
Applied Mathematics & Information Sciences 1(2) (2007), 129-156
c©2007 Dixie W publishing Corporation, U. S. A.

Properties for Security Measures of Software Products

Yanguo Michael Liu and Issa Traoré

Received February 10, 2007

University of Victoria, P.O.Box 3055 STN CSC,

Victoria, B.C., V8W 3P6, Canada

E-mail: {yliu, itraore}@ece.uvic.ca

A large number of attacks on computing systems succeed because of the existence of
software flaws (e.g. buffer overflow, race conditions etc.) that could be fixed through a
careful design process. An effective way of improving the quality of software products
consists of using metrics to guide the development process. The field of software secu-
rity metrics however is still in infancy in contrast with the area of traditional software
metrics such as reliability metrics for which several key results have been obtained so
far. We identify in this paper a number of internal software attributes that could be
related to a variety of security qualities. Since theoretical validation is an important
step in the development of any metrics program, we focus in this paper on studying
the measurement properties associated with these internal attributes. The properties,
based on popular security design principles in use in security engineering processes,
can be used to guide the search of software security metrics. We study the feasibility
of our theoretical framework by presenting case studies based on metrics derived from
existing security measurement frameworks, namely the attack surface metrics system
and the privilege graph paradigm.

Keywords: Software security, software metrics, security metrics, quality engineering,
quality attributes, requirements engineering.

1 Rationale and Problem Statement

Metrics are needed to evaluate current level of security, to identify resources for im-
provements and to implement those improvements [7]. Vaughn, however, questions the
feasibility of “measures and metrics for trusted information systems” [21]. According to
him, metrics are possible in disciplines such as mechanical or civil engineering because
they comply with the laws of physics, which can be used to validate the metrics. In con-
trast, the software engineering discipline is not compliant with the laws of physics and

Properties for Security Measures of Software Products 130

faces huge challenges in establishing correctness. Vaughn, however, suggests that effective
security metrics can be defined by accepting some risk in how they are used and by validat-
ing them in the real world through empirical investigation and experimentation. Likewise
most previous works on software metrics adopt an empirical approach for their defini-
tion and their evaluation. Also, as suggested by Vaughn, the need for identifying similar
laws like in physics for theoretical validation of software metrics has been widely recog-
nized [4], [5], [8], [11], [21], [23].

Fenton identifies three classes of entities that are of interest of software engineering
measurement, namely products, processes and resources [4]. We are interested in this
work on developing and validating security metrics at the software product level. Secu-
rity is a multifaceted quality concept, in which each facet represents a separate external
software attribute in its own [15]. In general, external attributes are not directly related
to any feature of the software product. However, to improve the software product we
need to be able to affect its internal features. So we need to identify some internal at-
tributes, which influence directly or indirectly software security qualities. To our knowl-
edge little attention has been paid to such research issue, although extensive works have
been achieved on developing measurement properties for (traditional) internal software at-
tributes [4], [5], [8], [11], [21], [23]. Some of the few works on this issue include [22]
and [12]. In [22], Wang and Wulf motivate the rationale for theoretical validation of se-
curity metrics and highlight possible security attributes. However measurement concepts
are barely defined or formalized. In [12], Millen proposed a theoretical framework for the
definition and validation of survivability measures based on service-oriented architecture;
note that survivability is an external software attribute. In this work, based on popular se-
curity design principles, we identify a number of internal software attributes, which relate
to security facets as external software quality attributes. For each internal attribute, we
propose a number of measurement properties that can be used to derive or validate theoret-
ically related metrics. We show the feasibility of our framework by conducting case studies
based on the attack surface metrics system [6], [10] and the privilege graph paradigm [2],
which have been studied empirically in previous research. The remainder of the paper
is structured as follows. In Section II, we present and discuss previous research directly
influencing this work. In Section III, we present security design principles and software
security attributes. We also discuss how the security design principles can be used to iden-
tify security-related internal attributes. In Section IV, we present a generic software model
that we use as a formal abstraction to express security measurement properties for internal
software attributes. In Section V, we present our case studies, by deriving sample metrics
and discussing corresponding theoretical validation results. Finally, in Section VI, we make
concluding remarks.

Properties for Security Measures of Software Products 131

2 Background

In the last two decades, several efforts have been made towards rigorous definition of
software attributes and their measures. While some of these works emphasize the appli-
cation of traditional measurement theory to software metrics [5], [8], [11], others focus
on formally defining expected properties of software attributes within an axiomatic frame-
work [1], [21], [23]. For instance, Kitchenham et al. proposed a validation framework for
software measure based on measurement theory, and centered on the notion of software en-
tities and software attributes [8]. They defined several criteria for theoretical and empirical
validation of software measures. One of the most important and somewhat controversial
of these criteria stated “any definition of an attribute that implies a particular measurement
scale is invalid” [8]. As this came as a shortcoming of previous axiomatic approaches, it
triggered a discussion between the authors and some of the tenants of the axiomatic ap-
proaches [9], [14]. From this discussion, we can retain as response to the criticism of the
axiomatic approach that excluding any notion of scales in the definition of software mea-
sures will simply lead to abstracting away important relevant information, weakening as a
consequence the checking capabilities of corresponding validation framework [14]. To cor-
roborate their claim, they took as an example the case of experimental physics, which “has
successfully relied on attributes such as temperature that imply measurement scales in the
definition of their properties” [14]. According to them, deriving and associating properties
with different measurement scales can define an attribute. In this case, given a software
attribute measure, only properties associated with relevant scales would be used to check
it. Morasca and Briand refined this perspective by proposing a hierarchical axiomatic ap-
proach for the definition of measures of software attributes at different scales [13]. In their
approach, different collections of axioms are associated with a software attribute, each
relevant to specific measurement scale. Their work is significant in the sense that it es-
tablishes how axiomatic approaches relate to the theory of measurement scales, and also
helps addressing consistency issues in the axiom systems. In this paper, we build on previ-
ous works to define an axiomatic framework for theoretical validation of internal software
security measures.

3 Software Security Concepts

3.1 Security design principles

A great deal of wisdom regarding secure system development has been gathered in the
past decades. This has led to the definition of several security design principles, which are
currently used for the design and implementation of secure systems [16]. Table 1 gives a
list of some of the most popular of these principles.

Our goal is to derive from these principles a set of security related attributes and their

Properties for Security Measures of Software Products 132

Table 3.1: Security Design Principles.
Principles Definitions
Least privilege A subject should be granted only the minimum number

of privileges that it needs in order to accomplish its job.
Fail-Safe Defaults The default access to an object is none.
Economy of Mechanism Security mechanisms of systems should be kept as

simple as possible.
Complete Mediation All accesses to objects must be checked beforehand.
Open Design Security of a mechanism must neither depend on the

secrecy of design nor the ignorance of others.
Separation of Privilege Permission must not be granted based on a single

condition.
Least Common Mechanism Mechanisms used to protect resources must not be

shared.
Psychological Acceptability The introduction of a security mechanism should

not make the system more complex than it is without it.
Weakest link A system is only as secure as its weakest element.
Secure Failure When a system fails its behavior becomes more insecure.

So it is important to ensure that the system fails securely.

corresponding properties to guide the definition of software security metrics. The main
characteristics of these principles are simplicity, separation, and restriction. Simplicity is
essential in secure systems engineering for obvious reasons: complex mechanisms are dif-
ficult to build, maintain, and use, and thereby tend to increase security risks. Simplicity is
highlighted by the principles of “economy of mechanism” and “psychological acceptabil-
ity”.

