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Abstract: Nonlinear mixed effects models involve both fixed effects and random effects in which some of the fixed and random effects

parameters enter nonlinearly to the model function. These models are very popular for analyzing clustered data or unbalanced repeated

measures data. There are several methods for estimating the parameters of these models. Most of the available methods are based on

the approximation technique. In this study, instead of approximation based methods, quasi-Monte Carlo method is used, which directly

solves the intractable multidimensional integrations in the nonlinear mixed effects model. To apply this method, the Michaelis-Menten

model with one random effects parameter is used as a nonlinear mixed effects model. For this simulation study, different types of

quasi-random sequences (e.g. Halton, Sobol, and Faure) are used with different combination of subjects and intra-subject correlation

coefficient. The results of the simulation studies show that the quasi-Monte Carlo method correctly estimates the parameters of the

model, and also these estimates are slightly different for using different types of quasi-random sequences. Among the quasi-random

sequences, Halton sequences give better estimates than Sobol and Faure sequences for both fixed and random effects parameters of the

nonlinear mixed effects models.
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1 Introduction

Statistical models that incorporate both fixed effects and random effects are called mixed-effects models. Nonlinear
mixed effects (NLME) models involve both fixed effects and random effects in which some of the fixed and random
effects parameters enter non-linearly to the model function. Nonlinear mixed effects models extend linear mixed models
by allowing the regression function to depend non-linearly on fixed and random effects. Thus NLME models have
properties of both the nonlinear model and mixed effects model. NLME models are a popular platform for analysis when
interest focuses on individual-specific characteristics [1,2]. The popularity of nonlinear mixed effects model lies in its
interpretability, parsimony and validity beyond the observed range of data [3,4,5]. These models have received a great
deal of attention in the statistical literature in recent years because of the flexibility they offer in handling unbalanced
repeated measures data that arise in different areas of investigation, such as pharmacokinetics, agriculture, biochemistry,
environment, medicine, and economics [6,7,8,9]. NLME models are very important and extensively used in various
studies that are costly to conduct and when the underlying scenario cannot be explained or analyzed by linear model.
Nonlinear models are parsimonious so that it can capture the nonlinear variation with a minimum number of parameters.
Due to their great importance, fitting of nonlinear mixed effects models are also of crucial matters.

Several different formulations of nonlinear mixed effects models are available in literature [10,11,12,13,14,15].
Most commonly used one is proposed by Lindstrom and Bates [12]. Also, there are different estimation methods for the
parameters in the nonlinear mixed effects model [16,17,18,19,20] and there is an ongoing debate in the literature about
the most adequate methods [21,22]. One of the reasons for this variety of estimation methods is related to the numerical
complexity involved in the derivation of restricted maximum likelihood (REML) estimates in the nonlinear mixed effects
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model. This complexity is due to the fact that the likelihood function in the nonlinear mixed effects model does not
usually have a closed form expression. Different approximations to the log-likelihood in nonlinear mixed effects model
have been proposed try to circumvent this problem [12,14,18]. Pinheiro and Bates [9] provided primary reference for the
theory and computational techniques of NLME models. They describe and compare several different integrated
likelihood approximations and provide evidence that adaptive Gaussian quadrature is one of the best methods. Devidian
an Gallant [18] also use Gaussian quadrature for nonlinear mixed models, they advocate smooth nonparametric density
for the random effects. Traditional approaches to fitting nonlinear mixed models involve Taylor series expansions,
expanding around either zero or the empirical best linear unbiased predictions of the random effects [16,23,24,25]. The
Laplacian approximation technique and its relationship to the Lindstrom-Bates method are discussed by several authors
[23,25,26,27].

Sometimes in statistical problems, the integrand may be a probability density function not easily expressible in a form
suitable for computation, but at the same time it may be easy to sample from the distribution. In such cases Monte Carlo
methods of Integration is a plausible candidate. Quasi Monte Carlo methods converge much faster than normal Monte
Carlo methods. Quasi-Monte Carlo methods are based on the idea that random Monte Carlo techniques can often be
improved by replacing the underlying source of random numbers with a more uniformly distributed deterministic quasi-
random sequence. These methods are now widely used in scientific computation, especially in estimating integrals over
multidimensional domains and in many different financial computations [28,29]. The standard Monte Carlo method is
frequently used when the quadrature methods are difficult or expensive to implement [25,30]. Marokoff and Caflisch [30]
studied the performance of Monte Carlo and quasi-Monte Carlo methods for integration. In the paper, Halton, Sobol, and
Faure sequences for quasi-Monte Carlo are compared with the standard Monte Carlo method that uses pseudo-random
sequences. They found that the Halton sequence performs best for dimensions up to around 6; the Sobol sequence performs
best for higher dimensions; and the Faure sequence, while outperformed by the other two, still performs better than a
pseudo-random sequence. They also remark that the advantage of quasi-Monte Carlo method is greater if the integrand
is smooth, and the number of dimensions “s” of the integral is small. Hoque and Latif [31] proposed a new method for
fitting nonlinear mixed effects models through quasi-Monte Carlo integration method using Sobol’s sequences. Without
any approximations, they directly solved the intractable integration in the likelihood function of nonlinear mixed effects
models using this quasi-Monte Carlo integration technique. They also showed that, the performance of Sobol’s sequence
based method is reasonably well by comparing among other existing approximation based methods.

