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Abstract: Based on the approach of Laplace transform, a new class of life distributions called used better than aged in increasing

concave denoted by (UBAC(2)L) is introduced. The implication of our proposed class of life distribution with other classes is given.

Some properties of UBAC(2)L class of life distribution are studied. By using the goodness of fit methodology, a new test statistic is

proposed for testing exponentiality versus UBAC(2)L class of life distribution. Critical values of our test are calculated for complete

and censored data. The power of the test and pitman’s asymptotic efficiency (PAE) for some commonly used distributions in reliability

are calculated. Finally, a set of real data is used as an example to elucidate the use of the proposed test statistic for practical reliability

analysis.
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1 Introduction and Motivation

The concept of aging plays an important role in reliability
analysis, which describes how can a component or system
improves or depreciate with age. Many classes of life
distributions are categorized and defined according to
their aging is important in any reliability analysis. The
definitions of these classes helped statisticians to
introduce new test statistics which are defined based on
the definition of these classes. The main aim of
constructing new tests is to gain higher efficiencies and
gives good power.

So, many authors introduced a lot of new classes and
made a testing hypothesis for testing exponentiality
versus these classes of life distribution. The most
well-known classes of life distributions can be mentioned
such as: such as (IFR, IFRA, DMRL, NBU, NBUE, UBA,
UBAE, UBAC and UBACT) has got a good deal of
attention in the literature [1,2,3,4,5,6,7]. Some authors
took up testing exponentiality based on goodness of fit
technique versus many classes of life distributions; see
El-Bassiouny et al. [8] for MRL class of life distribution,
Abu-Youssef [9] for DVRL(IVRL), Kayid et al. [10] for
NBU(2), Ismail et al [11] for UBAC, Abu-Youssef et al.

[12] for UBACT. Ali for UBAC(2) [13], Mahmoud et al.
[14] for (NRBUL) and Abu-Youssef et al. [15] for
(UBAL).

Let X be a nonnegative continuous random variable
which represent equipment life with distribution function
F; survival function F = 1 − F and finite mean
µ = E[X ] =

∫ ∞
0 F(x)dx. At age t, the random residual life

is defined by Xt with survival function F t =
F(t+x)

F(t)
, x, t

≥ 0. The mean residual life of Xt = [X − t|X > t] is given
by

µ(t) = E[Xt ] =
∫ ∞

t F(u)du

F(t)
, t ≥ 0,F(t)> 0.

Definition (1.1): The distribution function F is said to
be UBA if

F̄(x+ t)

F̄(t)
≥ e−x, x, t ≥ 0, (1)

See Alzaid [16].
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Definition (1.2): The distribution function F is said to
be UBAC(2) if

∫ ∞

t
F̄(u)du−

∫ ∞

x+t
F̄(u)du ≥ (1− e−x)F̄(t), x, t ≥ 0,

(2)

which can be written as :

ν(t)−ν(x+ t)≥ (1− e−x)F̄(t). (3)

See Ali [13].

Definition (1.3): The distribution function F is said to
be UBAC(2)L if

∫ ∞

0
e−sx[ν(t)−ν(x+ t)]dx ≥

∫ ∞

0
e−sx[(1−e−x)F̄(t)]dx,s ≥ 0.

(4)

After integration, we get:

∫ ∞

t
e−syF̄(y)dy ≥ 1

s+ 1
e−st F̄(t),s ≥ 0. (5)

In many applications, it is important for the buyer of
the purchasing used items with unknown age, to have an
idea about the lifetime of it. Hence, it is important to
compute the residual lifetime of the item with respect to
its performance under the true age (UBA, UBAE,
UBAC(2) and UBAC(2)L). Examples of criteria for
comparing ages of electrical equipment like computers,
radios, etc. can be found in Bhattacharjee [17] and Cline
[18]. The implication of our proposed class of life
distribution with other classes is

IFR ⊂ DMRL ⊂ UBA ⊂ UBAC(2)⊂ UBAC(2)L

The proposed new class of life distribution UBAC(2)L
which is the generalization of UBAC(2) class of life
distribution is more efficient.

The paper is organized as follows: In section 2,
definitions and relationships are given. In section 3, we
study the UBAC(2)L property under the convolution,
discrete mixture, and formation of a coherent system. A
new test statistic technique is proposed in section 4 and
critical values are tabulated. In section 5, PAE and The
power estimates for the test are calculated. Testing of
censored data and critical values are introduced in section
6. Applications for complete and censored data are
studied in section 7. Finally, we give a conclusion for our
work in section 8.