Separation is mainly inspired by the need for sharing in computer systems. Sharing in
software systems is usually the source of many security breaches. Even though “sharing”
decreases the security in software systems, it is still necessary in most software systems
since it usually eases the implementations of software functional requirements. Therefore,
a careful design of sharing mechanisms is essential. Separation is highlighted by the “least
common mechanism” principle. Restriction is based on the rationale that no one deserves
unlimited trusts; people can always misuse the privileges granted to them. Hence, these
privileges must be limited to the strict minimum required to fulfil system functionality.
Restriction is highlighted by principles such as “least privilege”, “separation of privilege”,
and “complete mediation”. Besides simplicity, separation and restriction, some security
design principles also emphasize other aspects such as security composition and the rela-
tion between security and fault-tolerance. For instance, the “weakest link” principle refers

Properties for Security Measures of Software Products 133

specifically to security composition. According to this principle, the security of a collection
of elements is at best equal to that of the least secure element.

3.2 Software security attributes

3.2.1 Overview

As indicated earlier, there are two kinds of quality attributes: external and internal.
External attributes refer to software qualities whose presence or absence may be detected
by stakeholders such as users or customers. Examples of such attributes include relia-
bility, maintainability, efficiency, compatibility, portability and so on. Internal attributes
correspond to hidden software qualities meaningful only to software professionals (e.g.
developers, specifiers, testers), who have access to software work products such as code,
specification, or documentation. Examples of internal software attributes include readabil-
ity, complexity, modularity and so on. Ultimately what matters from the perspective of the
users or the customers are the external attributes for which they have a clear perception. Ex-
ternal attributes, however, can only be achieved by judiciously applying techniques internal
to software construction ensuring internal qualities. In the rest of this section, we summa-
rize external software security attributes, which are more familiar to users and customers,
and then based on the security design principles, we propose a limited number of internal
software attributes, which influence directly or indirectly software security qualities. Al-
though the list is by no means exhaustive, it represents a good basis for the development of
an initial software security metrics program.

3.2.2 External software security attributes

Software security is a complex and multifaceted notion, which can be appropriately
captured only through many different quality attributes. The notion of software security
encompasses both traditional security attributes and classical dependability attributes [15].
Software security involves multiple attributes, such as authentication, authorization, au-
dit, confidentiality, integrity and so on. Some of these attributes, for instance, authenti-
cation, authorization, and audit, can be specified as system functional requirements, thus
they can be verified and tested as normal system functionalities. Others like confidentiality
and integrity correspond to non-functional requirements in engineering secure software.
Non-functional requirements are difficult to capture and analyze, and it is quite common
that software systems being developed without serious handling of non-functional secu-
rity requirements. Security-related dependability attributes include reliability, availability,
performability, and safety. Reliability is the probability that a system delivers a specified
function during a given time period. Availability measures the fraction of time during
which a system can deliver its intended service in a given time period or in steady state.

Properties for Security Measures of Software Products 134

Safety refers to the probability that the system will operate normally or abnormally in a
given time without causing significant damages. Performability gives measures of system
performance under attacks or failures. Although these attributes address primarily depend-
ability issues, they also influence at diverse level overall system security. For instance,
major sources of security exploits are software bugs that could be fixed by delivering re-
liable software. Security attacks such as denial of service have a direct impact on system
availability. Many instances of cyber-attacks could be considered as threats to safety. For
instance, a penetration attack leading to patients’ records modification represents a direct
threat to their lives. In addition of these attributes, two external security attributes, which
are gaining in interest are survivability and attackability. Survivability refers to the ability
of a system to perform under attack or failure its intended mission, in a timely fashion [12].
Attackability is a concept proposed by Howard and colleagues to measure the extent that a
software system could be the target of successful attacks [6]. They define attackability as
the short word for attack opportunity. More specifically, attackability is the likelihood that
a successful attack will happen.

3.2.3 Internal software security attributes

Many security-related internal software attributes can be derived from the security de-
sign principles presented earlier. According to these principles a secure system can be
studied by assessing three main characteristics: simplicity, separation and restriction. A
software system can be viewed or designed as a collection of services working in concert to
deliver its business functions. So, it is possible to predict the level of security of a software
application by assessing the degree of simplicity, separation and restriction characteristics
of the underlying services designs. In order to better convey our understanding of these
characteristics, we consider four internal attributes that are related to software services as
follows:

• Service Complexity: captures the level of complexity of a software service.

• Service Coupling: captures the level of coupling between software services.

• Excess Privilege: captures the amount of excessive privileges that a software service
may grant compared to its required privileges.

• Mechanisms Strength: capture the combined strength of the security mechanisms
protecting a software service.

Several other internal security attributes could be defined, although we limit the focus
of this paper to only these four attributes. We derive these security measurement concepts
based on the security design principles. Service Complexity is derived from the principles

Properties for Security Measures of Software Products 135

stressing simplicity such as economy of mechanisms. Service Coupling comes from princi-
ples stressing separation such as least common mechanism. Excess Privilege comes from
principles stressing restriction such as least privileges. Mechanisms Strength is derived
from security mechanism related principles such as economy of mechanism, open design
and least common mechanism. Actually the internal attributes suggested in this section are
not new. Complexity and coupling have been proposed and widely used as internal software
attributes, but with the focus on traditional qualities such as reliability and maintainability,
not security. Excess privilege was introduced by T. Smith [18] to study privileges at the
system level. Mechanism strength has been studied under various names. For instance,
Eloff proposed a rating method for security mechanisms such as cryptographic primitives
or password mechanisms that can be considered as a way of evaluating the strength of the
mechanisms [3]. L. Smith reported on pilot activities to investigate the practicality of de-
veloping metrics for determining the strength of cryptographic algorithms [19]. Based on a
small sample of algorithms, the pilot defined five algorithm strengths: US-unconditionally
secure, CS-computationally secure, CCS-conditionally computationally secure, W-weak,
VW-very weak. The results of the pilot demonstrated a set of possible metrics for mea-
suring cryptographic strength based on key length, attack time, steps, and rounds. Even
though those works don’t target specifically software applications, the techniques used can
be adapted to compute the strength of the security mechanisms involved in these applica-
tions. In this work, we associate mechanism strength with any kind of software service,
either security providers or non-security providers. We assume that mechanism strength
for individual security mechanisms are specified by vendors or computed using specific
techniques such as the one mentioned earlier. Mechanism strength for regular software
services are computed by combining the strength of the individual mechanisms involved.

3.2.4 Guidelines for empirical studies

As mentioned earlier, to improve the software product we need to be able to affect its
internal features. Needless to say, internal metrics are easy to collect but hard to interpret
while external metrics are easy to interpret but hard to collect. Prediction models based for
instance on regression analysis or Bayesian probability allow the mapping of hard to in-
terpret internal measurement data into easily interpretable external measurement data. The
models are evaluated through empirical investigation. Although this is not the focus of this
paper, we can draw from the previous analysis some guidelines that can be used to analyze
empirically the relationship between the internal and external security measurement con-
cepts. More specifically, we define four guidelines based on intuitive understanding of the
security design principles as follows:

• Guideline 1: Security decreases as Service Complexity increases.

• Guideline 2: Security decreases as Service Coupling increases.

Properties for Security Measures of Software Products 136

• Guideline 3: Security decreases as Excess Privilege increases.

• Guideline 4: Security increases as Mechanism Strength increases

These guidelines may serve as hypothesis in developing the prediction models. The
dependent and independent variables may correspond to external and internal attributes
respectively.

4 Security Measurement Properties

We identify and define, in this section, some useful properties for the internal attributes
proposed in the previous section. We use an abstract software model based on service-
oriented architecture to express these properties. First, we introduce our software model
and then present the measurement properties.

