following conclusions are extracted based on
thes—vregion presented in Figure 2 : (1) The method is
stable within the shadowed area, (2) The method is
unstable within the white area.
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—has an interval of periodicity equals t@0, ), i.e. is
P-stable when the frequency of the scalar test
equation used for the phase-lag analysis is equal with
the frequency of the scalar test equation used for the
stability analysis

6 Numerical Results

6.1 Error Estimation

The estimation of the local truncation error (LTE) on the
approximate solution of systems of differential equations
was the subject of large research the last decades. This can
be verified from the existing literature. The subject of this
research was the development of new techniques for the
local error estimation (see for exampld-[ 54]).

In our numerical tests we base our methodology for
the local truncation error estimation on the algebraic
order of the methods. The result of this methodology is an
embedded pair of multistep methods. More precisely our
technique is based on the fact that the maximum algebraic
Fig. 22 s—v plane of the new obtained two-step high order order of a multistep method produces highly accurate
method with vanished phase-lag and its first, second, thicdd a approximate solutions for oscillatory and/or periodical
fourth derivatives problems.

The local truncation error iy , is estimated by

LTE=| YE+1_YE+1| (27)

RemarkThe mathematical models of many real problems 1 denotes the lower order solution and we use for this

in Sciengeg, Engineer_ing and '!'echnology (for examp! he method developed ib4], which is of eight algebraic
the Schraddinger equation) consist only one frequency iNyrder andyﬁﬂ denotes the higher order solution and we

the their model. Consequently, in these specific cases w ; : P o
are interested for the investigation of the stability of the tEesrftrEOa:I;ZErtgi(e: cr?rgter}?d obtained in this paper, which is of

proposed methods under the condition that the frequency The estimated step length for the-+ 1) step, which

of the scalar test equation for the stability analysis is ; e i
i . would give a local error equal t&cc is given b
equal with the frequency of the scalar test equation for the 9 q 6159 y

phase-lag analysis i.e. under the condition thet= ¢. acc\

Thefore, for these specific cases the study of shev Pny1=hn (—) (28)
S . ) LTE

plane is limited on thehe surroundings of the first i ) )

diagonal of thes— v planei.e. on the areas wheee= v. wherep is the algebraic order of the methah, is the

step length used for thé" step andaccis the requested
Based on the above remark, we investigated theAccuracy ofthe local error.

specific case where the frequency of the scalar teskomanour technique for the local truncation error
equation used for the the stability analysis is equal withggtimation is based on the lower algebraic order solution
the frequency of the scalar test equation used for,

L .. In our tests we use the well know procedure of
phase-lag analysis , i.e. we study the case wiserev Ynit P

. . ; ; performing local extrapolation. Consequently, if the
Sighz)eeégf ?#igog:sdéngsﬂ?; t:‘]gvcr;trg:jaugg:jalnc]’:m g EStimation of the local error is less thang we accept at

interval of periodicity equal to(0,eo), i.e. is P-stable. Bach point the higher algebraic order solutjh; while

) K . the local error is controlled in lower algebraic order
The above investigation leads to the following squtiony'-H
R

theorem:

Theorem 3The obtained method produced in Section 3: 6.2 Coupled differential equations

—is of tenth algebraic order,
—has the phase-lag and its first, second, third, fourth and
fifth derivatives equal to zero 1.quantum chemistry,

There are lot of problems in

(@© 2016 NSP
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2.material science, by (j’,l’), and the total angular momentum by

3.theoretical physics, J=j+I1=j +I, we find that

4.atomic physics, 2 iy '

5.physical chemistry, {d_ +Ke — rd +1)] .,J',(x) =

: : dxe i X2 i
6.theoretical chemistry and
i i 2 . . -

7.chemical physics FI; Z; < Jll/;J |V | J//l//;J S yf,’,:”(x) (32)
for which their models can be transferred in a coupled =~ |
differential equations of the Schrddinger type. where

We write the close-coupling differential equations of

the Schrodinger type as: 2

2 he .. g
Ky/j = F’;‘[H S UG+ -7("+1}  (33)
N
=Vi|Yij= > Vimymj  (29) E is the kinetic energy of the incident particle in the
m=1 center-of-mass systerh,is the moment of inertia of the
rotator, andu is the reduced mass of the system.
d Asanalyzed in$6], the potentiaV can be expanded

d? o lili+1)
W+ki o

for1<i<Nandm#i.
The case in which all channels are open is considere
for our numerical tests. Therefore, the following boundaryas

conditions are hold (see for detaiq): V(x, Rj,jlzjj) _ VO(X)PO(RJ"] R“_ ) +V2(x)P2(I2j/j R“ )(’34)
yij =0atx=0 (30) and the coupling matrix element may then be written as
. K\ /2 <J1IIV N3 >= 8y dneNo(X) + f2(1, 175 3)V2(X)
Vij ~ kiXJ|i(kiX)§j + (k_> Kijk@Xﬁi(k@X) (31) o . (35)
] where thef, coefficients can be obtained from formulas

Legendre polynomials (see for details$58)). The
RemarkThe obtained method can also be used for the cas@oundary conditions are
of closed channels.

iy — —

Our application is based on the detailed analysis j,l,(x)_Oatx_O (36)
obtained in $6]. We define a matrixk/ and diagonal _
matricesM, N as: yﬁl/ (x) ~ &jjr A exp—i(kjjx—1/2l )]

