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Schr ödinger Equation

Fei Hui1,∗ and T. E. Simos2,3,∗

1 School of Information Engineering, Chang’an University, Xi’an, 710064, China
2 Department of Mathematics, College of Sciences, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
3 Laboratory of Computational Sciences, Department of Informatics and Telecommunications, Faculty of Economy, Management and

Informatics, University of Peloponnese, GR-221 00 Tripolis, Greece

Received: 17 Jun. 2015, Revised: 15 Aug. 2015, Accepted: 16 Aug. 2015
Published online: 1 Jan. 2016

Abstract: A Runge-Kutta type tenth algebraic order two-step method with vanished phase-lag and its first, second, third, fourth and
fifth derivatives is produced in this paper. We also investigate the effect of elimination of the phase-lag and its derivatives on the
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1 Introduction

The approximate solution of special second order initial
value problems of the form :

q′′(x) = f (x,q), q(x0) = q0 and q′(x0) = q′0 (1)

is studied in this paper. Special attention is given for the
problems of the form (1) with solutions with periodical
and/or oscillating behavior.

The special characteristic of the mathematical models
of the form (1) is the consistent of systems of second
order ordinary differential equations from which the first
derivativeq′ does not appear explicitly.

We will investigate a family of Runge-Kutta type
(4-stages) two-step method is introduced. With this
family we avoid the many steps method since in these
cases we need unstable methods (for problems with
periodical and /or oscillating solutions), like Runge-Kutta
or Runge-Kutta-Nystöm methods, for the first steps of the
method. This creates serious computational problems
since increase the computational time and the instabilities

of the method. In order to achieve high algebraic order the
numerical methods must have many steps or many stages
or both of them. We note that many steps methods are
proposed in some cases (see [50]). Additionally the new
proposed family of methods has some more benefits like
the very good behavior on the numerical solution of
problems with periodical and /or oscillating solutions.
The benefits are the result of important properties which
this family has like the vanishing of the phase-lag and its
derivatives.

The paper has the following form:

–In Section 2 we present the theory on the phase-lag
analysis of symmetric multistep methods.

–The development of the new Runge-Kutta type tenth
algebraic order two-step method with vanished
phase-lag and its first, second, third, fourth and fifth
derivatives is presented in Section 3.

–In Section 4 based on a model problem we study the
local truncation error of the new method and using
other similar methods of the literature we present the
comparative local truncation error analysis.
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–The definition of the stability interval (interval of
periodicity) of the produced method is presented in
Section 5. For the investigation of the stability
properties we use scalar test equation with frequency
different than the frequency of the scalar test equation
used for the phase-lag analysis

–In the Subsection 6.1 we present the Local Error
estimation. This is based on methods with similar
characteristics but with different algebraic order and

–The approximate solution of the coupled differential
equations arising from the Schrödinger equation is
presented in Section 6.2.

–Finally, in Section 7 we present some conclusions.

We note here that the numerical solution of the
coupled differential equations arising from the
Schrödinger equation is an important problem for the
computational chemistry which is a part of information
sciences.

2 Phase-lag Analysis for Symmetric2m-Step
Methods

Consider the 2m-Step methods

m

∑
i=−m

ci qn+i = h2
m

∑
i=−m

bi f (xn+i ,qn+i) (2)

for the numerical solution of the initial value problem (1).
We have the following:

1.In order to solve numerically the initial value problem
(1) we divide the integration area[a,b] into m equally
spaced intervals i.e.{xi}

m
i=−m ∈ [a,b]. Within these

intervals we apply the method (2). The integration
area is defined based on the physical characteristics of
the specific problem.

2.We define the quantityh as h = |xi+1 − xi |,
i = 1−m(1)m−1. This quantity is called stepsize of
integration.

3.For the multistep method given by (2) the number of
steps, which are used for the integration, is equal to
2m. This is the reason that this is called 2m-step
method).

Remark.If c−i = ci and b−i = bi , i = 0(1)m then the
method (2) is called symmetric 2m-step method.

Remark.The linear operator, which is associated with the
Multistep Method (2), is given by:

L(x) =
k

∑
i=−k

ci q(x+ ih)−h2
m

∑
i=−m

bi q
′′(x+ ih) (3)

whereq∈C2.