This study mainly addresses the estimation of nonlinear mixed effects model based on quasi-Monte Carlo (QMC)
integration method using quasi-random sequences such as Halton, Sobol, and Faure sequences. Quasi-random sequences
are also called low-discrepancy sequences; and discrepancy is a measure of deviation from the uniformity of a sequence
of points. Discrepancy contributes to the error in quasi-Monte Carlo methods. Successful use of QMC methods in high
dimensions depends on the construction of good sequences and the intelligent use or the sequences for path generation.
Quasi-Monte Carlo integration method uses low-discrepancy sequences and most of the cases it offer faster rate of
convergence and also delivers more accurate results in a shorter time than the usual Monte Carlo method that uses
pseudo-random sequences [32]. In general, this study focuses on the behavior of quasi-random sequences (e.g. Halton,
Sobol, Faure) for estimating NLME models. For this study the Michaelis-Menten model with one random effects
parameter is used as a low-dimensional nonlinear mixed effects model, and then the quasi-Monte Carlo method is
applied for estimating the parameters of the model. Finally, the simulation is performed with different combination of
subjects and intra-subject correlation coefficient.

2 Nonlinear Mixed Effects Model

Nonlinear mixed effects (NLME) models are mixed effects models in which some, or all, of the fixed and random effects
parameters enter nonlinearly to the model function. Nonlinear mixed effects models can be regarded either as an extension
of linear mixed-effects models in which the conditional expectation of the response given the random effects is allowed
to be a nonlinear function of the parameters, or as an extension of the nonlinear regression models [33,34] to fit data
from several individuals in which some of the regression parameters are considered as random. In this section a general
formulation of nonlinear mixed effects models is presented with suitable notations.

The general formulation of NLME models for repeated measures data proposed by Lindstrom and Bates [12] can be
thought of as a hierarchical model. At one level the jth observation on the response y in the ith group is modeled as

yi j = f (φφφ i j,xxxi j)+ εi j, i = 1, . . . ,m, j = 1, . . . ,ni, (1)

where m is the number of groups, ni is the number of observations in the ith group, f is a general, real-valued, differentiable
function of a group specific parameter vector φφφ i j and a covariate vector xxxi j , and εi j is a normally distributed within-group
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error term. The function f is nonlinear in at least one component of the group-specific parameter vector φφφ i j , which is
modeled as

φφφ i j = AAAi jβββ +BBBi jbbbi, bbbi ∼ N(000,DDD), (2)

where βββ is a p-dimensional vector of fixed effects and bbbi is a q-dimensional random effects vector associated with the ith

group (not varying with j) with variance-covariance matrix DDD. The matrices AAAi j and BBBi j are of appropriate dimensions and

depend on the group and possibly on the values of some covariates at the jth observation. It is assumed that observations
corresponding to different groups are independent and that the within-group errors εi j are independently distributed as

N(0,σ2) and independent of the bbbi.
Because f (.) can be any nonlinear function of φφφ i j, the representation of the group-specific coefficients φφφ i j could be

chosen so that AAAi j and BBBi j are always simple incidence matrices. However, it is desirable to encapsulate as much modeling
of the φφφ i j as possible in this second stage, as this simplifies the calculation of the derivatives of the model function with

respect to βββ and bbbi, used in the optimization algorithm. The arguments fixed and random are used to specify the AAAi j and
BBBi j matrices, respectively.

For ith group we can write equation (1) and equation (2) in matrix form as

yyyi = fff i(φφφ i,xxxi)+ εεε i

φφφ i = AAAiβββ +BBBibbbi, (3)

where for i = 1, . . . ,m

yyyi =







yi1

...
yini






, φφφ i =







φφφ i1
...

φφφ ini






, εεε i =







εi1

...
εini






, fff i(φφφ i,xxxi) =







f (φφφ i1,xxxi1)
...

f (φφφ ini
,xxxini

)






,

xxxi =







xxxi1

...
xxxini






, AAAi =







AAAi1

...
AAAini






, BBBi =







BBBi1

...
BBBini






.

3 Estimation of Nonlinear Mixed Effects Model

Different methods have been proposed to estimate the parameters in the nonlinear mixed effects models. The methods may
be either likelihood-based or Bayesian, parametric or nonparametric. Maximum likelihood parametric method proposed
by Pinheiro and Bates [5] is the most commonly used method for estimating parameters of the NLME model. Descriptions
and comparisons of other estimation methods proposed for NLME models can be found here [2,20,35,36]. In the next
subsection a brief description of maximum likelihood estimation technique of NLME models is given.

3.1 Maximum Likelihood Estimation of NLME Model

Because the random effects bbbi in equation (3) are unobserved quantities, maximum likelihood estimation in mixed-effects
models is based on the marginal density of the responses yyy, which is calculated as

p(yyy|βββ ,σ2,DDD) =
m

∏
i=1

p(yyyi|βββ ,σ
2,DDD) =

m

∏
i=1

∫

bbbi

p(yyyi|bbbi;βββ ,σ2)p(bbbi|DDD,σ2)dbbbi, (4)

where the conditional density of yyyi given random effects bbbi is multivariate normal and can be expressed as

p(yyyi|bbbi;βββ ,σ2) =
1

(2πσ2)ni/2
exp

[

−
1

2σ2
‖ yyyi − fff i(βββ ,bbbi) ‖

2
]

(5)

where fff i(βββ ,bbbi) = fff i(φφφ i,xxxi), and the marginal density of bbbi is also multivariate normal, which is

p(bbbi|∆∆∆ ,σ2) =
1

(2π)q/2
√

|D|
exp

[

−
1

2
bbb′iDDD

−1bbbi

]