4.1 Software model

Typically, a software system involves multiple services. Either legitimate or illegitimate
users usually take advantages of deficiencies and vulnerabilities in these services to carry
security attacks. Hence, design and implementation of software services is an essential
aspect of software security management. In this section, we present a generic software
model that is built on the concept of software service. Our model is an extension of the basic
service-oriented model proposed by Millen for system survivability measurement [12].

4.1.1 Basic model

The primitive building block of a system consists of a collection of components C and a
set of relationships among the components R⊆ C×C. This is equivalent to the basic model
of Briand et al. [1], who use the term elements instead of components. Unlike Briand et
al., who use a modular software model, we use in this paper a service-oriented software
model, which fits well with security analysis purposes. In [12], Millen defines a system
as “a set of components configured to provide a set of user services”. A configuration
consists of a collection of components connected in a specific way, each providing specific
services. These services are referred to as the supporting services for the corresponding
configuration. In Millen’s model, a system S is defined as a set of service configurations
with a partition S on S representing the set of services involved. Specifically, a service
is defined by a set of alternative configurations, where each configuration defines a set
of supporting services. The partitioning in configurations defines a hierarchical structure
between services. In this hierarchy, terminal services, which are isolated from one another,
are considered atomic services. Given a configuration s ∈ S, s ∈ S and s ⊆ S denote
respectively the service containing s and the support service set for s. An atomic service is

Properties for Security Measures of Software Products 137

a service, which has no supporting services. Formally, ∀s ∈ S, s is an atomic service if an
only if s = ∅. Services and configurations have the following properties:

(1)s /∈ s

(2)(s1 = s2) ∧ (s1 ⊆ s2) ⇒ s1 = s2

Property (1) stands for the irreflexivity of the support relation, meaning that a service
does not support itself. Property (2) stands for the irredundancy of the configurations as-
sociated with the same service, meaning that different configurations of the same service
cannot have exactly the same support sets. However, different configurations of two distinct
services may have the same support set. As a consequence of the irreflexivity property, an
atomic service s has only one configuration: s = {s}. This is expressed formally by the
following proposition.

Proposition 1: ∀s ∈ S s is an atomic service ⇒ s = {s}
Proof: Based on the earlier definition ∀s ∈ S s is atomic ⇔ s = ∅. So we simply

need to show that ∀s ∈ S s = ∅ ⇒ s = {s}. We can achieve that by contradiction. Let us
assume that ∃s ∈ S s = ∅ ∧ s 6= {s}; this will imply that ∃s′ ∈ S (s 6= s′) ∧ ({s, s′} ⊆
s) ∧ (s = ∅)⇒ ∃s′ ∈ S (s 6= s′) ∧ (s = s′) ∧ (s ⊆ s′). That is in contradiction with
irredundancy property (2)

The relationships between two configurations correspond to the relationships between
their respective components. Given a service configuration s, let µ(s) denote the set of
components involved in s. The set of relationships between two configurations s1 and s2
is denoted and defined as: s1 ∝ s2 = R ∩ (µ(s1) × µ(s2)). The relationships between
two services correspond to the relationships between their respective configurations. We
define and denote the set of relationships between two services s1 and s2 as: s1 ∝ s2 =⋃
t1∈s1,t2∈s2

(t1 ∝ t2).

4.1.2 Extended model

The basic model presented above focuses primarily on the measurement of survivabil-
ity; in order to capture a wider range of software security attributes, we need to extend it.
We extend the basic model by characterizing a software system with security concerns as a
tuple <S, SRequestor, Γ, ℘, priv, pol>. Following Millen’s model, S denotes a set of ser-
vice configurations, with a partition S on S. Γ denotes the set of all security mechanisms
associated with the software system. A security mechanism can be for instance an encryp-
tion program, a password-checking program, or a collection of related protection programs
etc. In our framework, we view security mechanisms as special kinds of services that focus
on protecting other services; accordingly, Γ ⊆ S. Given a software service s ∈ S and a
security mechanism r ∈ Γ, we use r . s to denote that the security mechanism r protects s.
Furthermore, security mechanisms can protect a service either in parallel or in sequence.
As an example, a software system may use a combination of authentication mechanisms

Properties for Security Measures of Software Products 138

for the verification of identities, such as password and eye-scan. Successful authentication
may require either passing at least one of the systems or all of them in sequence. In order to
capture this aspect, we introduce two new operators⊕ : Γ×Γ → Γ and⊗ : Γ×Γ → Γ, we
use r1⊗r2 .s to denote that r1 and r2 work in parallel to protect service s and r1⊕r2 .s to
denote that r1 and r2 work in sequence to protect service s. We naturally extend notations
⊕ and ⊗ to sets of security mechanisms: given m ⊂ Γ, ⊕m denotes a set of mechanisms
working in sequence, while⊗m denotes a set of mechanisms working in parallel. ℘ denote
the set of all privileges associated with the software system. The notion of privileges under-
lies the notion of rights that a service requestor can have for the operations and resources
associated with the service. A service requestor can be a user, an end-user application or
another service; we use SRequestor to denote the set of service requestors involved in the
system S. Privileges may be associated either with a service requestor or with system re-
sources. Privileges associated with a requestor are sometimes referred to in the literature
as privilege attributes. There are a variety of privilege attributes including access identity,
roles, groups, security clearances, and capabilities. Privileges associated with resources are
referred to as control attributes. Examples of control attributes include access control lists
and labels. Due to the diversity of the notion of privilege, we approach privilege generi-
cally as a primitive undefined concept like in [17]. A privilege in this work may refer to
any of the schemes indicated above. A service requestor must have specific privileges in
order to be able to access the resources involved in a given service. We define a privilege
function as a function that maps a tuple service requestor-service with the set of privileges
(actually) involved; a privilege function is denoted by priv : SRequestor × S → 2℘, where
2℘ is the power set of ℘. The privileges associated with a service can be derived from the
operations and resources involved. Analogously, we define a security policy as a function
that maps a tuple service requestor-service with a set of (allowed) privileges; a security
policy is denoted: pol : SRequestor × S → 2℘. The difference between a security policy
and a privilege function is that the former is supplied with the security requirements, and
as such its enforcement is mandatory, whereas the latter is derived from the structure of the
software product, as such it is a matter of (design) choice.

4.1.3 Example

As an example, Figure 4.1 depicts the service hierarchy for an online retail store. This
architecture can be refined further, but as suggested by Millen, the depth of the hierarchy
is a design choice; it is up to the designer to decide the level of granularity of service
specification [12].

In Figure 4.1, arrows denote the support relationships between services. For instance,
the root service represented by the online store is supported by three services: sales service,
customer service, and admin service. An interesting service in this hierarchy is the account

Properties for Security Measures of Software Products 139

Online Store

Sales Service
Admin

Service
Customer Service

Inventory

Service

Shipping

Service

Payment

Service

Account

Service

Help &

Support

Service

Fullfilment

Service

Supply

Service

Transaction

Processing

Service

Billing

Service

Card

Processing

Service

Authentication

Service

Account

Management

Service

Registration

Service

Auditing

Service

Validation

Service

Transaction

Security

Service

Order

Service

Security

Admin

Service

System

Admin

Service

Catalog

Service

Figure 4.1: Service-oriented architecture for an Online Retail Store. An arrow pointing from service
X to service Y indicates that Y is a supporting service for one of the configurations of X .

service, which supports three different services: payment service, customer service, and
admin service. As indicated earlier, each service consists of one or many different con-
figurations each supported by specific services. For instance, the account service may be
defined in terms of two configurations: new user configuration and existing user configura-
tion. A new user needs to register by creating an account. After registration, he may start
using the other functions offered by account service without going through authentication;
so the support set for this configuration is {registration service, account management ser-
vice, auditing service}. An existing user, in contrast, doesn’t need to register, but has to be
authenticated. Hence, the support set for existing user configuration is {authentication ser-
vice, account management service, auditing service}. Examples of security mechanisms
in this architecture include the (payment) transaction security service, the authentication
service, and the auditing service. Services may be implemented as custom components
or using COTS technology. For instance, the (payment) transaction security service can
be implemented using secure electronic transactions (SET) protocol, while the authentica-
tion service may be based on a combination of transport layer security (TLS) and LDAP
protocols, which in both cases are COTS technologies.