Definition 1.[1] The multistep method (2) is called
algebraic of orderk if the associated linear operatorL
given by (3) vanishes for any linear combination of the
linearly independent functions 1, x, x2, . . . , xk+1.

If we apply the symmetric 2m-step method,
(i =−m(1)m), to the scalar test equation

q′′ =−φ2q (4)

the following difference equation is obtained :

Am(v)qn+m+ ...+A1(v)qn+1+A0(v)qn

+A1(v)qn−1+ ...+Am(v)qn−m = 0 (5)

wherev = φ h, h is the stepsize andA j(v) j = 0(1)m are
polynomials ofv.

The equation :

Am(v)λ m+ ...+A1(v)λ +A0(v)

+A1(v)λ−1+ ...+Am(v)λ−m = 0. (6)

is called characteristic equation and is associated with (5).

Definition 2.[16] We say that a symmetric2m-step method
with characteristic equation given by (6) has an interval
of periodicity(0,v2

0) if, for all v ∈ (0,v2
0), the rootsλi, i =

1(1)2m of Eq. (6) satisfy:

λ1 = eiθ(v), λ2 = e−iθ(v), and |λi | ≤ 1, i = 3(1)2m (7)

whereθ (v) is a real function of v.

Definition 3.[14], [15] For any symmetric multistep
method which is associated to the characteristic equation
(6) the phase-lag is the leading term in the expansion of

t = v−θ (v) (8)

The order of phase-lag is p, if the quantity
t = O(vp+1) as v→ ∞ is hold.

Definition 4.[2] If for a method the phase-lag is vanished
(i.e. equal to zero), then this method is calledphase-fitted.

Theorem 1.[14] The symmetric2k-step method with
associated characteristic equation given by (6) has
phase-lag order p and phase-lag constant c given by

−cvp+2+O(vp+4) =
P0

P1
(9)

where
P0 = 2Am(v) cos(mv)+ ...+2A j(v) cos( j v)+ ...+A0(v)
and P1 = 2m2Am(v)+ ...+2 j2A j(v)+ ...+2A1(v).

Remark.For the direct calculation of the phase-lag for any
symmetric 2m-step multistep method we use the formula
(9).
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Remark.In our study we use symmetric two-step methods.
Considering that their characteristic polynomials are given
by A j(v) j = 0,1, the phase-lag of orderp with phase-lag
constantc are given by:

−cvp+2+O(vp+4) =
2A1(v) cos(v)+A0(v)

2A1(v)
(10)

3 The New Proposed Tenth Algebraic Order
Runge-Kutta Type Two-Step Method with
Vanished Phase-Lag and Its First, Second,
Third, Fourth and Fifth Derivatives

Consider the hybrid family of two-step methods

q̂n+ 1
2
=
( 3

52
qn+1+a0qn+

29
52

qn−1

)

+
h2

4992

(
41 fn+1−682 fn−271 fn−1

)

q̂n− 1
2
=

1
104

(
5qn+1+146qn−47qn−1

)

+
h2

4992

(
−59 fn+1+1438fn+253 fn−1

)

q̃n = qn−a1h2
(

fn+1

−4 f̂n+ 1
2
+6 fn−4 f̂n− 1

2
+ fn−1

)

qn+1+a2qn+qn−1 = h2

[
b1 ( fn+1+ fn−1)

+b0 f̃n+b2

(
f̂n+ 1

2
+ f n− 1

2

)]
(11)

wherefi = q′′ (xi ,qi) , i =−1
(

1
2

)
1 andai , i = 0(1)2 b j j =

0(1)2 are free parameters.
We require the above Runge-Kutta type method (11)

to have vanished the phase-lag and its first, second, third,
fourth and fifth derivatives. Therefore, the following
system of equations is produced :

Phase−Lag(PL) =
1
2

T0

T1
= 0 (12)

FirstDerivativeof thePhase−Lag=
∂PL
∂v

= 0 (13)

SecondDerivativeof thePhase−Lag=
∂ 2PL
∂v2 = 0 (14)

ThirdDerivativeof thePhase−Lag=
∂ 3PL
∂v3 = 0 (15)

