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Abstract: This analysis deals with the numerical solution of MHD flow oftangent hyperbolic fluid over a stretching cylinder in the
presence of variable thermal conductivity. The governing nonlinear partial differential equations are presented andthen converted into
ordinary differential equations by using similarity transformations. The subsequent ordinary differential equations are successfully
solved by using implicit finite difference scheme known as the Keller-box method. The non-dimensional parameters appearing in
momentum and temperature equations are expressed through graphs in order to analyze the behavior of velocity and temperature
profiles. To understand the behavior of fluid near the surfaceof the cylinder the skin friction co-efficient and local heatflux are
calculated graphically and in tabulated form.
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1 Introduction

The thermo-physical properties such as variable thermal
conductivity of the ambient fluid may vary with
temperature. The constant thermal conductivity of the
fluid condenses the mathematical difficulty of the
temperature equation and the analytical solution can be
achieved easily [1]. However, the nonlinearity in
temperature equation increases by taking the conductivity
of the fluid to be variable. Therefore, its analytical
solution is not possible. There are so many numerical
techniques available to solve these types of equations.
Rahman et al. [2] studied the natural convective
hydromagnetic flow with variable thermal conductivity
and viscosity of micropolar fluid over an inclined
permeable plate and solved the problem by using
shooting method. They found that for both electrically
and non-conducting fluids the shear stress rises with the
increase in thermal conductivity parameters. Prasad et al.
[3] used Keller box method to solve the hydromagnetic
flow of viscous fluid with variable properties over a
non-linear stretching sheet. They examined that boundary
layer thickness decreases by increasing the Prandtl
number. Rangi et al. [4] deliberated the heat transfer of

viscous fluid over a stretching cylinder with variable
thermal conductivity and solved the equations by using
Keller box method. They analyzed that heat transfer
increases by increasing curvature of the cylinder. Abel et
al. [5] discussed the MHD flow of power law fluid model
over a vertical stretching sheet by taking the effects of
variable thermal conductivity and thermal buoyancy.
They initiated that temperature of the fluid increases by
increasing variable thermal conductivity parameter in the
prescribed surface temperature condition and decreases in
the prescribed surface heat flux condition. Sun et al. [6]
investigated the convective-radiative transfer of a moving
rod with variable thermal conductivity by using spectral
collocation method. They compared the analytical
solution with spectral collocation method and concluded
that the results are approximately equal.

The magnetic field is valuable in the manufacturing to
control the rate of cooling involved in these processes.
Some of the practical examples of magnetic field are
electronic packages, pumps, thermal insulators, MHD
flow meters, MHD power generation, fusing of metals in
an electrical furnace etc. Turkyilmazoglu [7] explored the
MHD flow of viscoelastic fluid over a stretching sheet by
taking the slip effects. He found that by increasing
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magnetic field the heat transfer rate decreases in the
absence of slip condition’s, but for non-zero slip the heat
transfer rate decreases by increasing magnetic field at the
first branch, while a small rise takes place in the second
branch. Nadeem et al. [8] inspected the Casson fluid
model over a shrinking sheet by applying taking MHD
effects. They solved the problem by using adomian
decomposition method and found that by increasing the
Casson fluid parameter the boundary layer thickness and
velocity profile decreases. Akbar et al. [9] presented the
MHD flow of Eyring-Powell fluid over a stretching sheet
and solved the problem by using implicit difference
method with quasi-linearization technique. They analyzed
that due to magnetic field and Eyring-Powell fluid
parameter the resistance to flow increases so the velocity
decreases. Nadeem et al. [10] conducted a study on
obliquely striking rheological fluid over a stretching sheet
by taking the combined effects of partial slip and
magnetic field. They suggested that by increasing slip
parameter and magnetic field both tangential and normal
velocity decreases.

The pseudoplastic fluids are such fluids which
describe the shear thinning effects. Examples of such
fluids are blood, paint, nail polish etc. Tangent hyperbolic
fluid is one of those fluids. Nadeem et al. [11] studied the
peristaltic flow of tangent hyperbolic fluid in a curved
channel. They found that by increasing the curvature
parameter the size of the bolus decreases in the lower half
of channel while remains invariant on the upper half of
the channel. Akbar et al. [12] presented the MHD flow of
tangent hyperbolic fluid towards a stretching sheet. They
observed that thickness of the fluid increases by
increasing Weissenberg number and the skin friction
increases by increasing power law index and Weissenberg
number. Naseer et al. [13] analyzed the tangent
hyperbolic fluid over a vertical exponentially stretching
cylinder and used Runge-Kutta-Fehlberg method to find
its solution. The objective of the present work is to
discuss the variable thermal conductivity of MHD tangent
hyperbolic fluid over a linearly stretching cylinder. In
section II mathematical formulation of the tangent
hyperbolic fluid is presented. The Keller box method and
its convergence criteria are discussed in sectionIII. In
section IV results and discussion of the problem are
elaborated. Finally conclusions are shortened in section
V .