(kT K\ Y2
Kij = K Kij — (k_> S(jI; i) expi(kjjx— 1/21"m)] (37)
: i

Mij = kixJj, (kix) & where the scattering S matrix is related to Knenatrix of
Nij = kixny; (kix) & (31) by the relation
Based on the above we can write the asymptotic condition , g
(3)) as: S=(I+iK)(I -iK) (38)

/
y~M+NK An algorithm which must include a numerical method

Remarkwe can find detailed description on the problem for step-by-step integration from the initial value to
in [56]. There, one the most well-known methods for the matching points is needed in order to compute the cross
numerical solution of the coupled differential equations Sections for rotational excitation of molecular hydrogen
arising from the Schrédinger equation is described. ThisdY impact of various heavy particles. We use an algorithm

is the well know Iterative Numerov method of Allison Which is based on the similar algorithm which has been
[56]. produced for the numerical tests 6.

For numerical purposes we choose Smatrix which
The rotational excitation of a diatomic molecule by is calculated using the following parameters

neutral particle impact is a real problem for which its 2u U
mathematical model can be transferred to close-coupling  — = 100Q0, T
differential equations of the Schrodinger type. This
problem occurs frequently in quantum chemistry, \iy(x) = % — 2£7 Va(X) = 0.2283/p(x).
theoretical physics, material science, atomic physics and X x®
molecular physics. Denoting, as ibq], the entrance As is described in46], we takeJ = 6 and consider
channel by the quantum numbéisl), the exit channels excitation of the rotator from th¢ = O state to levels up

=2351 E=11,

(@© 2016 NSP
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Table 1: Coupled Differential Equations. Real time of 7 Conclusions
computation (in seconds) (RTC) and maximum absolute error
(MErT) to calculate| S|? for the variable-step methods Method
| - Method V. ac=10-%. We note that hmax is the maximum
stepsize
Method N hmax RTC MErr
Method | 4 0.014 325 2x10°3
9 0.014 2351 5x107?
16 0.014 99.15 @®x101

Method Il 4 0.056 155 ®&x107%
9 0.056 843 #Ax103

A family of Runge-Kutta type tenth algebraic order two-
step methods was investigated in the present paper. More
specifically :

1.we investigated the elimination of the phase-lag and its
first, second, third, fourth and fifth derivatives
2.we studied the comparative local truncation error

> analysis
16 0056 4332 ®x10 3.we investigated the stability properties of the new
Method Il 4 0007 4515 9x10° proposed method using a scalar test equation with
9 frequency different than the frequency used by the
16 scalar test equation for the phase-lag analysis
Method IV 4 0112 0.39 1x10° 4.we studied the computational behavior of the new
9 0112 348 Bx10* produced method and its efficiency on the numerical
16 0.112 1931 Bx103 solution of the Schrodinger equation.
MethodV 4 0448 010 5x10°%
9 0448 124 ®Bx10° As a conclusion of this study it is easy to see that the
16 0448 903 Hx10° new obtained method is much more efficient than known
ones for the approximate solution of the Schrodinger
equation related problems..
All computations were carried out on a IBM PC-AT
to j = 2,4 and 6 giving sets ofour, nine and sixteen compatible 80486 using double precision arithmetic with

coupled differential equations respectively. Following 16 Significant digits accuracy (IEEE standard).

the procedure obtained by Bernsteb®][and Allison [56]
the potential is considered infinite for valuesxdéss than

somexp. The wave functions then zero in this region and . o
effectively the boundary conditior36) may be written as ~ Appendix: Formulae of the derivatives ofqp

yih (x0) =0 (39) o _ _
Formulae of the derivatives which presented in the

For the numerical solution of this problem we have formulae of the Local Truncation Errors:
used the most well known methods for the above

problem:
—the Iterative Numerov method of AllisoB which is a4t = (V(X) —Ve+G) q()
indicated asMethod I, 3 d d
—the variable-step method of Raptis and Cash] [ On = &Q(X)>Q(X)+(9(X)+G) 3™

which is indicated aMethod I, P2 d q
-the embedded Runge-Kutta Dormand and Prince qﬁfl) <—g(x)>q(x)+2<—g(x)) q(x)

The real time of computation required by the methods 4 e |
mentioned above to calculate the square of the modulus (6 _ [ 0 a” a
of the S matrix for sets of 4, 9 and 16 coupled differential = ( 90 Jalo+4 (dﬁg(x)) dx’ )
equations is presented in Table. In the same table the d2 d 2
maximum error in th_e c_;alculation of the square of the 17 (g (x)+G)q(x)Fg(x)+4 d_g(x)) q(x)
modulus of theS matrix is also presented. In TableNL X X
indicates the number of equations of the set of couple
differential equations.

method 5(4) 49] which is indicated aslethod IlI , dx2 dx dx
—the embedded Runge-Kutta method ERK4(2) 2
developed in Simos 59 which is indicated as e +d(2g > +sz a(x)
Method IV, ® _ (42 3( el
—the new developed embedded two-step method which n (dx39(x)> 409+ (dng(x)) dxq )
is indicated a®/ethod V d )
+4(g(0) +6)a(x) 3-9(x) +(9(¥) +G)" -a(x)

“r6(a00+6) (ga09) ga09+ (@09 + 6 %a0y
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