FourthDerivativeof thePhase−Lag=
∂ 4PL
∂v4 = 0 (16)

FifrhDerivativeof thePhase−Lag=
∂ 5PL
∂v5 = 0 (17)

where

T0 = 2
(

1+v2
(

b1+b0a1v2
(

15
26

−
3v2

208

)
+b2

(
11
104

+
3v2

832

)))

cos(v)+a2+v2
(

b0

(
1+a1v2

(
−4a0+

63v2

104
+

5
13

))

+b2

(
a0−

63v2

416
+

73
52

))

T1 = 1+v2
(

b1+b0a1v2
(

15
26

−
3v2

208

)
+b2

(
11
104

+
3v2

832

))

If we solve the above system of equations (12)-(17),
we produce the coefficients of the new obtained Runke-
Kutta type method :a0, a1, a2, b0, b1, b2. There are cases
that the formulae of the coefficients are subject to heavy
cancellations for some values of|v| (for example when for
some values of|v| the denominators of the formulae of the
coefficients are equal to zero). For these cases Taylor series
expansions should be used.

In Figure 1 we present the behavior of the coefficients
of the new method.

The local truncation error of the new developed
Runge-Kutta type method (11) (mentioned as
ExpTwoStepRKT10) is given by:

LTEExpTwoStepRKT10 =−
8641

67060224000
h12

(
q(12)

n

+6φ2q(10)
n +15φ4q(8)n +20φ6q(6)n

+15φ8q(4)n +6φ10q(2)n +φ12qn

)
+O

(
h14) (18)

4 Comparative Local Truncation Error
Analysis

In order to study the behavior of the Local Truncation
Error we consider the test problem

q′′(x) = (V(x)−Vc+G) q(x) (19)

where (1)V(x) is a potential function, (2)Vc is the constant
value approximation of the potential on the specific point
x, (3) G=Vc−E and (4)E is the energy.

We will investigate the local truncation error of the
following methods:
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Fig. 1: Behavior of the coefficients of the new proposed method
for several values ofv= φ h.

4.1 Classical Method (i.e. the method (11) with
constant coefficients)

LTECL =−
8641

67060224000
h12q(12)

n +O
(
h14) (20)

4.2 The New Proposed Method with Vanished
Phase-Lag and its First, Second, Third, Fourth
and Fifth Derivatives Produced in Section 3

LTEExpTwoStepRKT10 =−
8641

67060224000
h12

(
q(12)

n

+6φ2q(10)
n +15φ4q(8)n +20φ6q(6)n

+15φ8q(4)n +6φ10q(2)n +φ12qn

)
+O

(
h14) (21)

The Local Error Analysis is based on the following
procedure :

–It is easy to see that the formulae of the Local
Truncation Errors consists of derivatives of the
functionq. Consequently we calculate the expressions
of these derivatives which are based on the test
problem (19). We present some of the expressions of
the derivatives of the functionq in the Appendix.

–Based on the above step of the algorithm, new
formulae of the Local Truncation Errors are produced
which are based on the expressions of the derivatives
of the functionq given in the Appendix. It is easy to
see that these new formulae of the Local Truncation
Errors are dependent on the quantityG and energyE.

–Consequently, the above mentioned formulae of the
Local Truncation Errors leads to expressions of the
Local Truncation Error which contain the parameter
G (see (19)). Our investigation is based on two cases
for the parameterG :

1.First Case:Vc−E = G≈ 0. The physical meaning
of this case is that the Energy and the Potential are
closed each other. Consequently, all the terms of
Gnn ≥ 1 are approximately equal to zero.
Therefore, approximately equal to zero are all the
terms in the formulae of the local truncation error
which contain powers ofG (i.e. which contain
Gnn ≥ 1). Consequently, in this case the
expression of the local truncation error is equal
with the term which contain only the power ofG0

i.e. which contain free fromG terms. Due to the
fact that the free fromG term of the expression of
the local truncation error for the classical method
(constant coefficients) is equal with the free from
G term of the expression of the local truncation
error for the methods with vanished the phase-lag
and its first, second, third, fourth and fifth
derivatives, the asymptotic behavior of the local
truncation error for the classical method and the
asymptotic behavior of the local truncation error
for the methods with vanished the phase-lag and
its first, second, third, fourth and fifth derivatives
is the same. Consequently, for these values ofG,
the methods are of comparable accuracy.
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2.G >> 0 or G << 0. Therefore,|G| is a large
number. It is easy to see that the most accurate
methods are the methods with expressions of the
local truncation error which contain minimum
power ofG.