=
1

(2πσ2)q/2|∆∆∆−1|
exp(− ‖ ∆∆∆bbbi ‖

2 /2σ2), (6)
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where the expression |∆∆∆ | denotes the determinant of the random effects variance-covariance matrix in terms of the

precision factor ∆∆∆ , so that ∆∆∆−1 = σ−2∆∆∆ ′∆∆∆ . Therefore, the marginal density of yyy is

p(yyyi|βββ ,σ
2,∆∆∆) =

m

∏
i=1

∫

bbbi

|∆∆∆ |

(2πσ2)(ni+q)/2
exp

{‖ yyyi − fff i(βββ ,bbbi) ‖
2 + ‖ ∆∆∆bbbi ‖

2

−2σ2

}

dbbbi. (7)

To make the numerical optimization of this likelihood function a tractable problem arise because the model function f (·)
can be nonlinear in the random effects, the integral in equation (7) generally does not have a closed-form expression.
Different approximations of equation (7) have been proposed, some of these methods consist of taking a first-order Taylor
expansion of the model function f (·) around the expected value of the random effects [14,23], or around the conditional
(on ∆∆∆ ) modes of the random effects [12]. Gaussian quadrature rules have also been used [25]. These approximation
methods have increasing degrees of accuracy, at the cost of increasing computational complexity.

3.2 Specific Example of Nonlinear Mixed Effects Model

There are many nonlinear mixed effects models that are widely used in different fields, especially in medical statistics
and Biochemistry. In this section a brief description of Michaelis-Menten (MM) model for enzyme kinetics has given as
a specific example of NLME models. Here, it will be shown that how MM model is a nonlinear model containing both
fixed and random effects parameters.

3.2.1 The Michaelis-Menten Model

In biochemistry, Michaelis-Menten kinetics is one of the simplest and best-known model of enzyme kinetics [37]. It is
named after German biochemist Leonor Michaelis and Canadian pathologist Maud Menten. Michaelis-Menten
mechanism takes the form of an equation relating reaction velocity to substrate concentration for a system where a
substrate S binds reversibly to an enzyme E to form an enzyme-substrate complex ES, which then reacts irreversibly to
generate a product P and to regenerate the free enzyme E . This system can be represented schematically as follows:

E + S
k1
⇋

k−1
ES

k2−→ E +P, (8)

where k1, k−1 and k2 denote the rate constants of the three reactions. The model takes the form of an equation describing
the rate of enzymatic reactions, by relating reaction rate v to [S], the concentration of a substrate S. Its formula is given by

v =
Vmax[S]

Km +[S]
, (9)

where Vmax represents the maximum rate achieved by the system, at maximum (saturating) substrate concentrations. The
Michaelis constant Km is the substrate concentration at which the reaction rate is half of Vmax. Biochemical reactions
involving a single substrate are often assumed to follow Michaelis-Menten kinetics, without regard to the model’s
underlying assumptions. Figure (1) shows the graphical representation of Michaelis-Menten model in equation (9).

Fig. 1: Graphical representation of Michaelis-Menten model
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Here, the function shows a steep rise that gradually flattens into a plateau. Initially, small increases in substrate
concentration cause a substantial increase in reaction rate, but eventually, further increases in concentration cause
progressively smaller increases in reaction rate, and eventually reaction rate plateaus and does not respond to further
increases in concentration.

3.2.2 Michaelis-Menten Model with Random Vmax Parameter: A NLME Model Perspective

For repeated measure data, suppose we have m subjects each having n repeated observations. For the j-th observation of
the i-th subject the Michaelis-Menten model (9) can be written as follows

yi j =
Vixi j

K + xi j
+ εi j

=
eθixi j

eβ + xi j

+ εi j, i = 1, . . . ,m, j = 1, . . . ,n, (10)

where yi j is the reaction rate and xi j is the concentration for the j-th measurements on the i-th individual. Also, θi =

log(Vi) = log(V )+ bi, β = log(K), εi, j ∼ N(0,σ2) and bi is random effects for subject i with bi ∼ N(0,σ2
b ).

Here, Vi represents the maximum rate for the i-th subject achieved by the system, which varies from subject to subject
due to random effect bi with Vmax = V for notational convenience. And Km = K, the Michaelis constant, is the substrate
concentration x at which the reaction rate is half of the maximum rate. The fixed effects parameters to be estimated are
Vmax and Km or, θ and β , and the random effects parameter to be estimated is σb. For the i-th subject the equation (10)
can be written as

yyyi = fff i(β ,θ ,bi)+ εεε i, i = 1, . . . ,m, (11)

where yyyi = [yi1, . . . ,yin]
T , fff i(β ,θ ,bi) = [ fi1(β ,θ ,bi), . . . , fin(β ,θ ,bi)]

T , fi j(β ,θ ,bi) =
eθi xi j

eβ+xi j
, εεε i = [εi1, . . . ,εin]

T with

εεε i ∼ N(000, Iσ2).
Here, the expression of MM model in equation (11) is a nonlinear mixed effects model and the parameters to be

estimated are the fixed effects θ and β , within subject variance σ2 and between subject variance or variance of the
random effects σ2

b . As the likelihood function of NLME models contain intractable integrations that have no closed from
of expression. This intractable integration can directly be solved by using well known quasi-Monte Carlo integration
technique for different types of quasi random sequences that is the main goal of this paper.