2 Mathematical Formulation

Consider a steady, two-dimensional boundary layer flow
of tangent hyperbolic fluid over a stretching cylinder. The
flow is being limited tor > 0. The stretching velocity is
assumed to be of the formu = ax

l where a is positive
constant and l is characteristic length. A unifrom
transverse magnetic fieldB0 is applied normal to the
cylinder. The temperature of the wall isTp while the
ambient temperature of the fluid isT∞ as shown inFig. 1.

After applying the boundary layer approximation the
momentum and energy equations take the form:

Fig. 1: Geometry of the problem
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wherek∗ = k(1+ εθ ).
The corresponding boundary conditions are

u =Uw(x) =
ax
l
, v = 0,

T = Tp at r = R,

u →U∞(x) = 0, T → T∞ asr → ∞. (4)

Wherek is the constant conductivity of the fluid,Γ is
the Williamson parameter,ρ is the density,ν is the
kinematic viscosity,σ is the electric charge density,u and
v are the velocity components alongx and r- axes,
respectively. n is the power law index,B0 is the
magnitude of magnetic field,Uw is the stretching velocity,
U∞ is the free stream velocity.

The similarity transformations are:
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νax
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,
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. (5)
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The momentum and the temperature equations takes the
form:

(1− n)(1+2Kη) f ′′′+ f f ′′−
(

f ′
)2

+2K(1− n) f ′′+2λ n(1+2Kη)
3
2 f ′′ f ′′′

+3λ K (1+2Kη)
1
2 ( f ′′)2−M2 f ′ = 0, (6)

(1+2Kη)(1+ εθ )θ
′′
+2K (1+ εθ )θ ′

+(1+2Kη)ε(θ ′)2+Prθ ′ f = 0, (7)

the transformed boundary conditions are

f (0) = 0, f ′(0) = 1, θ (0) = 1,

f ′(∞) = 0, θ (∞) = 0. (8)

WherePr = ν
k is the Prandtl number,K = 1

R

√

νl
a denotes

the curvature parameter,ε is the thermal conductivity

parameter,λ = Γ a3/2x
√

2νl
3
2

is the dimensionless Weissenberg

number andM2 =
σB2

0l
ρa is the Hartmann number.

The physical quantities such as coefficient of skin
friction and local nusselt number are defined as

C f =
τw

ρa2x2

2l2

, Nux =
xqw

k(Tp −T∞)
, (9)

where

τw = µ
(
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2
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)

r=R
,

qw = −k
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)

r=R
, (10)

In dimensionless form the skin friction and local nusselt
number are

C f Re1/2
x = (1− n) f ′′ (0)+ nλ f ′′2(0) ,

NuxRe−1/2
x = −θ ′ (0) . (11)

WhereRe1/2
x = a1/2x

ν1/2l1/2 .

3 Numerical Solutions

By using Keller boxEq.(6) and (7) subject to boundary
conditions(8) requires four steps to solve:

1. Equations should be reduced into first-order
system.

2. By using central difference approximation write
the difference equations.

3. The non-linear algebraic equations should be
linearized and write them in matrix-vector form.

4. The linear system should be solved by using
block-tridiagonal-elimination method.

3.1 First-Order System

Let u, v, w, g andt be new dependent variables can written
in the form

u = f ′, (12)

v = u′, (13)

t = θ ′, (14)

after putting all these expressions inEq.(6) and (7)
takes the form

(1− n)(1+2Kη)v′+2(1− n)Kv+3nλ

(1+2Kη)1/2Kv2+2nλ (1+2Kη)3/2vw

+ f v− u2−M2u = 0, (15)

(1+ εg)(1+2Kη)t ′+2K(1+ εg)t+(1+2Kη)εt2

+Prt f = 0
(16)

3.2 Difference Formulation:

Let us consider a net rectangle inx−η plane as shown in
Figure 2 and the net points are:

x0 = 0, xi = xi−1+ ki, i = 1,2,3...I,

η0 = 0, xi = η j−1+ h j, j = 1,2,3...J,

whereki is the∆x-spacing andh j is the∆η-spacing.

Fig. 2. Difference Approximation.