2 Definitions And Relationships

Definition (2.1): (Bhattacharjee [17]):
F is called age-smooth if for every support point x of F

limt→∞ F̄t(x) ∈ [0,1].

It is important to note That IFR and DFR classes are
contained in the age-smooth class of life distribution.

Properties of age-smooth class :
(i) If F is age-smooth then

limt→∞ F̄t(x) = e−γx for some 0 ≤ γ ≤ ∞, and for every
x ≥ 0,

(see Bhattacharjee [17] and Alzaid [16]).
(ii) If F has a failure rate function r(t), then limt→∞ r(t) =
γ, (see Bhattacharjee [17])
(iii) If F has finite mean, then F is age-smooth iff

limt→∞ µ(t) = limt→∞

∫ ∞
0 F̄t(x)dx = γ−1,

(see Bhattacharjee [17]).
(iv) The finitely age-smooth distribution are closed under
convolution. This implies that if

limt→∞
F̄i(x+y+t)

F̄i(t)
= e−γi(x+y) x,y ≥ 0, i = 1,2

for some 0 ≤ γ1 ≤ γ2 ≤ ∞ then

limt→∞
F1∗F2(x+y+t)

F1∗F2(t)
= e−γi(x+y) x,y ≥ 0, i = 1,2

where F1 ∗ F2 is the convolution of F1 with F2, (see
Embrechts et al [23]).

3 Closure Properties

In this section we discuss the closure properties of the
UBAC(2)L under convolution, discrete mixing and
formation of coherent system.

Theorem 1. The UBAC(2)L class of life distribution is
closed under the convolution.

Proof:

Let F1 and F2 be UBAC(2)L, F = F1 ∗F2 is age-smooth
class of life distribution. Then from the definition of
UBAC(2)L class, we have:

∫ ∞

t
e−syF̄(y)dy =

∫ ∞

t
e−sy

∫ ∞

0
F̄1(y− u)dF2(u)dy,

=

∫ ∞

t

∫ ∞

0
e−syF̄1(y− u)dF2(u)dy,

=

∫ ∞

0

∫ ∞

t
e−syF̄1(y− u)dF2(u)dy,

≥
∫ ∞

0

e−st

s+ 1
F̄1(t − u)dF2(u),

≥ e−st

s+ 1

∫ ∞

0
F̄1(t − u)dF2(u),

≥ e−st

s+ 1
F̄(t). (6)

The F̄ = F1 ∗F2 is UBAC(2)L. This completes the proof.

Theorem 2. Let Fi, i = 1,2, ...,n be UBAC(2)L life
distribution with x ≥ 0 and 0 ≤ αi ≤ 1 such that
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Σn
i=1αi = 1, then F̄(x) = ∑n

i=1 αiF̄i(x) is UBAC(2)L.

Proof:
Since α1 ≤α2 ≤ ...≤αn. Let F1,F2, .....Fn are UBAC(2)L,
then we have

∫ ∞
t e−sy[αiF̄i(y)]dy ≥ e−st

s+1
[αiF̄i(t)]

For i=1 :

∫ ∞
t e−sy[α1F̄1(y)]dy ≥ e−st

s+1
[α1F̄1(t)]

For i=2 :

∫ ∞
t e−sy[α2F̄2(y)]dy ≥ e−st

s+1
[α2F̄2(t)]

For i=n :

∫ ∞
t e−sy[αnF̄n(y)]dy ≥ e−st

s+1
[αnF̄n(t)]

For all i :

∫ ∞
t e−sy[Σn

i=1αiF̄i(y)]dy ≥ e−st

s+1
[Σn

i=1αiF̄i(t)]

And from F(x) = Σn
i=1αiFi(x), we have

∫ ∞
t e−syF̄(y)dy ≥ e−st

s+1
F̄(t),

This result holds for every finite n. This completes the
proof of the theorem.

Theorem 3. A series system of n independent UBAC(2)L
components is UBAC(2)L.