4.2 Measurements concepts and properties

In this section, we formally define measurement properties associated with the internal
attributes identified previously. These properties will serve as basis for theoretical vali-
dation of derived metrics. It is important to stress that the proposed properties represent
necessary but not sufficient conditions of validity. Establishing completeness is a difficult

Properties for Security Measures of Software Products 140

task, which is beyond the scope of this work.

4.2.1 Service complexity

In [11], Melton et al. discuss the distinction between psychological complexity and
structural complexity. Psychological complexity is based both on system characteristics
and human factors. Structural complexity refers to the complexity arising from the soft-
ware system irrespective of any underlying cognitive considerations. Both forms of com-
plexity affect software security. For instance, the principle of psychological acceptability is
related to psychological complexity issues, while the principle of economy of mechanisms
is primarily related to structural complexity. However, we limit the scope of this paper
only to structural complexity; the reader is referred to [11] for detail definition of this con-
cept. In this work, complexity is defined from the perspective of the services involved in
software systems. As indicated in the previous generic software model, a software service
may involve various configurations; as a consequence the complexity of a service derives
naturally from the combined complexity of its various configurations. Formally, given a
software system <S, SRequestor, Γ, ℘, priv, pol>, the complexity of a software service
s ∈ S is defined by a function denoted by Complexity(s). We extend the same notation to
service configurations, by defining the complexity of a configuration s ∈ S as a function
Complexity(s). Generally, given a software system <S, SRequestor, Γ, ℘, priv, pol>, we
expect these functions to satisfy the following properties:

1. Axiom AC1: ∀s ∈ S Complexity(s) ≥ 0

2. Axiom AC2: ∀s ∈ S ∀t ∈ s Complexity(s) ≥ Complexity(t)

3. Axiom AC3: ∀s ∈ S ∀t ∈ s Complexity(t) ≤ Complexity(s)

4. Axiom AC4: ∀s ∈ S s = ∅ ⇒ Complexity(s) = Complexity(s)

5. Axiom AC5: ∀s, t ∈ S s ⊆ t ⇒ Complexity(s) ≤ Complexity(t)

We expect the complexity of a service to be non-negative (AC1), and to be no less
than any of its configuration complexity (AC2). We expect the complexity of a service
configuration to be no less than the complexity of any of its supporting services (AC3). An
atomic service has a single configuration; we expect the complexity of an atomic service to
be equal to the complexity of the corresponding configuration (AC4). If the configuration
set of a service is a subset of the configuration set of another service, we expect that the
complexity of the former service is no more than the complexity of the latter service (AC5).
As a consequence of the complexity axioms, we can make some interesting deductions. For
instance, we can deduce that the complexity of a service configuration is nonnegative. Also,
we can deduce that the complexity of a service should be no less than the complexity of
any of its supporting services. The following theorems express these properties:

Properties for Security Measures of Software Products 141

Theorem TC1: ∀s ∈ SComplexity(s) ≥ 0

Theorem TC2: ∀s ∈ S ∀t ∈ s ∀h ∈ t Complexity(s) ≥ Complexity(h)

Due to space limitation, we skip the proofs of theorems TC1 and TC2, as well as for
theorems TD1-TD2, TP1-TP2, and TS1 which actually are straightforward.

4.2.2 Service coupling

The concept of service coupling is used in this work to capture the amount of relation-
ships between services. The notion of relationships between services or configurations has
been defined earlier. Formally, given a software system <S, SRequestor, Γ, ℘, priv, pol>,
the coupling between two software services s1, s2 ∈ S is defined as a function denoted
by Coupling(s1, s2) and the coupling between two configurations s1, s2 ∈ S is denoted by
Coupling(s1, s2). The coupling function should satisfy axioms AD1-AD8 listed as follows:

1. Axiom AD1: ∀s1, s2 ∈ S Coupling(s1, s2) ≥ 0

2. Axiom AD2: ∀s1, s2 ∈ S s1 ∝ s2 = ∅ ⇒ Coupling(s1, s2) = 0

3. Axiom AD3: ∀s1, s2 ∈ S ∀t1 ∈ s1 ∀t2 ∈ s2 Coupling(s1, s2) ≥ Coupling(t1, t2)

4. Axiom AD4: ∀t1, t2 ∈ S ∀si
∈ t1 ∀sj

∈ t2 Coupling(t1, t2) ≥ Coupling(si, sj)

5. Axiom AD5: ∀s1, s2 ∈ S Coupling(s1, s2) ≤
∑

s
i
∈s1

∑
s

j
∈s2

Coupling(si, sj)

6. Axiom AD6: ∀s1, s2, s ∈ S s1 ⊆ s2 ⇒ Coupling(s1, s) ≤ Coupling(s2, s)

7. Axiom AD7: ∀s1, s2 ∈ S Coupling(s1, s2) = Coupling(s2, s1)

8. Axiom AD8: ∀s1, s2 ∈ S Coupling(s1, s2) = Coupling(s2, s1)

In other words, we expect service coupling to be nonnegative (AD1), and to be null
when there is no relationship between services (AD2). Since services may consist of
various configurations, we expect the coupling between two services to be no less than
the coupling between any pair of corresponding configurations (AD3). Since the coupling
between a pair of configurations is composed of the couplings of the corresponding
supporting services, we expect that the coupling between a pair of configurations to be no
less than the coupling between any pair of corresponding supporting services (AD4), and
no more than the sum of the couplings between all their supporting services pairs (AD5).
If the configuration set of a service is a subset of the configuration set of another service,
we expect the coupling between the former service and a given service to be no more than
the coupling between the same service and the latter service (AD6). Service coupling
is symmetric (AD7); so is configuration coupling (AD8). A direct consequence of the

Properties for Security Measures of Software Products 142

service coupling axioms is that the coupling between any pair of configurations should be
non-negative. Another consequence of these axioms is that the coupling between a pair of
service configurations is null if all the couplings between their pairs of supporting services
are null. These properties are expressed by theorems TD1 and TD2 defined as follows:

Theorem TD1: ∀s1, s2 ∈ S Coupling(s1, s2) ≥ 0

Theorem TD2: ∀s1, s2 ∈ S ∀t1 ∈ s1 ∀t2 ∈ s2 t1 ∝ t2 = ∅ ⇒ Coupling(s1, s2) = 0

4.2.3 Excess privilege

Users are assigned some privileges according to the security policy underlying the soft-
ware system. According to the least privilege principle, a user should be granted only the
minimum number of privileges he needs in order to accomplish his job. However, in re-
ality, the implementation and configuration of software systems usually grant unnecessary
privileges to actors for various reasons mainly related to careless design and over simplifi-
cation. The concept of Excess Privilege originally introduced by Terry A. Smith [18] refers
to the amount of unnecessary privileges assigned given a specific user domain and task.
As mentioned previously, privileges are related to services. From the perspective of soft-
ware products, the actual privileges granted to users can be derived from the interactions
between service requesters and services. Comparing the actual privileges set granted with
the minimum set of privileges needed derives Excess Privilege. Formally, given a software
system <S, SRequestor, Γ, ℘, priv, pol>, we define the Excess Privilege of a software ser-
vice s ∈ S, as a function EP(s), and the Excess Privilege of a service configuration s ∈ S,
as a function EP(s). We expect these functions to satisfy axioms AP1-AP5, defined as
follows.