The algebraic form ofEq.(12)− (14) at midpoint
(xi,η j−1/2) by using centered difference derivatives are

f i
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j−1

h j
=

ui
j + ui

j−1

2
, (17)

ui
j − ui

j−1

h j
=

vi
j + vi

j−1

2
, (18)

θ i
j −θ i

j−1

h j
=

t i
j + t i

j−1

2
. (19)
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Fig. 2: Difference Approximation

Now, at mid-point (xi−1/2,η j−1/2) the first order
differentialEq.(15) and(16) are approximated
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(20)
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where

Q j−1/2 =−((1− n)(1+2Kη)(vi−1
j − vi−1

j−1)

+2(1− n)Khvi−1
j−1/2+3λ n(1+2Kη)1/2

khvi−1
j−1/2+2nλ h(1+2Kη)3/2vi−1

j−1/2wi−1
j−1/2

+h(ui−1
j−1/2)

2+ f i−1
j−1/2vi−1

j−1/2−M2ui−1
j−1/2),

and

N j−1/2 =−((1+2Kη)(t i−1
j − t i−1

j−1)

+2Kh(1+ εgi−1
j−1/2)t

i−1
j−1/2+(1+2Kη)hε

(t i−1
j−1/2)

2+Prht i−1
j−1/2t i−1

j−1/2).

WhereQ j−1/2 andN j−1/2 are the known quantities.
The boundary conditions can be writen in the form

f i
0 = 0, ui

0 = 1, ui
J = 0,

gi
0 = 1, gi

J = 0. (22)

3.3 Newton’s Method

TheEqs.(17)− (21) can be linearized by using Newton’s
method. For this case

f (i+1)
j = f (i)j + δ f (i)j ,

u(i+1)
j = u(i)j + δu(i)j ,

v(i+1)
j = v(i)j + δv(i)j ,

g(i+1)
j = g(i)j + δg(i)j ,

t(i+1)
j = t(i)j + δ t(i)j , (1)

putting these terms inEqs.(17)− (21) and neglecting
the higher order ofδ

δ f j − δ f j−1−
h j

2
(δu j + δu j−1) = (r1) j, (24)

δu j − δu j−1−
h j

2
(δv j + δv j−1) = (r2) j, (25)

δθ j − δθ j−1−
h j

2
(δ t j + δ t j−1) = (r3) j, (26)

(a1) j−1/2δv j +(a2) j−1/2δv j−1+(a3) j−1/2δu j

+(a4) j−1/2δu j−1+(a5) j−1/2δ f j

+(a6) j−1/2δ f j−1 = (r4) j−1/2, (27)

(b1) j−1/2δ t j +(b2) j−1/2δ t j−1+(b3) j−1/2δg j

+(b4) j−1/2δg j−1+(b5) j−1/2δ f j

+(b6) j−1/2δ f j−1 = (r5) j−1/2, (2)

where

(a1) j−1/2 = (1− n)(1+2Kη)+ (1−n)Kh

+3λ n(1+2Kη)1/2khv j−1/2+2nλ

(1+2Kη)3/2v j−1/2+ nλ h(1+2Kη)3/2w j−1/2

+
h f j−1/2

2
, (29)
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(a2) j−1/2 =−(1− n)(1+2Kη)+ (1−n)Kh

+3λ n(1+2Kη)1/2khv j−1/2−2nλ

(1+2Kη)3/2v j−1/2+ nλ h(1+2Kη)3/2w j−1/2

+
h f j−1/2

2
, (30)

(a3) j−1/2 =−hu j−1/2−
hM2

2
,

(a4) j−1/2 = (a3) j−1/2, (31)

(a5) j−1/2 =
hv j−1/2

2
,

(a6) j−1/2 = (a5) j−1/2, (32)

(b1) j−1/2 = (1+2Kη)(1+ εg j−1/2)−
εg j−1/2

2
+2Kh+Khεg j−1/2+(1+2Kη)hεt j−1/2

+
Prh f j−1/2

2
, (33)

(b2) j−1/2 = (1+2Kη)(−1−
εg j−1/2

2
)+Khεg j−1/2

+2Kh+(1+2Kη)hεt j−1/2+
Prh f j−1/2

2
,

(34)

(b3) j−1/2 = (1+2Kη)(
t j

2
− εt j−1

2
)+

εt j−1

2
,

(b4) j−1/2 = (b3) j−1/2 (35)

(b5) j−1/2 =
Prht j−1/2

2
,

(b6) j−1/2 = (b5) j−1/2, (36)

(r4) j−1/2 =−h(1− n)(1+2Kη)w j−1/2

−2(1− n)Khv j−1/2−3λ n(1+2Kη)1/2kh(v j−1/2)
2

−2nλ h(1+2Kη)3/2v j−1/2w j−1/2− h f j−1/2v j−1/2

−h(u j−1/2)
2+M2u j−1/2+Q j−1/2,

(37)