–Finally the asymptotic expressions of the Local
Truncation Errors are presented.

The following asymptotic expansions of the Local
Truncation Errors are obtained based on the analysis
presented above :

4.3 Classical Method

LTECL =−
8641

67060224000
h12

(
q(x) G6+ · · ·

)
+O

(
h14)

(22)

4.4 The New Proposed Method with Vanished
Phase-Lag and its First, Second, Third, Fourth
and Fifth Derivatives Produced in Section 3

LTEExpTwoStepRKT10 =−
8641

4191264000
h12

(
2

d5

dx5 g(x)
d
dx

q(x)+5
d6

dx6 g(x) q(x)

+10
( d2

dx2 g(x)
)2

q(x)+15
d3

dx3 g(x)
d
dx

g(x) q(x)

+6
d4

dx4 g(x) g(x) q(x)

)
G2+ · · ·+O

(
h14) (23)

From the above analysis we have the following
theorem:

Theorem 2. –Classical Method (i.e. the method (11)
with constant coefficients): For this method the error
increases as the sixth power of G.

–Tenth Algebraic Order Two-Step Method with
Vanished Phase-lag and its First, Second, Third,
Fourth and Fifth Derivatives developed in Section 3:
For this method the error increases as the Second
power of G.
So, for the approximate integration of the time

independent radial Schrödinger equation the New
Obtained Tenth Algebraic Order Method with Vanished
Phase-Lag and its First, Second, Third, Fourth and Fifth
Derivatives is the most efficient from theoretical point of
view, especially for large values of|G|= |Vc−E|.

5 Stability Analysis

In order to study the stability properties of the new
proposed Runge-Kutta type method we consider the
following scalar test equation :

q′′ =−ω2q. (24)

It is easy to see that the above scalar test equation has
frequency (ω) which is different than the frequency of the
scalar test equation for the phase-lag analysis (φ ) which
was studied above i.e.ω 6= φ .

If we apply the new proposed Runge-Kutta type
method to the scalar test equation (24) we have following
difference equation:

A1 (s,v) (qn+1+qn−1)+A0(s,v) qn = 0 (25)

where

A1 (s,v) = 1+ s2b1+
15b0a1s4

26

−
3s6b0a1

208
+

11b2s2

104
+

3s4b2

832

A0 (s,v) = a2+ s2b0−4s4b0a1a0+
63s6b0a1

104

+
5b0a1s4

13
+ s2b2a0−

63s4b2

416
+

73b2s2

52
(26)

wheres= ω h andv= φ h
Based on the above and on the Section 2 we have the

following definitions:

Definition 5.(see [16]) We call P-stable a multistep
method with interval of periodicity equal to(0,∞).

Definition 6.We call singularly almost P-stable a
multistep method with interval of periodicity equal to
(0,∞)−S1.

Remark.The term singularly almost P-stable method is
applied whenω = φ i.e. only in the cases when the
frequency of the scalar test equation for the stability
analysis is equal with the frequency of the scalar test
equation for the phase-lag analysis.

Thes− v plane for the method obtained in this paper
is shown in Figure 2.

Remark.The following conclusions are extracted based on
thes− v region presented in Figure 2 : (1) The method is
stable within the shadowed area, (2) The method is
unstable within the white area.

1 whereS is a set of distinct points
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Fig. 2: s− v plane of the new obtained two-step high order
method with vanished phase-lag and its first, second, third and
fourth derivatives

Remark.The mathematical models of many real problems
in Sciences, Engineering and Technology (for example
the Schrödinger equation) consist only one frequency in
the their model. Consequently, in these specific cases we
are interested for the investigation of the stability of the
proposed methods under the condition that the frequency
of the scalar test equation for the stability analysis is
equal with the frequency of the scalar test equation for the
phase-lag analysis i.e. under the condition thatω = φ .
Thefore, for these specific cases the study of thes− v
plane is limited on thethe surroundings of the first
diagonal of thes− v plane i.e. on the areas wheres= v.