1. Axiom AP1: ∀s ∈ S EP (s) ≥ 0

2. Axiom AP2: ∀s ∈ S ∀t ∈ s EP (s) ≥ EP (t)

3. Axiom AP3: ∀s ∈ S s 6= ∅ ⇒ EP (s) ≤ ∑
ti∈s

EP (ti)

4. Axiom AP4: ∀s ∈ S EP (s) ≥ EP (s)

5. Axiom AP5: ∀s ∈ S s = ∅ ⇒ EP (s) = EP (s)

More specifically, we expect the Excess Privilege of a software service to be nonnega-
tive (AP1). We expect the Excess Privilege of a configuration to be no less than the excess
privileges of any of its supporting services (AP2), and no more than the sum of the excess
privileges of all of its supporting services (AP3) due to the fact that the same excess priv-
ileges may be granted by different supporting services. Since a software service consists

Properties for Security Measures of Software Products 143

of several possible configurations, we expect its excess privilege to be no less than the
excess privileges of any of its configurations (AP4). We also expect the excess privilege of
an atomic service to be equal to that of corresponding (unique) configuration (AP5). As a
consequence of these axioms, theorems TP1 and TP2 defined in the following, state respec-
tively that the Excess Privilege of a service configuration should be non-negative, and that
the Excess privilege of a service should be no less than that of any of its supporting services.

Theorem TP1: ∀s ∈ S EP (s) ≥ 0

Theorem TP2: ∀s ∈ S ∀t ∈ s ∀h ∈ t ⇒ EP (s) ≥ EP (h)

4.2.4 Mechanisms strength

As stated earlier, security mechanisms are considered as special kinds of services that
protect other services. In software applications, a service may be restricted by various
security mechanisms, and some services may deserve more restriction than others. Also,
different configurations of a software service may be protected by different security mecha-
nisms. In our framework, the concept of Mechanism Strength is used to capture the strength
of the security mechanisms involved in the protection of a particular software service. For-
mally, given a software system <S, SRequestor, Γ, ℘, priv, pol>, we define the Mechanism
Strength of a software service s ∈ S, as a function MStrength(s), and the Mechanism
Strength of a service configuration s ∈ S, as a function MStrength(s). We expect these
functions to satisfy axioms AS1-AS7, defined as follows.

1. Axiom AS1: ∀s ∈ S MStrength(s) ≥ 0

2. Axiom AS2: ∀s ∈ S s = ∅ ⇒ MStrength(s) = MStrength(s)

3. Axiom AS3: ∀s ∈ S [s ∈ (S − Γ) ∧ s = ∅] ⇒ MStrength(s) = 0

4. Axiom AS4: ∀s ∈ S s 6= ∅
⇒ [(∀t ∈ s MStrength(t) = 0) ⇒ MStrength(s) = 0]

5. Axiom AS5: ∀s ∈ S (∀t ∈ s MStrength(t) = 0) ⇒ MStrength(s) = 0

6. Axiom AS6: ∀s ∈ S, m ⊂ Γ ⊗m.s ⇒ MStrength(s) ≤ Min
r∈m

{MStrength(r)}

7. Axiom AS7: ∀s ∈ S, m ⊂ Γ ⊕m.s ⇒ MStrength(s) ≥ Max
r∈m

{MStrength(r)}

We expect the mechanism strength of a software service to be nonnegative (AS1). We
expect the mechanism strength of an atomic service to be equal to that of its (unique)
configuration (AS2). We also expect that the mechanism strength of an atomic service
which is not part of Γ to be always null (AS3). Given a service configuration, when none

Properties for Security Measures of Software Products 144

of the supporting services are protected by some security mechanism, we naturally expect
the mechanism strength of such configuration to be null (AS4). Similarly, when none of
the configurations of a service is protected by some security mechanisms, we expect the
mechanism strength of such service to be null (AS5). Based on the weakest link principle,
which states that a system is not more secure than its weakest component, we expect
the mechanism strength of a service protected by a collection of security mechanisms
in parallel to be no more than the minimum strength of the protecting mechanisms
(AS6). When a service is protected by a collection of mechanisms in sequence, its
mechanism strength is expected to be no less than the maximum strength of the protecting
mechanisms (AS7). A natural and obvious consequence of the mechanism strength
axioms is that when there are no security mechanisms protecting the software system,
the mechanism strength of each involved service is null. This is expressed by theorem TS1:

Theorem TS1: Γ = ∅ ⇒ ∀s ∈ S MStrength(s) = 0

5 Case Studies

In this section, we illustrate the properties introduced above by presenting case studies
based on existing measurement frameworks. The first case study, based on the attack sur-
face metrics proposed in [6, 10], allows the derivation and evaluation of sample coupling,
complexity and excess privileges metrics. The second study, based on the privilege graph
paradigm [2], allows the derivation and evaluation of sample mechanism strength metrics.

5.1 Attack surface metrics system

In this Section, we give an overview of the attack surface framework and related met-
rics, and discuss how the framework can be expressed using our software model. Then,
from the basic metrics introduced in [10], we derive a collection of metrics that match
three of our internal attributes, namely service coupling, service complexity, and excess
privilege.

5.1.1 Notion of attack surface

The system’s attack surface consists of the combination of the system actions externally
visible to the users and the resources accessed or modified by these actions. The more ac-
tions or resources are available to the users, the more exposed the system is to successful
attacks, and so the more insecure it is. Underlying the notion of attack surface is the notion
of an attack class. An attack class categorizes resources based on specific properties, for
instance, the group of services running as root or the group of open sockets. The rationale
behind attack classes is that some categories of resources offer more attack opportunities

Properties for Security Measures of Software Products 145

than other; for instance, services running as root are more exposed than those running as
non-root. Attack classes provide common ground for comparing different versions of the
same system or different systems exhibiting the same sets of attack classes. In [6], [10], the
attack surface metrics system is defined as a state machine <S,I,A,T>, where S is the set of
states, I is the set of initial states (I⊆ S), A is the set of actions, defined in terms of pre and
post conditions, and T is the transition relation. A state is defined as a triple (e,s,am) ∈ S,
where e represents the environment consisting of a mapping of names to typed resources,s
is called the store and corresponds to a mapping of typed resources to their typed values,
and am is an access matrix that is defined as a triple Principal× Resource× Rights based
on Lampson’s access matrix model. It is assumed that the set of resources Resource is
partitioned into disjoint typed sets. The set of actions A is partitioned into four sets AS ,
AT , AA, and AU corresponding to the action set of the system, the action set of the Threat,
the action set of the Administrator, and the action set of the User, respectively. The attack
surface metrics system as presented, can easily be described using our service-oriented
software model <S, SRequestor, Γ, ℘, priv, pol>. More specifically, software services en-
capsulate resources (set Resource), and actions (set Action). Service requestors correspond
to subjects (set Principal). Service configurations can be derived from action execution se-
quences. (and priv can be derived from the pre and post conditions of the actions involved
in the attack surface metrics system. The policy function pol and the set of privileges (can
be derived from the access matrixes of the attack surface system.

5.1.2 Attack surface metrics

In [10], the attack surface is defined as a tuple

(
AS ,

⋃
a∈AS

Res(a)

)
, where AS is the

system action set and Res(a) is the set of resources associated with action a. The at-
tack surface contribution is measured as the weighted sum of the number of instances of
each attack class. The weights are computed by defining a payoff function payoff: At-
tack Class→ [0,1]. Formally, the attack surface is defined as:

attack surf =
n∑

i=1

count(Si)× payoff(Si) (5.1)

Where Si is an attack class, count(Si) returns the number of instances of the attack class
Si, andn is the number of top attack classes (based on the payoffs). In [10], it is suggested
that not all attack classes need to be involved in the measure of an attack surface.