4 Quasi-Random Sequences

The use of quasi-random, rather than random, numbers in Monte Carlo methods, is called quasi-Monte Carlo methods,
which converge much faster than normal Monte Carlo method. Quasi-Monte Carlo methods are now widely used in
scientific computation, especially in estimating integrals over multidimensional domains and in many different financial
computations. The quasi random sequences are also called low-discrepancy sequences, due to their common use as a
replacement of uniformly distributed random numbers. The discrepancy is a measure of deviation from uniformity of a
sequence of points in U = ([0,1]s). The low-discrepancy sequences cover the unit cube as ‘uniformly’ as possible by
reducing gaps and clustering of points.

A sequence of n-tuples that fills n-space more uniformly than uncorrelated random points, sometimes also called a
low-discrepancy sequence. In another statement, a low-discrepancy sequence is a set of s-dimensional points, filling the
sample area “efficiently” and that has a lower discrepancy than the straight pseudo-random number set. The quasi-random
numbers have the low-discrepancy (LD) property that is a measure of uniformity for the distribution of the point mainly for
the multidimensional case. The main advantage of the quasi-random sequence in comparison to pseudo-random sequence
is it distributes evenly hence there is no larger gaps and no cluster formation, this leads to spread the number over the entire
region. The concept of LD is associated with the property that the successive numbers are added is a position as away
as possible from the other numbers that is, avoiding clustering (grouping of numbers close to each other). The sequence
is constructed based on some pattern such that each point is separated from the others, this leads to maximal separation
between the points. This process takes care of evenly distribution random numbers in the entire search space [0, 1].

The low-discrepancy sequences are generated in a highly correlated manner, i.e. the next point knows where the
previous points are. There are different types of low-discrepancy sequences such as Halton sequences, Faure sequences,
Sobol sequences, etc. The most fundamental LD sequence for one dimension is generated by Van der Corput method,
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further to continue random sequence in higher dimension Faure, Sobol and Halton method are used. This paper is designed
as that the nonlinear mixed effects models are to be fitted by solving multidimensional integration directly using the
various types of quasi-random sequences based on quasi-Monte Carlo integration method.

4.1 Importance of Quasi-random Sequences

Although the ordinary uniform random numbers and quasi-random sequences both produce uniformly distributed
sequences, there is a big difference between these two. A uniform random generator on [0,1) will produce outputs so that
each trial has the same probability of generating a point on equal subintervals, for example [0, 1/2) and [1/2, 1).
Therefore, it is possible for n trials to coincidentally all lie in the first half of the interval, while the (n+ 1)st point still
falls within the other of the two halves with probability 1/2. This is not the case with the quasi-random sequences, in
which the outputs are constrained by a low-discrepancy requirement that has a net effect of points being generated in a
highly correlated manner, i.e. the next point “knows” where the previous points are.
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Fig. 2: Pattern of different low-discrepancy sequences with pseudo-random sequences. For N=1000 points and
Dimensions =2

Quasi-random sequences or low-discrepancy sequences tend to sample space “more uniformly” than the uniform or
pseudo-random numbers. Such a sequence is extremely useful in computational problems where numbers are computed
on a grid, but it is not known in advance how fine the grid must be to obtain accurate results. Using a quasi-random
sequence allows stopping at any point where convergence is observed, whereas the usual approach of halving the interval
between subsequent computations requires a huge number of computations between stopping points.

Figure (2) shows the first 1000 points of different quasi-random sequences and pseudo-random sequences for
dimension 2. From this figure we see that, quasi-random sequences (e.g. Halton, Sobol, Faure) are more uniformly and
evenly distributed than the pseudo-random sequences. The quasi-random sequences are highly correlated than the
pseudo-random sequences in the sense that quasi-random sequences fill-up the gap more deterministically. Here we also
see that there are some small differences among different types of quasi-random sequences. The main purposes in this
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study was to explore the general behavior of such quasi-random sequences to solve multidimensional integration
numerically by direct quasi-Monte Carlo integration method.

4.2 Quasi-Monte Carlo Integration (QMCI)

In numerical analysis, quasi-Monte Carlo Integration (QMCI) method is a method for the computation of an integral that
uses quasi-random sequences (i.e., also called low-discrepancy sequences) which have a more uniform behavior to
compute the integral. Quasi-random numbers are generated algorithmically by computer, and are similar to
pseudo-random numbers while having the additional important property of being deterministically chosen based on
equally distributed sequences in order to minimize errors [38].

This is in contrast to a regular Monte Carlo method, which is based on sequences of pseudo-random numbers. The
QMCI methods use points that are evenly distributed; the points are spread over the domain in such a way that there
are no clusters. The classical QMCI method replaces the independent random points used in MCI by a deterministic set
of distinct points that cover the region of integration more uniformly. The use of quasi-random sequences in place of
the usual pseudo-random numbers often improves the convergence of the numerical integration and it is also possible to
compute an absolute bound for the error [39].

Monte Carlo and quasi-Monte Carlo methods are stated in a similar way. The problem is to approximate the integral
of a function f (·) as the average of the function evaluated at a set of points x1, . . . ,xN .

∫

[0,1]s
f (u)du ≈

1

N

N

∑
i=1

f (xi). (12)

Since we are integrating over the s-dimensional unit cube, each xi is a vector of s elements. The difference between quasi-
Monte Carlo and Monte Carlo is the way that xi are chosen. Quasi-Monte Carlo method uses a quasi-random sequences
such as the Halton sequence, the Sobol sequence, or the Faure sequence, whereas simple Monte Carlo uses a pseudo-
random sequence. The advantage of using quasi-random sequences is a faster rate of convergence. Quasi-Monte Carlo has

a rate of convergence close to O(1/N), whereas the rate for the simple Monte Carlo method is O(N−1/2) [32].