Based on the above remark, we investigated the
specific case where the frequency of the scalar test
equation used for the the stability analysis is equal with
the frequency of the scalar test equation used for
phase-lag analysis , i.e. we study the case wheres = v
(i.e. see the surroundings of the first diagonal of thes− v
plane). For this case : the new produced method has
interval of periodicity equal to:(0,∞), i.e. is P-stable.

The above investigation leads to the following
theorem:

Theorem 3.The obtained method produced in Section 3:

–is of tenth algebraic order,
–has the phase-lag and its first, second, third, fourth and
fifth derivatives equal to zero

–has an interval of periodicity equals to:(0,∞), i.e. is
P-stable when the frequency of the scalar test
equation used for the phase-lag analysis is equal with
the frequency of the scalar test equation used for the
stability analysis

6 Numerical Results

6.1 Error Estimation

The estimation of the local truncation error (LTE) on the
approximate solution of systems of differential equations
was the subject of large research the last decades. This can
be verified from the existing literature. The subject of this
research was the development of new techniques for the
local error estimation (see for example [1]-[54]).

In our numerical tests we base our methodology for
the local truncation error estimation on the algebraic
order of the methods. The result of this methodology is an
embedded pair of multistep methods. More precisely our
technique is based on the fact that the maximum algebraic
order of a multistep method produces highly accurate
approximate solutions for oscillatory and/or periodical
problems.

The local truncation error inyL
n+1 is estimated by

LTE=| yH
n+1− yL

n+1 | (27)

yL
n+1 denotes the lower order solution and we use for this

the method developed in [54], which is of eight algebraic
order andyH

n+1 denotes the higher order solution and we
use for this the method obtained in this paper, which is of
tenth algebraic order.

The estimated step length for the(n+1)st step, which
would give a local error equal toacc, is given by

hn+1 = hn

( acc
LTE

) 1
p

(28)

where p is the algebraic order of the method,hn is the
step length used for thenth step andacc is the requested
accuracy of the local error.

Remark.Our technique for the local truncation error
estimation is based on the lower algebraic order solution
yL

n+1. In our tests we use the well know procedure of
performing local extrapolation. Consequently, if the
estimation of the local error is less thanacc, we accept at
each point the higher algebraic order solutionyH

n+1 while
the local error is controlled in lower algebraic order
solutionyL

n+1.

6.2 Coupled differential equations

There are lot of problems in

1.quantum chemistry,

c© 2016 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.10, No. 1, 143-153 (2016) /www.naturalspublishing.com/Journals.asp 149

2.material science,
3.theoretical physics,
4.atomic physics,
5.physical chemistry,
6.theoretical chemistry and
7.chemical physics

for which their models can be transferred in a coupled
differential equations of the Schrödinger type.

We write the close-coupling differential equations of
the Schrödinger type as:

[
d2

dx2 + k2
i −

l i(l i +1)
x2 −Vii

]
yi j =

N

∑
m=1

Vimym j (29)

for 1≤ i ≤ N andm 6= i.
The case in which all channels are open is considered

for our numerical tests. Therefore, the following boundary
conditions are hold (see for details [56]):

yi j = 0 at x= 0 (30)

yi j ∼ kix jl i (kix)δi j +

(
ki

k j

)1/2

Ki j kixnli (kix) (31)

where j l (x) and nl (x) are the spherical Bessel and
Neumann functions, respectively.

Remark.The obtained method can also be used for the case
of closed channels.

Our application is based on the detailed analysis
obtained in [56]. We define a matrixK′ and diagonal
matricesM, N as:

K′
i j =

(
ki

k j

)1/2

Ki j

Mi j = kix jl i (kix)δi j

Ni j = kixnl i (kix)δi j

Based on the above we can write the asymptotic condition
(31) as:

y ∼ M +NK ′

Remark.We can find detailed description on the problem
in [56]. There, one the most well-known methods for the
numerical solution of the coupled differential equations
arising from the Schrödinger equation is described. This
is the well know Iterative Numerov method of Allison
[56].