5.1.3 Derived metrics

The attack surface metric presented in the previous section is based on internal software
characteristics (e.g. actions, resources), and as such can be used to easily derive internal

Properties for Security Measures of Software Products 146

metrics based on our framework. Specifically, in this section, we derive three metrics each
associated with one of the internal attributes defined earlier. The first derived metric is
related to service complexity, and obtained by restricting metrics 5.1 to software services
and configurations. Specifically, given a set of top attack classes SAttack, the attack surface
of a software service s (resp. a configuration s) can be defined as follows:

attack surf1(s) =
∑

a∈SAttack

count(a • s)× payoff(a)

attack surf1(s) =





∑
a∈SAttack

count(∪
t∈s

(a • t))× payoff(a)(ifs 6= ∅)
attack surf1(s)(ifs = ∅)

(5.2)

Where a • s (resp. a • s) denotes the set of attack instances of type a related to service
s (resp. configuration s), and count(x) represents the size of set x. The instances of attack
classes are recognized from the inner characteristics of a service. Like metric attack surf,
metric attack surf1 is based on the number of instances of top attack classes. Top attack
classes are the most critical from a security perspective. So the higher the number of
instances of these classes the more complex the tasks of the security services. So, we can
assume that attack surf1 is equivalent to a complexity metric.

The second derived metric is related to service coupling. As indicated above the action
set of the attack surface metrics framework consists of the actions of the System, the Threat,
the Administrator and the User. The Threat represents the adversary who attacks the sys-
tem with malicious objectives. The User represents the principal who uses the system to
fulfill regular purposes. Commonly, an adversary attacks a software system by trying to
manipulate available system resources such that the software services provided to regular
system users are affected. Accordingly, a possible requirement that can be derived from
the attack surface framework is that the system resources shared by the Threat and the User
should be minimum. Based on this requirement, we can derive an attack surface metric
by counting the resources that are available to both the Threat and the User of the system.
Specifically, given a service st ∈ S (resp. a configuration st ∈ S) that is available to a
threat, and a user service su ∈ S (resp. a configuration su ∈ S), an attack surface metric
can be defined as follows:

Properties for Security Measures of Software Products 147

attack surface2(st, su) = cardinality(∪
ti∈st

resource(ti) ∩ ∪
tj∈su

resource(tj))

attack surface2(st, su)

=





cardinality(∪
ti∈st

resource(ti) ∩ ∪
tj∈su

resource(tj))(ifst 6= ∅ ∧ su 6= ∅)

cardinality(∪
ti∈st

resource(ti) ∩ resource(su))(ifst 6= ∅ ∧ su = ∅)

cardinality(resource(st) ∩ ∪
tj∈su

resource(tj))(ifst = ∅ ∧ su 6= ∅)

attack surface2(st, su)(ifst = ∅ ∧ su = ∅)
(5.3)

Where resource(s) (resp. resource(t)) is the set of system resources associated with
service s (resp. the configuration t). Since attack surface2 gives a measure of sharing
between services, intuitively we can assume that it is equivalent to a coupling metric.

The third metric derived from the attack surface framework is related to excess privi-
leges. Three kinds of privileges are associated with a delivery of a software service to a
given requestor: actual privileges, allowed privileges, and least privileges [18]. The ac-
tual privileges represent the collection of privileges inherent in the system design, and as
such correspond to the entire range of privileges potentially available to the requestor. The
allowed privileges represent the set of privileges legally available, which typically are spec-
ified by the system security policy. The least privileges represent the minimum set of priv-
ileges required to fulfill a given task [16], [18]. In many software systems, for simplicity,
the security policy may grant more privileges to some users than the minimum privileges
set needed to deliver the service. Also, due to careless design or inadvertently, the actual
privileges associated with the delivery of software services may include illegal privileges
that are not allowed by the security policy. As mentioned in [10], there is a natural re-
lation between privileges available to users and the resources available to them through
the execution of system actions or services. Intuitively, the more unnecessary privileges
are granted by a software system, the more attack surfaces may be exposed. So, from the
user viewpoint, reducing system actions and easy-to-attack resources is equivalent to elim-
inating unnecessary system privileges, which by definition correspond to excess privileges.
In [10], the privileges involved are expressed under the form of Principal× Resource×
Right and the actual privileges granted by a software system can be identified from the pre,
post conditions of the system actions. Based on this consideration, an attack surface met-
ric can be defined by taking for a given service the difference between the least privileges
required and the actual privileges granted. Specifically, given a software service s, we can
derive an attack surface metric as follows:

Properties for Security Measures of Software Products 148

attack surface3(s) =
cardinality(∪

u∈principle(s)
(∪
resi∈resource(s)

u× resi × right(u, resi)− LP (u, s)))

attack surface3(s) =



attack surface3(s) (if s = ∅)
cardinality(∪

t∈s
∪

u∈principle(t)
(∪
resi∈resource(t)

u× resi×right(u, resi)− LP (u, t)))

(if s 6= ∅)
(5.4)

Where principle(s) is the set of resources associated with service s, resource(s) is the
set of resources associated with service s, right(u,resi) is the set of rights available to the
requester u for resource resi through s, and LP(u, s) is the least privileges set required
for requestor u to execute service s. Intuitively, attack surface3 is equivalent to an excess
privilege metric.

5.2 Privilege graph paradigm

5.2.1 Foundation

It has been established by Dacier and Deswartes that the vulnerabilities of a comput-
ing system can be described using a privilege graph [2]. A privilege graph is a directed
graph in which nodes represent the privileges owned by a user or a group of users, and
edges represent potential privilege transfer. Specifically an arc from node n1 to node n2

corresponds to an attack method that can allow the owner of the privileges in n1 to obtain
those in n2. Privilege graphs can be used to derive attack scenarios describing how intrud-
ers misuse available privileges and obtain illegal privileges. In [2], Dacier and Deswartes
use the so-called Intrusion Process State Graph to interpret attack scenarios. The Intrusion
Process State Graph can be constructed based on the privilege graph of a software system.
Specifically, an Intrusion Process State Graph can be defined as directed graph q=(Nq, Iq ,
Gq , Tq), where Nq represents a set of states, Iq represents the initial state (Iq ∈ Nq), Gq

represents the goal state (Gq ∈ Nq), and Tq represents a transition relation (Tq ⊆ Nq ×
Nq). In an Intrusion Process State Graph, Gq corresponds to the compromised state for an
attacker, and Tq corresponds to the methods of privilege transfer. Each of the intrusion pro-
cess states is associated with a set of privileges owned by an attacker; we denote the set of
privileges of an intrusion process state n by privileges(n). Each transition is represented
by an estimated success rate of the corresponding attacks.

5.2.2 The MTTF metrics

In [2], the various attack methods involved in a privilege graph are rated using two
variables, namely Time and Effort. The transition rate is associated with the mean effort

Properties for Security Measures of Software Products 149

or the mean time to succeed in corresponding attack. Based on the Intrusion Process State
Graph, a Markovian model is used to estimate the mean time or effort to reach the target of
the corresponding intrusion process. Specifically in [2], the Mean Time To Failure (MTTF)
metric is used to characterize the mean time for a potential intruder to reach the target in
a specific intrusion process. The MTTF metric is defined as the sum of the mean sojourn
time of the states involved in the attack paths. Formally, given an intrusion process state
graph q=(Nq , Iq , Gq , Tq), the corresponding MTTF metric is defined as follows:

MTTF (i) = ti +
∑

k∈out(i)

Pik ×MTTF (k)

ti =
∑

k∈out(i)

1/λik Pik = λik × ti
(5.5)

Where, ti represents the mean sojourn time in state i that is defined as the inverse of the
sum of state i’s output transition rate; out(i) denotes the set of output transitions from state
i; λik is the transition rate from state i to state k; Pik denotes the conditional probability
transition from i to k.