Proof:

Let X1,X2, ...,Xn be independent UBAC(2)L
components. Then

∫ ∞
t e−sy P(min(X1,...,Xn≥y))

P(min(X1,...,Xn≥t)) dy =
∫ ∞

t e−sy ∏n
i=1

P(Xi≥y)
P(Xi≥t) dy

=
∫ ∞

t e−sy ∏n
i=1

F̄i(y)
F̄i(t))

dy since F̄i is UBA

≥ ∫ ∞
t e−sy ∏n

i=1 e−(y−t)dy.

Since

∫ ∞
t e−sy ∏n

i=1 e−(y−t)dy = et
∫ ∞

t e−(s+1)ydy,

= 1
s+1 e−st ,

then

∫ ∞
t e−sy P(min(X1,...,Xn≥y))

P(min(X1,...,Xn≥t))
dy ≥ 1

s+1 e−st

This implies that a series system X1,X2, ...,Xn is UBAC(2)L.

4 Testing of hypotheses

In this section, a new test statistic based on goodness of fit for

testing H0 : F is standard exponential against H1 : F is

UBAC(2)L and isn’t exponential is studied for a random sample

X1,X2, ......,Xn from a population with distribution function F is

proposed.

According to Eq. (5) we proposed the following as a measure

of departure from H0

δU2L
(s) =

∫ ∞

0
[

∫ ∞

t
e−syF̄(y)dy− 1

s+1
e−st F̄(t)]dF(t)

=
∫ ∞

0
[
∫ ∞

t
e−syF̄(y)dy− 1

s+1
e−st F̄(t)]e−tdt

=
∫ ∞

0

∫ ∞

t
e−sye−t F̄(y)dy− 1

s+1

∫ ∞

0
e−(s+1)tF̄(t)dt

=
1

s
[1−φ(s)]− s+2

(s+1)2
[1−φ(s+1)] s > 0, (7)

where φ(s) = Ee−sT .

The empirical estimator δ̂U2L
(s) of our test statistic can be

given as follows:

δ̂U2L
(s)=

1

n
∑

i

[
1

s
[1−e−sXi ]− s+2

(s+1)2
[1−e−(s+1)Xi ]], s> 0.

(8)

To make the test statistic scale invariant set

∆̂U2L
(s) =

δ̂U2L
(s)

X
. (9)

Eq. (8) can be rewritten as follows;

δ̂U2L
(s) =

1

n
∑

i

℘(Xi), (10)

where ℘(Xi) =
1
s
[1−e−sXi ]− s+2

(s+1)2 [1−e−(s+1)Xi ].

Set i = 1, then

℘(X1) =
1

s
[1−e−sX1 ]− s+2

(s+1)2
[1−e−(s+1)X1 ]. (11)

Then δ̂U2L
(s) is a classical U-statistics, see Lee [24].

Theorem 4. As n → ∞,
√

n〈δ̂U2L
(s) − δU2L

(s)〉/σ(s) is

asymptotically normal with mean 0 and variance

σ2(s) = var[℘(X1)], where ℘(X1) is given in Eq. (11).

Under H0

σ2(s) =
1

(s+1)3(4s4 +8s+3)
. (12)

Proof:

Using the theory of standard U-statistics and by direct

calculations,we can find the mean equal 0 and the variance is

given by

σ2(s) = var[℘(X1)].

Then

σ2(s) = E[
1

s
[1−e−sX1 ]− s+2

(s+1)2
[1−e−(s+1)X1 ]]2. (13)
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Under H0: E(℘(X1)) = 0 and

σ2(s) = E[℘(X1)]
2,

=

∫ ∞

0
[
1

s
[1−e−sX1 ]− s+2

(s+1)2
[1−e−(s+1)X1 ]]2e−xdx.

(14)

Then (12) is given and the theorem is proved.

when s = 1 → σ2(1) = 1
120 .

∆̂U2L
(1) =

1

nX
[
1

2
[1−e−X1 ]− 3

8
[1−e−2X1 ]]. (15)

To use the above test, calculate
√

n∆̂U2L
(s)/σ(s) and reject

H0 if this exceeds the normal variate value Z1−α . To illustrate the

test, we calculate, by using Monte Carlo Method, the empirical

critical values of ∆̂U2L
(1) in (15) for sample sizes 5(5)100. Table

1 gives the percentile points for 1%, 5%, 10%, 90%, 95%, 99%.

The calculations are based on 10000 simulated samples of sizes

n = 5(5)100. These values will be the criteria for dividing the

samples space into acceptance or rejection region for H0.