4.3 Estimating Parameters of NLME Model using Quasi-random Sequences

The quasi-random sequences are very useful in solving Monte Carlo Integration and hence to construct likelihood. Monte
Carlo Integration method that uses quasi random sequences is called Quasi Monte Carlo Integration method. By this
method we directly solve the multidimensional integration (7) of NLME models without considering any approximation
technique. The likelihood construction of Michaelis-Menten model (10) as a NLME models with one random effects
parameter (Vmax as random) is described below.

The Michaelis-Menten (10) can be written as,

yi j|bi =
eθixi j

eβ + xi j

+ εi j = fi j + εi j, i = 1, . . . ,m, j = 1, . . . ,n,

where fi j =
eθi xi j

eβ+xi j
, θi = θ + bi, bi ∼ N(0,σ2

b ) and εi j ∼ N(0,σ2). From here parameters to be estimated are the fixed

effects β and θ , within subject variance σ2 and between subject variance or variance of random effects σ2
b .

From equation (4) the marginal density of response yyyi or likelihood for ith subject can be written as

p(yyyi|β ,θ ,σ
2,σ2

b ) =

∫

bi

p(yyyi|bi;β ,θ ,σ2)p(bi|σ
2
b )dbi.

Here, yi j|bi ∼ N( fi j ,σ
2), for j = 1, . . . ,n, yi j|bi’s are independent of one another. So, p(yyyi|bi;β ,θ ,σ2) ∼ Nn( fff i, IIIσ2),

where fff i = ( fi1, . . . , fin)
′ and III is an (n× n) identity matrix.

The conditional density p(yyyi|bi;β ,θ ,σ2) can be expressed as

p(yyyi|bi;β ,θ ,σ2) =
1

(2πσ2)n/2
exp

[

−
1

2σ2

n

∑
j=1

(yi j − fi j)
2

]
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The marginal density of bi is also multivariate normal can be expressed as

p(bi|σ
2
b ) =

1

(2πσ2
b )

1/2
exp

[

−
1

2σ2
b

]

So, the likelihood function for ith subject is written as

p(yyyi|β ,θ ,σ
2,σ2

b ) =

∫

bi

1

(2πσ2)n/2(2πσ2
b )

1/2
exp

[

−
1

2σ2

n

∑
j=1

(yi j − fi j)
2 −

1

2σ2
b

b2
i

]

dbi (13)

Then the complete likelihood is obtained as

LC =
m

∏
i=1

p(yyyi|β ,θ ,σ
2,σ2

b )

and the log-likelihood function is

ℓC =
m

∑
i=1

log p(yyyi|β ,θ ,σ
2,σ2

b ).

In equation (13) the multidimensional integration is evaluated using the Monte Carlo integration rule with the help of
quasi-random sequences. Here, the value of bi are generated from normal quasi-random sequences (e.g. Halton, Sobol
and Faure etc.), with specific mean 0 and variance σ2. This log-likelihood function is to be optimized for estimating all
fixed effects and random effects parameters considered here as this is a function of these parameters. The next section will
describe the simulation study for estimating parameters of Michaelis-Menten model in equation (10).

5 Simulation Study for Estimating Parameters of NLME Model

The mixed effects Michaelis-Menten model that we have described in section 3.2.2 at equation (10) is considered here
for this simulation study. This NLME model considers m subject and each having n repeated observations. For jth
observations of ith subject the model (10) is rewritten as follows:

yi j =
Vixi j

K + xi j
+ εi j

=
eθixi j

eβ + xi j

+ εi j, i = 1, . . . ,m, j = 1, . . . ,n,

where θi = logVi = θ +bi, β = logK, εi j ∼ N(0,σ2) and bi is the random effect for subject i with bi ∼ N(0,σ2
b ), Vmax =V

and Km = K. Here, xi j denotes substrate concentration and yi j denotes reaction rate. Vi represents the maximum rate of
reaction for ith subject or individual, which varies from individual to individual due to the random effect bi. The Michaelis
constant K is the value of substrate concentrate at which reaction rate is half of the maximum rate.

The considered Michaelis-Menten model (10) has two fixed effects parameters (Vmax,Km) and two random effects
parameters (σ2

b ,σ
2) (i.e., actually the variance components). The true values of the fixed effects parameters that we used

for this simulation study are Vmax = 5 and Km = 2, i.e. θ = log(5) and β = log(2). So, from this simulation study the fixed
effects parameters to be estimated are Vmax and Km or θ and β and the random effects σb, i,e. the variance component
with which random effect is associated. Simulation results are examined for different values of the variance components

depending on the values of the intra-class correlation efficient (ICC =
σ 2

b

σ 2
b
+σ 2

e
) and also for different sets of concentration

levels, i.e. different designs. The design that we consider here contains 21 levels of substrate concentration ranging from
0.5 to 10, at increment 0.5 and 50, i.e. substrate concentration x = (0.5,1.0,1.5, . . . ,9.5,10,50) is replicated for each
subjects.