5.2.3 Derived metrics

Each state of an intrusion process state graph exposes in fact one or more services. The
initial state involves potentially a collection of services available to an intruder, while the
goal state corresponds to the services targeted in the attack process. The MTTF metric
evaluates the difficulty for an intruder to reach his target from a specific state in a given
attack scenario. Consequently, we can use the MTTF metric as a measure of the protection
strength of a service under specific attack scenario. Since a service may be targeted in var-
ious intrusion scenarios, considering the weakest link principle which states that a system
is as secure as its weakest protection scheme, the security strength of the service could be
represented by the minimum MTTF value. Since a configuration consists of several sup-
porting services, the minimum MTTF value of a configuration could be defined as the sum
of the minimum MTTF values of its supporting services. More specifically, given a service
s ∈ S and the set of intrusion process state graphs Qs whose targets represent the services,
we define a Minimum MTTF metric (MinMTTF) for service s (resp. configuration s) as
follows:

MinMTTF (s) = Min
q∈Qs

{MTTF (Iq)}

MinMTTF (s) =





∑
ti∈s

MinMTTF (ti)(ifs 6= ∅)

MinMTTF (s)(ifs = ∅)

(5.6)

Since MinMTTF metric gives a measure of the service protection, intuitively we can
assume that it is equivalent to a mechanism strength metric.

Properties for Security Measures of Software Products 150

5.3 Properties verification

The four metrics proposed in the previous sections are based on intuitive understand-
ing of corresponding concepts. We assume that attack surf1, attack surf2, attack surf3,
and MinMTTFmetrics provide measures for the attributes of complexity, coupling, excess
privilege and mechanism strength respectively. Now, by checking corresponding measure-
ment properties, we may either increase our confidence in these assumptions or identify
and remedy possible flaws. The verification of a metric may either reveal some definitional
flaws, or simply fail. In the former case revising or amending the definition can remedy the
metric. In the latter case the metric is considered invalid. In this section, we review and
discuss for each metric an example of property highlighting flaws or insufficiencies in the
above definitions. For each set of metrics, we first introduce some postulates, which extend
the initial definitions as remedies, and then we introduce the proofs of the properties based
on these postulates. Without these postulates the verification of corresponding properties
would have been difficult or simply unsuccessful.

5.3.1 Metrics attack surface1

Initial verification of attack surface1 metrics is successful for all the service complexity
properties, except axiom AC2. In order to prove this property, we need to introduce the
following postulate:

PostulateP11 : ∀a ∈ Sattack∀s ∈ S ∀t ∈ s [(a • t) ⊆ (a • s)] ∧ [(a • s) ⊆ (a • s)]

Postulate P11 states that the set of attack instances related to a service configuration is a
subset of the attack instances of corresponding service. Similarly the attack instances of a
service configuration include the attack instances of corresponding support services. Based
on this postulate the following proof can be given for AC2:

Postulate P11

⇒ ∀s ∈ S

[
⋃
t∈s

(a • t)

]
⊆ (a • s)

⇒ ∀a ∈ SAttack count(

[
⋃
t∈s

(a • t)

]
) ≤ count(a • s)

⇒ ∀a ∈ SAttack count(

[
⋃
t∈s

(a • t)

]
)× payoff(a) ≤ count(a • s)× payoff(a)

⇒ ∑
a∈Sattack

count(

[
⋃
t∈s

(a • t)

]
)× payoff(a) ≤ ∑

a∈Sattack

count(a • s)× payoff(a)

⇒ ∀s ∈ S ∀t ∈ s attack surf1(t) ≤ attack surf1(s).
(5.7)

Properties for Security Measures of Software Products 151

5.3.2 Metrics attack surface2

Initial verification of attack surface2 metrics is successful for all the service coupling
properties, except axioms AD3, AD4 and AD5, which require the following postulates:

PostulateP21 : ∀s ∈ S resource(s) =
⋃
t∈s

resource(t)

PostulateP22 : ∀s ∈ S resource(s) =
⋃
t∈s

resource(t)

P21 states that the resources of a service correspond to the collection of resources in-
volved in its configurations; P22 states that the resources associated with a configuration
corresponds to the union of the resources associated with corresponding support services.
We illustrate these concepts by giving the following proof for property AD5:

1) Postulate P22
⇒ ∀s1, s2 ∈ S attack surface2(s1, s2) = resource(s1) ∩ resource(s2)
2) Postulate P22
⇒ ∀s1, s2 ∈ S resource(s1) ∩ resource(s2)

=
[
∪

s
i
∈s1

resource(si
)
]
∩

[
∪

s
j
∈s2

resource(sj
)

]

⇒ resource(s1) ∩ resource(s2) =
⋃

s
i
∈s1,s

j
∈s2

[resource(si) ∩ resource(sj)]

⇒ cardinality(resource(s1) ∩ resource(s2))

= cardinality

(
⋃

s
i
∈s1,s

j
∈s2

[resource(si) ∩ resource(sj)]

)

⇒ cardinality(resource(s1) ∩ resource(s2))
≤ ∑

s
i
∈s1

∑
s

j
∈s2

cardinality(resource(si
) ∩ resource(sj))

1) and 2) ⇒ ∀s1, s2 ∈ S attack surface2(s1, s2)
≤ ∑

s
i
∈s1

∑
s

j
∈s2

attack surface2(si, sj).

5.3.3 Metrics attack surface3

Initial verification of the excess privileges properties for attack surface3 metrics is
successful except for axiom AP4 that can be satisfied only after introducing the following
postulate:

Properties for Security Measures of Software Products 152

PostulateP31 : ∀s ∈ S ∀t ∈ s ∀u ∈ Pr inciple(t),
(∪
resi∈Resource(t)

u× resi × right(u, resi)− LP (u, t))

⊆ (∪
resi∈Resource(s)

u× resi × right(u, resi)− LP (u, s))

P31 states that the excess privileges of a service include the excess privileges of its
supporting services. As illustration, we give the following proof for property AP4:

1) ∀s ∈ S s 6= ∅
⇒ ∪

t∈s
∪

u∈Pr inciple(t)
(∪
resi∈Resource(t)

u× resi × right(u, resi)− LP (u, t))

⊆ ∪
u∈Pr inciple(s)

(∪
resi∈Resource(s)

u× resi×right(u, resi)−LP (u, s)) (P31)

⇒
cardinality(∪

t∈s
∪

u∈Pr inciple(t)
{ ∪

resi∈Resource(t)
u×resi×right(u, resi)−LP (u, t)})

≤ cardinality(∪
u∈Pr inciple(s)

{ ∪
resi∈Resource(s)

u×resi×right(u, resi)−LP (u, s)})
⇒ attack surface3(s) ≤ attack surface3(s)
2) ∀s ∈ S s = ∅ ⇒ attack surface3(s) = attack surface3(s) (by definition)
1) and 2) ⇒ ∀s ∈ S attack surface3(s) ≤ attack surface3(s).