20 40 60 80 100
Sample Size

-0.10

-0.05

0.05

0.10

Critical Value

{percentage}

Fig. 1: The relation between sample space and critical values

It is clear from Table 1 and Fig. 1 that the values of the

percentiles changes slowly as n increases.

5 Pitman’s asymptotic efficiency

In this section, we calculate PAE for UBAC(2)L class of life

distributions and compare our proposed test with tests of other

well-known classes of life distribution on basis of PAE.

Here we choose K∗ presented by Hollander and Prochan

[25] for (DMRL), δ̂2 presented by Ahmad [21] for (UBAE)

class, ∆̂UT
presented by Abu-Youssef et al [26] for (UBACT)

class of life distribution based on U-Statistics, Λn introduced by

Mahmoud et al [27] for (ODL) and δ (θ ) introduced by Ali [13]

for UBAC(2).

PAE of δU2L
(s) is given by :

PAE(δU2L
(s,θ )) =

1

σ(s)

∣

∣

∣

∣

d

dθ
δU2L

(s,θ )|θ→θ0

∣

∣

∣

∣

. (16)

Two of the most commonly used alternatives (cf. Hollander

and Proschan [28]) are:

(i) Linear Failure Rate (LFR) : F̄θ = e−x− θ x2

2 , x > 0,θ > 0

(ii) Makeham : F̄θ = e−x−θ(x+e−x−1), x > 0,θ > 0

The null hypothesis is at θ = 0 for LFR and Makham families.

The PAE’s of these alternatives of our procedure are,

respectively:

PAE(δU2L
(s),LFR) =

1

σ0

∣

∣

∣

∣

−3−2s

(s+1)3(s+2)2

∣

∣

∣

∣

, s ≥ 0. (17)

PAE(δU2L
(s),Makeham) =

1

σ0

∣

∣

∣

∣

−2

(s+1)2(s+2)(s+3)

∣

∣

∣

∣

, s ≥ 0. (18)

From Table 2, our test statistic δU2L
(s) is more

efficient than K∗, δ̂2, ∆̂UT
, Λn and δ (θ ) for LFR and

Makeham families.

Finally, the power of the test statistic δU2L
(s) is

considered for 95% percentiles in Table 3 for three of the
most commonly used alternatives [see Hollander and
Proschan [28]], they are

(i) Linear failure rate : F̄θ = e
−x− θ x2

2 , x > 0,θ > 0

(ii) Makeham : F̄θ = e−x−θ (x+e−x−1), x ≥ 0,θ > 0

(iii) Weibull : F̄θ = e−xθ
, x ≥ 0,θ > 0

These distributions are reduced to exponential distribution
for appropriate values of θ .

It is clear from Table 3 that the power increases as n
and θ increase.

6 Testing for Censored Data

In this section, a test statistic is proposed to test H0 : F is
standard exponential distribution versus, H1 : F is
UBAC(2)L and not exponential distribution, with
randomly right-censored data (RR-C)in many
experiments. Censored data is usually the only
information available in a life-testing model or in a
clinical study where patients may be lost (censored)
before the completion of a study. This experimental
situation can be modeled as following:

Suppose n items are put on test, and X1, X2, ..., Xn

are independent and identically distributed (i.i.d) random
variables according to a continuous life distribution F

which denote their true life time. Let Y1,Y2, ...,Yn be (i.i.d)
according to a continuous life distribution G and assume
that X ′s and Y ′s are independent. In the randomly
right-censored model, we observe the pairs (Zi,δi),
i = 1, ...,n, where Zi = min(Xi,Yi) and

δi =
{

1, i f Zi=Xi (i−th observation is uncensored)
0, i f Zi=Yi (i−th observation is censored)

(19)

Let Z(0) < Z(1) < ... < Z(n) denoted the ordered of Z’s

and δi is the δ corresponding to Z(i), respectively. Using
the Kaplan and Meier estimator [29] in the case of
censored data (Zi,δi), i = 1,2, ...,n, then the proposed test
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statistic is given by (7) can be written using right
censored data as

δ̂ c
U2L

(s) =
1

s
(1− ζ )− s+ 2

(s+ 1)2
(1−β ) (20)

where

ζ =
n

∑
j=1

e
−sZ( j) [

j−2

∏
p=1

C
δ (p)
p −

j−1

∏
p=1

C
δ (p)
p ]

β =
n

∑
j=1

e
−(s+1)Z( j) [

j−2

∏
p=1

C
δ (p)
p −

j−1

∏
p=1

C
δ (p)
p ]

and

dFn(Z j) = F̄n(Z j−1)− F̄n(Z j−2)

ck =
n− k

n− k+ 1

To make the test invariant, let

∆̂ c
U2L

(s) =
δ̂ c

U2L

Z̄
, Z̄ =

1

n

n

∑
i=1

Zi. (21)

Table 4 shows the critical values percentiles of ∆̂ c
U2L

(s)

for sample size n=2(2)20(10)100.