5.1 Simulation Settings

In this section, we will present our details simulation scenarios for this particular study. In order to investigate the general
behavior of low-discrepancy sequences for solving intractable integration in the nonlinear mixed effects model by direct
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quasi-Monte Carlo method, we considered some cases in this simulation study. The cases are different because different
number of subjects are considered in each case. Within each of the cases, two situations with different set of variance
components or random effects parameters were considered. That is, under each cases, the simulation scenarios were
considered here: (i) with very high intra-subject correlation coefficient ρ = .96, and (ii) with low intra-subject correlation
coefficient ρ = .50. The simulation were run under the settings summarized in Table (1). In all simulations, fixed effects
parameters remain fixed and the true value considered for this parameters are Vmax = 5 and Km = 2, i.e. θ = log(5) and
β = log(2) under the model (10). For each scenarios, 1000 simulations were conducted.

Table 1: Different cases or scenarios are considered for the simulation study

CASES Number of Subjects ρ (ICC) σb σ

Case I 10
ρ = .96 σb = .50 σ = .10

ρ = .50 σb = .50 σ = .50

Case II 20
ρ = .96 σb = .50 σ = .10

ρ = .50 σb = .50 σ = .50

Case III 5
ρ = .96 σb = .50 σ = .10

ρ = .50 σb = .50 σ = .50

The quasi-Monte Carlo method that we have considered for estimating the nonlinear mixed effects model, uses various
types of quasi-random sequences such as Halton, Sobol and Faure sequences. The performance of these sequences for
estimating the parameters of NLME model are of the main interest. In general, the effects and natural behavior of such
sequences in the quasi-Monte Carlo method are investigated through this simulation study. This study also investigated
the effect of the number of subjects considered, the random effects parameters (i.e., the variance components of the
model) for different intra-class correlation coefficients on the parameter estimation of the model (10) by estimating the
empirical bias and mean square error (MSE) of the point estimates. Bias in the estimates of the parameters was calculated
as the differences between the true and estimated values (simulated average over 1000 simulations) for each parameters.
The MSE was calculated as the expected value of the squared differences between the true and estimated values of the
parameters. Here MSE is a risk function, corresponding to the expected value of the squared error loss or the quadratic
loss. The mathematical formula of bias and MSE are given below,

Bias(Vmax) =Vmax − V̂max (14)

MSE(Vmax) = E[Vmax − V̂max]
2, (15)

where Vmax is the true value of the parameter, V̂max is the estimated value of the parameter Vmax which is calculated
by averaging the estimated values of 1000 simulations. Similarly, the bias and mean square error (MSE) for Km and σb

were calculated as stated above in equations (14) and (15). This study also used scatter plots of fixed and random effects
parameter estimates for visually representing the differences.

5.2 Simulation with Case I (Number of Subjects, n = 10)

In this subsection, initially, the simulation study was started through Case I by selecting the number of subjects, n = 10. In
Case I, two situations were also considered depending on the value of intra-subject or intra-class correlation coefficients
ρ . Firstly, the simulation was conducted with very high intra-class correlation coefficient (ICC = 0.96) and then for low
intra-class correlation coefficients (ICC = 0.50). The details simulation results of these two scenarios are shown in the
next two paragraphs given below.

For Case I with 10 subjects and with very high intra-class correlation coefficient the simulation are conducted by
considering true values of variance components σb = 0.50 and σ = 0.1. For this combination of σb and σ intra-subject
correlation coefficient ρ is very high i.e. 0.96. The results of quasi-Monte Carlo method for this scenario are reported in
Table (2), where mean, bias, mean square error (MSE) for each parameter are reported separately for each quasi-random
sequences (e.g. Halton, Sobol, Faure).

Table (2) shows that the estimates of the fixed effects parameters (Vmax and Km) both have negligible bias for all
sequences under the estimation by quasi-Monte Carlo method. The Halton sequences has less bias and MSE compare to
the other sequences. In the estimate of random effects parameter σb, all the sequences and methods produce negatively
biased estimate but the bias is also negligible in the sense that the bias is not more than 10 times greater than the simulated

c© 2022 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


150 S. Das: Monte Carlo Method for Estimating Nonlinear Mixed...

Table 2: Simulation results of parameter estimation in the Michaelis-Menten model, when n = 10, and ρ = 0.96

Q.R.S.
Vmax Km σb

Mean Bias MSE Mean Bias MSE Mean Bias MSE

Halton 5.0025 0.0025 0.0204 2.0001 0.0001 0.0010 0.4699 -0.0301 0.0140

Sobol 4.9958 -0.0042 0.0263 2.0001 0.0001 0.0010 0.4599 -0.0401 0.0140

Faure 4.9951 -0.0049 0.0274 2.0002 0.0002 0.0010 0.4591 -0.0409 0.0141

1000 simulations are used with true parameter values Vmax = 5, Km = 2, σb = 0.5, MSE: mean square error, Q.R.S: quasi-random sequences.

standard deviation of the corresponding estimates (the results is not shown here). Here, the estimate of fixed effects
parameters are more precise than the random effects parameter σb, because the precision of the estimate of fixed effects
(as well as σ2) is determined by the total number of observations, while the precision of the estimate of σb is determined
by the number of cluster of subjects [9]. This interesting property of random effects estimates for other two cases are
shown in the next subsection (5.3) and (5.4). Figure (3) represents the scatter plots of the fixed (Vmax and Km) and random
effects (σb) estimates for all combination of Halton, Sobol and Faure sequences in the quasi-Monte Carlo method. Figure
(3) shows the reflection of results from Table (2), Halton and Sobol sequences produce less mean square error (MSE)
compare to the Faure sequences for estimating Vmax parameter, and also the Faure sequences produce more MSE than the
Halton and Sobol sequences for estimating Km and random effects σb.