5.3.4 Metrics minMTTF

For these metrics, only three of the mechanism strength properties pose some difficul-
ties during verification, namely axioms AS5, AS6 and AS7. In this regard, we define the
following postulate and lemmas:

PostulateP41 : ∀s ∈ S ∀t ∈ s MinMTTF (s) = Min
t∈s

{MinMTTF (t)}
LemmaL41 : ∀s ∈ S∀q ∈ Qs,MTTF (Iq) ≤ Min

i∈path(q)
{MTTFi(Iq)}

LemmaL42 : ∀s ∈ S∀q ∈ Qs∀i1, i2 ∈ path(q) i1 ⊆ i2

⇒ MTTFi1(Iq) ≤ MTTFi2(Iq)

Postulate P41 states that the MinMTTF value for a given service corresponds to the
minimum MinMTTF value of its different configurations. Lemma L41 states that the
MTTF of an intrusion process state graph is always lower than the mean time of its short-
est path. Lemma L42 states that the MTTF of a path of an intrusion process state graph
increases as the number of arcs in the path increases. Lemmas L41 and L42 are basic
properties of MTTF metric; see [2] for corresponding proofs. Now, based on L41, L42,
and P41, we can establish that MinMTTF metrics satisfy axioms AS5, AS6 and AS7. As
illustration, we give the following proof for AS6:

Properties for Security Measures of Software Products 153

Let i • p denote a subpath of pathp where i • p ends at the node i of p.

1)∀s ∈ S, m ⊂ Γ ⊗m . s

⇒ (∀q ∈ Qs ∀ri, rj ∈ m ri 6= rj ⇒ ri, rj protect s in different paths of q)
⇒ ∀q ∈ Qs∀i ∈ path(q)∀r ∈ m,

if r is contained in path i, MTTFr•i(Iq) = MTTFi(Iq).
2)LemmaL41
⇒ MinMTTF (s)= Min

q∈Qs

{MTTF (Iq)} ≤ Min
q∈Qs

{ Min
i∈path(q)

{MTTFi(Iq)}}
Based on 1), 2), we can deduct the following :
∀s ∈ S,m ⊂ Γ ⊗m . s

⇒ MinMTTF (s) ≤ Min
q∈Qs

{ Min
i∈path(q)

{MTTFr•i(Iq)}}
= Min{

r∈m
Min
q∈Qs

{MTTFr•i(Iq)}}
= Min{

r∈m
MinMTTF (r)}.

5.4 Summary

For better communication among the different stakeholders and for better evaluation
processes, it is essential to define unambiguously the various concepts, assumptions, and
abstractions underlying software metrics definitions. It is easy to define some new metrics,
which intuitively would seem to make sense (in the first place) but when scrutinized closely
through theoretical investigation may appear actually to be illogical. In the above case stud-
ies, we have been able to uncover insufficiencies in the definitions of sample metrics derived
from some existing metrics systems. We follow an iterative process, during which possible
limitations are identified in the proposed definitions by checking them against the proposed
measurement properties. Two possible outcomes are considered: either it is possible to
address the identified weaknesses by modifying or reinforcing the assumptions, in which
case the revised definitions undergo new rounds of verification, or the metrics definitions
are considered invalid, and as such are rejected. In all the examples presented above, the
initial metrics definitions have to be revised by reinforcing underlying assumptions; other-
wise the sample metrics would be considered invalid. These case studies illustrate that the
proposed formal framework can be used to evaluate existing software security metrics and
assist in the search or design of new ones.

6 Conclusion

Theoretical validation of software security measures is an important step towards their
general acceptance. We define and formalize in this paper a collection of properties char-
acterizing security-related internal software attributes. The properties are based on security
design principles widely accepted in the security engineering community. This represents

Properties for Security Measures of Software Products 154

an important contribution in the field of software security metrics, as the field is still in
infancy. The framework provides a rigorous ground for identifying and evaluating new
security metrics. Like in most previous works on measurement properties, our proposed
formal framework is sound but not complete. Due to the complexity of software security,
completeness is difficult to establish. Our properties should be interpreted as necessary
but not sufficient. It is important to note that the internal attributes suggested in this paper
cover only a limited view of software security. However, we plan in future work to extend
our framework by investigating more internal attributes and properties in order to further
the confidence level in the validation process.

Acknowledgments

This work was partly supported by the Natural Science and Engineering Research
Council of Canada (NSERC) through a Discovery grant. We would like to thank Dr. J.
H. Weber-Jahnke from the University of Victoria, Dr. I. Ryl from the University of Lille
(France), and Mr. A. M. Hoole from the University of Victoria for their suggestions and
recommendations on the preliminary version of this paper.

References

[1] L. C. Briand, S. Morasca, V. R. Basili, Property-based software engineering measure-
ment, IEEE TSE, 22(1996), 68-86.

[2] M. Dacier, Y. Deswarte, Privilege graph: an extension to the typed access matrix
model, Lecture Notes in Computer Science, 875(1994), 319–334.

[3] J. H. P. Eloff, Selection process for security packages, Computers & Security,
2(1983), 159-167.

[4] N. Fenton, Software Metrics: A rigorous Approach, Chapman & Hall, 1991.

[5] N. Fenton, Software measurement: a necessary scientific basis, IEEE TSE, 20(1994),
199-206.

[6] M. Howard, J. Pincus, J. M. Wing, Measuring relative attack surfaces, Proceeding
of Workshop on Advanced Developments in Software and System Security, (2003),
109-137.

[7] D. Frank, Agencies Seek Security Measures, CIO Magazine: http://www.cio.com,
2000.

[8] B. Kitchenham, S. L. Pfleeger, N. Fenton, Towards a framework for software mea-
surement validation, IEEE TSE, 21(1995), 929-943.

Properties for Security Measures of Software Products 155

[9] B. Kitchenham, S. L. Pfleege, N. Fenton, Reply to: Comments on towards a frame-
work for software measurement validation, IEEE TSE, 23(1997), 187-189.

[10] P. Manadhata, J. M. Wing, Measuring a System’s Attack Surface, CMU-CS-04-102
Technical Report, 2004.

[11] A. C. Melton, D. A. Gustafson, J. M. Bieman, A. L. Baker, A mathematical perspec-
tive for software measures research, Software Eng. J., 5(1990), 246-254.

[12] J. K. Millen. Survivability Measure, Research Report, Computer Science Laboratory
(CSL), SRI, CA, USA.

[13] S. Morasca, L. C. Briand, Towards a theoretical framework for measuring software
attributes, Fourth International Software Metrics Symposium (METRICS’97), (1997),
68-86.

[14] S. Morasca, L. C. Briand, V. R. Basili, E. J. Weyuker, M. V. Zelkowitz, Comments
on towards a framework for software measurement validation, IEEE TSE, 23(1997),
187-188.

[15] D. M. Nicol, W. H. Sanders, K. S. Trivedi, Model-based evaluation: from dependabil-
ity to security, IEEE TDSC, 1(2004), 48-65.

[16] J. Saltzer, M. Schroeder, The protection of information in computer systems, Proc. of
the IEEE, 63(1975), 1278-1308.

[17] R. S. Sandhu, The typed access matrix model, Proc 1992 IEEE Symposium on re-
search in Security and Privacy, May 4-6, (1992), 122-136.

[18] T. A. Smith, User definable domains as a mechanism for implementing the least priv-
ilege principle, Proceedings of 9th National Computer Security Conference, (1986),
143-148.

[19] L. Smith, Cryptographic algorithm metrics, NIST and CSSPAB Workshop, (2000),
13-14.

[20] J. Tian, M. V. Zelkowitz, A formal program complexity model and its applications, J.
Syst. Soft., 17(1992), 253-266.

[21] R. B. Vaughn, Are Measures and Metrics for Trusted Information Systems Possible?,
Workshop on Information Security System Scoring and Ranking, Williamsburg, VA,
USA, 2001.

[22] C. Wang, W. A. Wulf, Towards a framework of security measuremen, 20th NISSC
Proceedings, Baltimore, Maryland, (1997), 522-533.

Properties for Security Measures of Software Products 156

[23] E. J. Weyuker, Evaluating software complexity measures, IEEE TSE, 14(1988), 1357-
1365.