6 8 10 12 14 16 18 20
Sample Size

-0.05

0.05

0.10

Critical Value

{percentage}

Fig. 2: The relation between sample space and critical values

According to Table 4 and Fig. 2, the critical values
decreases when the sample size increases. These values
will be the criteria for dividing the samples space into
acceptance or rejection region for H0.

7 Applying the test

7.1 Applications for Complete Data

Example 1: The following data represent 39 liver cancers
patients taken from El Minia Cancer Center Ministry of
Health Egypt A. F. Attia [30] The ordered life times (in
days) are:

107 , 18 , 74 , 20 , 23 , 20 , 23 , 24 , 52 , 105 , 60 , 31 , 75 ,
107 , 71 , 107 , 14 , 49 , 10 , 15 , 30 , 26 , 14 , 87 , 51 , 17 ,
116 , 67 , 20 , 14 , 40 , 14 , 30 , 96 , 20 , 20 , 61 , 150 , 14.

Using (15), the value of test statistic based on the

above data is ∆̂U2L
(1) = 0.0419031. the critical value at

α = 0.05 is 0.024426, then we reject H0 at
α = 0.05.Therefore the data have UBAC(2)L property.

Example 2: Consider the data in Abouammoh et al
[31]. These data represent set of 40 patients suffering
from blood cancer (Leukemia) from one ministry of
health hospital in Saudi Arabia. The ordered life times (in
day) are:
0.315, 0.496, 0.699, 1.145, 1.208, 1.263, 1.414, 2.025,
2.036, 2.162, 2.211, 2.370, 2.532, 2.693, 2.805, 2.910,
2.912, 3.192, 3.263, 3.348, 3.348, 3.427, 3.499, 3.534,
3.718, 3.751, 3.858, 3.986, 4.049, 4.244, 4.323, 4.323,
4.381, 4.392, 4.397, 4.647, 4.753, 4.929, 4.973, 5.074.

The value of test statistic based on the above data is
∆̂U2L

(1) = 0.0779788. the critical value at α = 0.05 is
0.0242422. This value leads to the rejecting of H0 at the
significance level α = 0.05. Therefore the data have
UBAC(2)L property.

Example 3: In an experiment at Florida state
university to study the effect of methyl mercury poisoning
on the life lengths of fish goldfish were subjected to
various dosages of methyl mercury (Kochar [32]). At one
dosage level the ordered times to death in week are:
6, 6.143, 7.286, 8.714, 9.429, 9.857, 10.143, 11.571,
11.714, 11.714

The value of test statistics, based on the above data
is ∆̂U2L

(1) = 0.0688283. the critical value at α = 0.05 is
0.0461727. Then H0 at the significance level α = 0.05 is
rejected. Therefore the data have UBAC(2)L property.

7.2 Applications for Censored Data

Example 1: Consider the following data in Mahmoud
and Abdul Alim [33] that represent 51 liver cancers
patients taken from the El Minia Cancer Center Ministry
of Health in Egypt. Of them 39 represent whole life times
(non-censored data) and the others represent censored
data. The ordered lifetimes (in days) are:

(i) Non-censored data

10,14,14,14,14,14,15,17,18,20,20,20,20,20,23,23,24,26,30,30,
31,40,49,51,52,60,61,67,71,74,75,87,96,105,107,107,107,116,150.

(ii) Censored data

30,30,30,30,30,60,150,150,150,150,150,185.