Table 3: Simulation results of parameter estimation in the Michaelis-Menten model, when n = 10, and ρ = 0.50

Q.R.S.
Vmax Km σb

Mean Bias MSE Mean Bias MSE Mean Bias MSE

Halton 5.0025 0.0025 0.0406 1.9958 -0.0042 0.0253 0.4521 -0.0479 0.0156

Sobol 5.0046 0.0046 0.0413 1.9958 -0.0042 0.0253 0.4519 -0.0481 0.0157

Faure 4.9939 -0.0061 0.0420 1.9957 -0.0043 0.0254 0.4513 -0.0487 0.0163

1000 simulations are used with true parameter values Vmax = 5, Km = 2, σb = 0.5, MSE: mean square error, Q.R.S: quasi-random sequences.

The simulations by two scenarios under Case I were mainly based on the same number of subjects but with different
values of intra-subject correlation coefficients. Here, in this scenario of simulation, a low values of intra-subject correlation
coefficient (i.e. ρ = .50) was considered for the combination of σb = 0.50 and σ = 0.50. The results of these simulations
study are summarized in Table (3). The parameter estimates are almost same as the previous results. The fixed effects
estimates of Km parameter are very similar for all sequences but in the Vmax and random effects σb estimate, the Halton
and Sobol sequences produce less mean square error (MSE) than the Faure sequences. The scatter plots (not shown here)
are also exhibit same results as the tabulated results.

5.3 Simulation with Case II (Number of Subjects, n = 20)

Now in this subsection, we want to show the effects of the number of subjects in parameter estimation of Michelis
Menten model (10) by quasi-Monte Carlo method considering different quasi-random sequences. This study considered
the Case II and Case III, where we have 20 and 5 number of subjects, which are illustrated in this subsection and the next
subsection (5.4). First, we increase the number of subjects from 10 to 20 and check the results of the simulation study for
two different scenarios with respect to the high and low intra-subject correlation coefficients (ρ). These results are given
in two separate Tables (4), and (5) by varying different intra-class correlation coefficients (i.e., ρ = 0.96 and ρ = 0.50).

Table 4: Simulation results of parameter estimation in the Michaelis-Menten model, when n = 20, and ρ = 0.96

Q.R.S.
Vmax Km σb

Mean Bias MSE Mean Bias MSE Mean Bias MSE

Halton 5.0006 0.0006 0.0176 1.9998 -0.0002 0.0006 0.4875 -0.0125 0.0074

Sobol 4.9991 -0.0009 0.0179 1.9997 -0.0003 0.0006 0.4870 -0.0130 0.0075

Faure 5.0013 0.0013 0.0256 1.9997 -0.0003 0.0006 0.4853 -0.0147 0.0077

1000 simulations are used with true parameter values Vmax = 5, Km = 2, σb = 0.5, MSE: mean square error, Q.R.S: quasi-random sequences.
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Fig. 3: Scatter plots of fixed and random effects estimates for all combination of the Halton, Sobol and Faure sequences
in the quasi-Monte Carlo method of estimating the model (10). Here, the simulation is conducted by considering n = 10
subjects and intra-subject correlation coefficient ρ = .96. The dashed lines indicate the true values of the parameters.

Table 5: Simulation results of parameter estimation in the Michaelis-Menten model, when n = 20, and ρ = 0.50

Q.R.S.
Vmax Km σb

Mean Bias MSE Mean Bias MSE Mean Bias MSE

Halton 5.0011 0.0011 0.0192 1.9989 -0.0011 0.0136 0.4814 -0.0186 0.0076

Sobol 4.9927 -0.0073 0.0189 1.9988 -0.0012 0.0136 0.4774 -0.0226 0.0076

Faure 4.9909 -0.0091 0.0185 2.0016 0.0016 0.0136 0.4775 -0.0225 0.0083

1000 simulations are used with true parameter values Vmax = 5, Km = 2, σb = 0.5, MSE: mean square error, Q.R.S: quasi-random sequences.
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The results are quite similar with the results obtained for 10 subjects. The fixed effects have negligible bias for all
scenarios and in case of comparing among the quasi-random sequences, Halton sequences produce less bias and mean
square error (MSE) (especially for Vmax) than Sobol and Faure sequences. The only fluctuation occurred due to the
estimation of the random effects parameter. For 20 subjects, all quasi-random sequences have comparatively smaller bias
and MSE compare to the 10 subjects Cases in section (5.2). Also, all the quasi-random sequences produce almost similar
results. For this Case II with two different intra-subject correlation coefficient (ρ = 0.50 & ρ = 0.96), the scatter plots of
the parameter estimates for different quasi-random sequences in the quasi-Monte Carlo method of the Michelis Menten
model (10) are also give similar result as in the Figure (3).

5.4 Simulation with Case III (Number of Subjects, n = 5)

In this subsection we decrease the number of subjects from 10 to 5 and again perform the similar simulation study by
considering low and high intra-subject correlation coefficient ρ for checking the results and finding the effects of number
of subjects in parameter estimation. Two scenarios are considered here for simulation study under the Case III (for same
5 subjects) depending on high (ρ = .96), and low (ρ = .50) intra-subjects correlation coefficient. These results are given
below in the two separate Tables (6), and (7).