The rotational excitation of a diatomic molecule by
neutral particle impact is a real problem for which its
mathematical model can be transferred to close-coupling
differential equations of the Schrödinger type. This
problem occurs frequently in quantum chemistry,
theoretical physics, material science, atomic physics and
molecular physics. Denoting, as in [56], the entrance
channel by the quantum numbers( j, l), the exit channels

by ( j ′, l ′), and the total angular momentum by
J = j + l = j ′+ l ′, we find that

[
d2

dx2 + k2
j ′ j −

l ′(l ′+1)
x2

]
yJ jl

j ′ l ′(x) =

2µ
h̄2 ∑

j ′′
∑
l ′′

< j ′l ′;J |V | j ′′l ′′;J > yJ jl
j ′′ l ′′(x) (32)

where

k j ′ j =
2µ
h̄2 [E+

h̄2

2I
{ j( j +1)− j ′( j ′+1)}] (33)

E is the kinetic energy of the incident particle in the
center-of-mass system,I is the moment of inertia of the
rotator, andµ is the reduced mass of the system.

As analyzed in [56], the potentialV can be expanded
as

V(x, k̂ j ′ j k̂ j j ) =V0(x)P0(k̂ j ′ j k̂ j j )+V2(x)P2(k̂ j ′ j k̂ j j ),
(34)

and the coupling matrix element may then be written as

< j ′l ′;J |V | j ′′l ′′;J>= δ j ′ j ′′δl ′ l ′′V0(x)+ f2( j ′l ′, j ′′l ′′;J)V2(x)
(35)

where thef2 coefficients can be obtained from formulas
given by Bernstein et al. [57] and k̂ j ′ j is a unit vector
parallel to the wave vectork j ′ j and Pi, i = 0,2 are
Legendre polynomials (see for details [58]). The
boundary conditions are

yJ jl
j ′ l ′(x) = 0 atx= 0 (36)

yJ jl
j ′l ′(x)∼ δ j j ′δll ′ exp[−i(k j j x−1/2lπ)]

−

(
ki

k j

)1/2

SJ( jl ; j ′ l ′)exp[i(k j ′ jx−1/2l ′π)] (37)

where the scattering S matrix is related to theK matrix of
(31) by the relation

S= (I + iK )(I − iK )−1 (38)

An algorithm which must include a numerical method
for step-by-step integration from the initial value to
matching points is needed in order to compute the cross
sections for rotational excitation of molecular hydrogen
by impact of various heavy particles. We use an algorithm
which is based on the similar algorithm which has been
produced for the numerical tests of [56].

For numerical purposes we choose theS matrix which
is calculated using the following parameters

2µ
h̄2 = 1000.0,

µ
I
= 2.351, E = 1.1,

V0(x) =
1

x12 −2
1
x6 , V2(x) = 0.2283V0(x).

As is described in [56], we takeJ = 6 and consider
excitation of the rotator from thej = 0 state to levels up
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Table 1: Coupled Differential Equations. Real time of
computation (in seconds) (RTC) and maximum absolute error
(MErr) to calculate| S |2 for the variable-step methods Method
I - Method V. acc=10−6. We note that hmax is the maximum
stepsize

Method N hmax RTC MErr

Method I 4 0.014 3.25 1.2×10−3

9 0.014 23.51 5.7×10−2

16 0.014 99.15 6.8×10−1

Method II 4 0.056 1.55 8.9×10−4

9 0.056 8.43 7.4×10−3

16 0.056 43.32 8.6×10−2

Method III 4 0.007 45.15 9.0×100

9
16

Method IV 4 0.112 0.39 1.1×10−5

9 0.112 3.48 2.8×10−4

16 0.112 19.31 1.3×10−3

Method V 4 0.448 0.10 1.5×10−8

9 0.448 1.24 6.8×10−8

16 0.448 9.03 5.9×10−8

to j ′ = 2,4 and 6 giving sets offour, nine and sixteen
coupled differential equations, respectively. Following
the procedure obtained by Bernstein [58] and Allison [56]
the potential is considered infinite for values ofx less than
somex0. The wave functions then zero in this region and
effectively the boundary condition (36) may be written as

yJ jl
j ′ l ′(x0) = 0 (39)