It is found that the test statistic for the set of data
∆̂ c

U2L
(1) = 0.0251201. The critical value is 0.0395898, so

we accept H0 which states that the set of data haven’t
UBAC(2)L property under significant level α = 0.5.
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Table 1: Critical values of ∆̂U2L
(s)

n 1% 5% 10% 90% 95% 99%

5 -0.0952711 -0.0673061 -0.052405 0.0521065 0.0670076 0.0949726

10 -0.0685757 -0.0488014 -0.0382648 0.0356361 0.0461727 0.065947

15 -0.0568782 -0.0407326 -0.0321295 0.0282103 0.0368135 0.0529591

20 -0.0457499 -0.0317674 -0.0243168 0.0279389 0.0353895 0.049372

25 -0.0427624 -0.0302561 -0.0235921 0.0231469 0.0298109 0.0423172

30 -0.040619 -0.0292023 -0.023119 0.0195477 0.025631 0.0370477

35 -0.0353131 -0.0247433 -0.0191113 0.0203904 0.0260225 0.0365922

40 -0.033132 -0.0232449 -0.0179765 0.0189739 0.0242422 0.0341293

45 -0.0319505 -0.0226289 -0.0176618 0.0171753 0.0221424 0.031464

50 -0.0297344 -0.0208911 -0.016179 0.0168705 0.0215826 0.0304259

55 -0.0281054 -0.0196737 -0.0151808 0.0163306 0.0208234 0.0292552

60 -0.0274241 -0.0193513 -0.0150497 0.0151201 0.0194217 0.0274945

65 -0.0274398 -0.0196837 -0.0155509 0.0134354 0.0175682 0.0253243

70 -0.0267357 -0.0192617 -0.0152792 0.0126527 0.0166351 0.0241091

75 -0.0249314 -0.0177108 -0.0138634 0.0131214 0.0169688 0.0241894

80 -0.0265205 -0.0195293 -0.015804 0.0103239 0.0140491 0.0210404

85 -0.0244289 -0.0176464 -0.0140323 0.0113155 0.0149295 0.021712

90 -0.0234292 -0.0168378 -0.0133256 0.011308 0.0148202 0.0214116

95 -0.0222067 -0.0157911 -0.0123725 0.011604 0.0150226 0.0214382

100 -0.0206546 -0.0144014 -0.0110695 0.0123 0.015632 0.0218852

Table 2: PAE of δU2L
(s)

Dist. K∗ δ̂2 ∆̂UT
Λn δ (θ ) δU2L

(s)
F1

LFR 0.81 0.63 0.748 0.982 0.918 1.3

F2

Makeham 0.29 0.385 0.248 0.218 0.510 0.58

Table 3: Power Estimate of δU2L
(s)

Sample Size

Distribution θ n=10 n=20 n=30

F1 2 1 1 1

Linear failure 3 1 1 1

rate 4 1 1 1

F2 2 1 1 1

Makham 3 1 1 1

4 1 1 1

F3 2 0.9924 0.9971 1

Weibull 3 0.9952 0.9986 1

4 0.9955 1 1

8 Conclusion

In this paper, a new class of life distribution denoted by
UBAC(2)L is introduced. We studied the UBAC(2)L
property under convolution, discrete mixture and
formation of a coherent system. A new test statistic
technique for testing exponentiality versus UBAC(2)L
class of life distribution based on the goodness of fit test
is proposed. Pitman’s asymptotic efficiencies of our
proposed test are calculated for LFR and makeham
families. It is proved that our test is more efficient than

Table 4: Critical Values of ∆̂ c
U2L

(s)

n 90% 95% 99%

2 0.104148 0.127709 0.171925

4 0.0799974 0.0966573 0.127923

6 0.069334 0.0829367 0.108465

8 0.0630111 0.0747914 0.0968997

10 0.0587317 0.0692684 0.0890426

12 0.0556135 0.0652321 0.0832835

14 0.0532404 0.0621455 0.0788578

16 0.0513953 0.0597253 0.0753582

18 0.049969 0.0578225 0.0725614

20 0.0489429 0.0563934 0.0703759

30 0.0421667 0.04825 0.0596667

40 0.0393085 0.0445769 0.054464

50 0.0346142 0.0393263 0.0481697

60 0.034869 0.0391706 0.0472434

70 0.0341083 0.0380908 0.0455647

80 0.0333767 0.0371019 0.0440932

90 0.0327311 0.0362433 0.0428347

100 0.0321669 0.0354988 0.041752

other tests. Critical values of this test are tabulated for
complete and censored data and the powers of this test are
estimated for some famously alternative distributions in
reliability such as LFR and makeham. Finally, examples
in different areas are used as practical applications of our
proposed test.
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