Table 6: Simulation results of parameter estimation in the Michaelis-Menten model, when n = 5, and ρ = 0.96

Q.R.S.
Vmax Km σb

Mean Bias MSE Mean Bias MSE Mean Bias MSE

Halton 5.0026 0.0026 0.0523 2.0010 0.0010 0.0021 0.4302 -0.0698 0.0300

Sobol 5.0033 0.0033 0.0525 2.0010 0.0010 0.0021 0.4213 -0.0787 0.0299

Faure 5.0036 0.0036 0.0527 2.0013 0.0013 0.0020 0.4214 -0.0786 0.0300

1000 simulations are used with true parameter values Vmax = 5, Km = 2, σb = 0.5, MSE: mean square error, Q.R.S: quasi-random sequences.

Table 7: Simulation results of parameter estimation in the Michaelis-Menten mode, when n = 5, and ρ = 0.50

Q.R.S.
Vmax Km σb

Mean Bias MSE Mean Bias MSE Mean Bias MSE

Halton 4.9900 -0.0100 0.0777 2.0020 0.0020 0.0565 0.4005 -0.0995 0.0404

Sobol 4.9895 -0.0105 0.0781 2.0020 0.0020 0.0565 0.4004 -0.0995 0.0403

Faure 4.9888 -0.0112 0.0778 2.0034 0.0034 0.0567 0.4015 -0.0985 0.0408

1000 simulations are used with true parameter values Vmax = 5, Km = 2, σb = 0.5, MSE: mean square error, Q.R.S: quasi random sequences.

From the above two tables, we see that the results are again quit similar with the results obtained previously. The fixed
effects estimates are unbiased for all quasi-random sequences in the quasi-Monte Carlo method. In some situations the
estimates of Halton and Sobol sequences have less bias (especially for Vmax) and mean square error (MSE) than the Faure
sequences. Again the only fluctuation occurred due to the estimation of variance component or random effects parameter.
For 5 subjects, all quasi-random sequences in the quasi-Monte Carlo method have comparatively larger bias and MSE in
comparison with the 10 and 20 subjects cases.

6 Conclusions

Nonlinear mixed effects models are very popular platform and a powerful tool for modeling and analysis of clustered
or repeated measure data that arise in different areas of scientific investigation, such as, first order compartment model
in Pharmacokinetics, Michaelis-Menten model in Biochemistry and Pharmacokinetics, logistic growth model in Forestry
etc. The regression function of these models nonlinearly depends on fixed and random effects parameters. The popularity
of nonlinear mixed effects model lies in its interpretability, parsimony and validity beyond the observed range of data. So,
fitting of nonlinear mixed effects models take a great deal of interest.
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In this study, the Michaelis-Menten model (10) was used with one random parameter as a specific example of nonlinear
mixed effects model. Fitting of this model is an important issue because of the parameters involved within it, and the
way of their estimation procedure. There are two types of parameters associated with such model. These are classified
as regression parameters and variance-covariance parameters. Random effects are associated with variance-covariance
parameters. Another important insight is that the score functions are nonlinear in parameters; so, no close form solution is
available. There are many estimation procedures are available for fitting nonlinear mixed effects models, but most of the
techniques use approximation in different stages while fitting.

Here, in this paper, no approximation technique was used; instead of approximation based methods, this study
considered Monte Carlo integration technique using different types of quasi-random sequences, which directly solves the
intractable integrations in the likelihood function of nonlinear mixed effects models. For this method, Monte Carlo
integration technique is performed using the points from the quasi-random sequences. Simulation studies were
conducted for Michaelis-Menten model by considering one random effects parameter, that is the maximum rate achieved
by the system. This simulation study considers some different cases with different combinations of number of subjects
and intra-subject correlation coefficients. It was also considered and compared the performance of different types of
quasi-random sequences (e.g. Halton, Sobol, Faure) in the parameter estimation of NLME model by quasi-Monte Carlo
method.

The details plan and results of this simulation study for the Michaelis-Menten model (10) are given in Section 5. The
results of these simulation studies were summarized with some interesting findings. In all cases and scenarios, the fixed
effects estimates of parameters are almost similar and also unbiased for all types of quasi-random sequences in the
estimation by quasi-Monte Carlo method. But, with deep insight and in comparison among the quasi-random sequences,
Halton sequences provide less bias and mean square error (MSE) estimates in some situation (especially for Vmax

estimates) than the Sobol and Faure sequences. In some scenarios, Faure sequences provide the worst estimate in terms
of bias and MSE because of the Box-Muller transformation used for generating Faure sequences. These results is very
similar to the results in the paper of Morokoff and Caflisch [30]. They show that Halton sequences performs best for
dimensions up to around 6; and Sobol sequences performs best for higher dimensions; and the Faure sequences is worst
because the possible reason may be the Box-Muller transformation with in it. But, in this study, the considered model
(10) for parameter estimation was a low-dimensional non-linear mixed effects model with only one random effects
parameter; so, the dimension of quasi-random sequences was one and there was no interest to show the effects of
dimensional variety.

The main and significant difference occurs in the random effects parameter estimation. For any number of subjects, the
fixed effects estimates are almost same, but the random effects parameter estimates are different. There is an significant
effect of subjects in estimation of random effects parameter. As the number of subjects increases, the random effects
parameter estimates tend to more close to the true value, that is, the biases and MSE are reduced for increasing the
number of subjects. In this simulation study, the bias was least for 20 subjects cases and highest for 5 subjects cases for all
types of quasi-random sequences in the quasi-Monte Carlo method for estimating parameters of nonlinear mixed effects
models.
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[6] Comets, E., Brendel, K., & Mentré, F. (2010). Model evaluation in nonlinear mixed effect models, with applications to
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