For the numerical solution of this problem we have
used the most well known methods for the above
problem:

–the Iterative Numerov method of Allison [56] which is
indicated asMethod I ,

–the variable-step method of Raptis and Cash [55]
which is indicated asMethod II ,

–the embedded Runge-Kutta Dormand and Prince
method 5(4) [49] which is indicated asMethod III ,

–the embedded Runge-Kutta method ERK4(2)
developed in Simos [59] which is indicated as
Method IV ,

–the new developed embedded two-step method which
is indicated asMethod V

The real time of computation required by the methods
mentioned above to calculate the square of the modulus
of theS matrix for sets of 4, 9 and 16 coupled differential
equations is presented in Table. In the same table the
maximum error in the calculation of the square of the
modulus of theS matrix is also presented. In Table 1N
indicates the number of equations of the set of coupled
differential equations.

7 Conclusions

A family of Runge-Kutta type tenth algebraic order two-
step methods was investigated in the present paper. More
specifically :

1.we investigated the elimination of the phase-lag and its
first, second, third, fourth and fifth derivatives

2.we studied the comparative local truncation error
analysis

3.we investigated the stability properties of the new
proposed method using a scalar test equation with
frequency different than the frequency used by the
scalar test equation for the phase-lag analysis

4.we studied the computational behavior of the new
produced method and its efficiency on the numerical
solution of the Schrödinger equation.

As a conclusion of this study it is easy to see that the
new obtained method is much more efficient than known
ones for the approximate solution of the Schrödinger
equation related problems..

All computations were carried out on a IBM PC-AT
compatible 80486 using double precision arithmetic with
16 significant digits accuracy (IEEE standard).

Appendix: Formulae of the derivatives ofqn

Formulae of the derivatives which presented in the
formulae of the Local Truncation Errors:

q(2)n = (V(x)−Vc+G) q(x)

q(3)n =

(
d
dx

g(x)

)
q(x)+ (g(x)+G)

d
dx

q(x)

q(4)n =

(
d2

dx2 g(x)

)
q(x)+2

(
d
dx

g(x)

)
d
dx

q(x)

+(g(x)+G)2q(x)

q(5)n =

(
d3

dx3g(x)

)
q(x)+3

(
d2

dx2 g(x)

)
d
dx

q(x)

+4 (g(x)+G)q(x)
d
dx

g(x)+ (g(x)+G)2
d
dx

q(x)

q(6)n =

(
d4

dx4g(x)

)
q(x)+4

(
d3

dx3 g(x)

)
d
dx

q(x)

+7 (g(x)+G)q(x)
d2

dx2 g(x)+4

(
d
dx

g(x)

)2

q(x)

+6 (g(x)+G)

(
d
dx

q(x)

)
d
dx

g(x)+ (g(x)+G)3q(x)
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q(7)n =

(
d5

dx5 g(x)

)
q(x)+5

(
d4

dx4 g(x)

)
d
dx

q(x)

+11(g(x)+G)q(x)
d3

dx3 g(x)+15

(
d
dx

g(x)

)
q(x)

d2

dx2g(x)+13(g(x)+G)

(
d
dx

q(x)

)
d2

dx2g(x)

+10

(
d
dx

g(x)

)2 d
dx

q(x)+9 (g(x)+G)2q(x)

d
dx

g(x)+ (g(x)+G)3
d
dx

q(x)

q(8)n =

(
d6

dx6 g(x)

)
q(x)+6

(
d5

dx5 g(x)

)
d
dx

q(x)

+16(g(x)+G)q(x)
d4

dx4 g(x)+26

(
d
dx

g(x)

)
q(x)

d3

dx3g(x)+24(g(x)+G)

(
d
dx

q(x)

)
d3

dx3g(x)

+15

(
d2

dx2 g(x)

)2

q(x)+48

(
d
dx

g(x)

)

(
d
dx

q(x)

)
d2

dx2 g(x)+22(g(x)+G)2q(x)

d2

dx2g(x)+28(g(x)+G)q(x)

(
d
dx

g(x)

)2

+12(g(x)+G)2
(

d
dx

q(x)

)
d
dx

g(x)

+(g(x)+G)4q(x) . . .
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