(r5) j−1/2 =−(1+2Kη)t j − εt jg j−1/2

+(1+2Kη)t j−1+(1+2Kη)εt j−1g j−1/2

−2Kh(t j−1/2+ εt j−1/2g j−1/2)− (1+2Kη)
hεt j−1/2−Prht j−1/2 f j−1/2+N j−1/2, (38)

after applying the Newton’s method the boundary
conditions become:

δ f0 = 0, δu0 = 0, δ t0 = 0,

δuJ = 0, δ tJ = 0. (39)

3.4 The Block Tridiagonal structure:

The linearized system of equations takes the block
tridiagonal form. i.e

[A][δ ] = [r], (40)

=

[A1] [C1]

[B1] [A2] [C2]

[BJ-1] [AJ_1] [CJ-1]

[BJ] [AJ]

-

-

-

-

-

-

-

-

-

[ δ1]

[ δ2]
-

-

-

[ δJ-1]

[ δJ]

[r 1]

[r 2]
-

-

-

[r J-1]

[r J]

,

where the elements are defined as: whered =
−h j

2 .
By using LU method this block tridiagonal matrix

given in Eq.(40) is solved. From this block tridiagonal
matrix the solution of [δ ] is calculated and these
calculations are repeated until some convergence criterion
is satisfied and is stopped when

|δv(i)0 | ≤ κ (41)

whereκ = 0.001 is a small value.

4 Results and Discussion

In this section the physical interpretation of different
parameters appearing in momentum and temperature
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0 1 0
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0 b4 b5 0 b1

0 -1 0

0 0 d

0 a6 a2
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0

0

0

0

0 0 0 0 d

0 0

0 0 b6 0 b2

equations are deliberated.Fig. 3a shows the effect of
Weissenberg numberλ on velocity profile. As the
Weissenberg numberλ increases the relaxation time of
the fluid increases, causing the viscosity of the fluid to
increases. As a result velocity of the fluid reduces.Fig. 3b
illustrates the behavior of curvature parameterK on
velocity profile. As the curvature of the cylinder is
increased, the radius of cylinder reduces. As a

d 0 0

1 0 d

a3 0 0

[CJ] =

0

0

0

0

0 1 0 0 d

0 0

0 b3 0 0 0

consequence, area of the cylinder decreases. Hence less
resistance is offered by cylinder to the fluid particles so
velocity enhances.Fig. 3c shows effect of Hartmann
numberM on velocity profile. As Hartmann numberM
grows the Lorentz forces rises which produce resistance
to flow, causing velocity of the fluid to reduce.Fig. 3d
depicts the effect of power law indexn on velocity profile.
The effect of increasing power law indexn is to
decelerate the boundary layer thickness. The temperature
profile revealed inFig. 3e display that as the Prandtl
numberPr increases the thermal boundary layer thickness
decelerates.Fig. 3f shows the behavior of variable
thermal conductivity parameterε on temperature profile.
It is observed that the kinetic energy of fluid particles
enriches by increasing variable thermal conductivity
parameter ε which causes increase in the thermal
boundary layer thickness and the temperature profile. The
impact of Hartmann numberM and power law indexn on
skin friction coefficient are presented inFig. 4a and b
versus Weissenberg numberλ . From Fig. 4a it is
immersed that resistance to flow rises with the increase in
Hartmann numberM but opposite behavior is shown in
the case of Weissenberg numberλ . On the other hand,
resistance to flow decreases the skin friction with the
increase in power law indexn as shown inFig. 4b. Fig.
4c shows the effect Prandtl numberPr on Nusselt number
versus variable thermal conductivity parameterε. It is
observed from the figure that Nusselt number increases
by increasing Prandtl numberPr but variable thermal
conductivity causes decrease in Nusselt number. Because
by increasing variable thermal conductivity the viscosity
of the fluid decreases so magnitude of rate of convectional
heat transfer also decreases.

5 Concluding Remarks

Variable thermal conductivity in two dimensional MHD
flow of tangent hyperbolic fluid is examined over a linear
stretching cylinder. An efficient technique Keller box
method is utilized to calculate the solution of the ordinary
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involve in the equations are examined through tables and
graphs. It is observed that velocity of the fluid decreases
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M and power law indexn. While by varying variable
thermal conductivity parameterε the temperature of the
fluid rises but it decreases by increasing Prandtl number
Pr. The skin friction shows dominant effect in the case of
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Fig. 4b Influence ofn andλ on skin friction
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Fig. 4c Influence ofε andPr on Nusselt number

Hartmann numberM and power law indexn but shows
decreasing behavior by increasing Weissenberg number
λ . The heat transfer rate rises by increasing Prandtl

Table 1: Numerical values ofC f Re1/2
x for K, λ , n andM.

Table 2: Numerical values ofNuxRe−1/2
x for K, Pr andε.

numberPr but it decreases by increasing variable thermal
conductivity parameterε.
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