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Abstract: Data gathering in wireless sensor network (WSN) has attracted a lot ofiatiém research. Data gathering can be done
with or without aggregation, depending on the degree of correlation gthersource data. In this paper, we study the problem of data
gathering without aggregation, aiming to conserving the energy of sansges so as to maximize the network lifetime. We model the
problem as one of finding min-max-weight spanning tree (MMWSWhich is shown to be NP-complete. In MMWST, the maximum
weight of the nodes is minimized. The weight of a node in the tree equalstioeof the number of the node’s descendants to the
node’s energy. We proposec(logn/loglogn)-approximation centralized algorithm MITT to construct MMWST withoutuiing
node location information. Moreover, in order to enable MITT to be usddrife-scale networks, a new solution that employs the
clustering technique is proposed. To the best of our knowledge, MITfeifirst algorithm that constructs MMWST in wireless sensor
networks. Theoretical analyses and simulation results show that MIiT &dzeve longer network lifetime than existing data gathering
algorithms.

Keywords: Maximum lifetime, Data gathering, Wireless sensor networks

1 Introduction data gathering is called data gathering with aggregation.
Data gathering without aggregation refers to the opposite

A wireless sensor network (WSN) is composed of acase, where no data reduction is available and all data
|arge number of low-cost and |0W_energy (Sensor) nodeé_'leed to be tra_nsmltted _tO the Slnk, e.g., CO"eCtlng video
that communicate with each other through multi-hop images from distant regions of a battlefield. Both types of
wireless links 1]. A basic operation in WSN is data data gatherings have many applications, and attract a lot
gathering, i.e., each node periodically transmits its sens Of research attentions. In this paper, we mainly concern
data to the sink for further processing. Because nodes ar@ith data gathering without aggregation. Our goal is to
often deployed in remote or inaccessible environmentsfind an energy-conserving tree at each round of data
where replenishing nodes’ batteries is usually impossiblegathering to maximize the network lifetime.

a critical issue in data gathering is to conserve nodes’ For data gathering with aggregation, each node
energies and maximize the network lifetime. The networkconsumes energy for receiving data with constant size
lifetime is defined as the time until the first node depletesfrom all of its children and transmitting the aggregated
its energy £]. data with the same size to its parent. Therefore, the

Data gathering can be categorized by the degree oénergy consumption of each node is controlled by the
correlation among the source da8. [For applications of number of its children (or its degree in the tree). In order
statistical queries in WSN, such as SUM, MAX, MIN, to maximize the network lifetime, the degrees of all nodes
etc., correlation exists among the data sensed by nodeg the tree should be minimized. In4][5], a
Therefore, when these data are transmitted, they could bél + €)-approximation centralized algorithm is proposed
aggregated into one data packet with constant sizéo construct arEnergy-Balanced Minimum Degree Data
regardless of the number of data sources. This type ofzathering Tree(EBMDDGT), wheree > 0. In the tree,
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nodes with higher energy have larger degree, and vicéarge-scale networks is proposed. The network is assumed
versa. Therefore, the nodes can consume their energiyp compose of two kinds of nodes : the regular (sensor)
uniformly and maximize the network lifetime. However, nodes and the cluster-heads. The network is divided into
if the data cannot be aggregated, a node with smalleseveral clusters by the cluster-heads. All cluster-heads
degree in a tree may still need to receive and transmiform a hierarchical structure rooted at the sink. In each
large amounts of data from its descendants. Thereforegluster, MITT is performed by the cluster-head and
EBMDDGT cannot be used in data gathering without constructs a min-max-weight spanning tree for the cluster.
aggregation to maximize the network lifetime. Each node in the cluster transmits its data to its
For data gathering without aggregation, each nodecluster-head by the tree, and the cluster-head is
consumes energy for receiving data from all of its responsible for transmitting these data to the sink. By this
descendants and transmitting these data together with itway, MITT can be implemented in a large-scale network
own data to its parent. Therefore, the energy consumptioreasily. Since the cost of cluster-heads is much higher than
of each node is controlled by the number of its the regular nodes, the upper bound of the number of
descendants. In order to maximize the network lifetime,cluster-heads that should be used to achieve the maximum
the descendant numbers of all nodes in the tree should beetwork lifetime is analyzed.
minimized. Since a node’s descendant number is often The remainder of this paper is organized as follows.
much larger than its children’s number, the minimization Section Il reviews related work on data gathering. Section
of all nodes’ descendant numbers is harder than théll describes the system model and formulates the
minimization of all nodes’ degrees. problem. Section IV describes our algorithm. Simulation
In traditional network design fields, a shortest pathresults are presented in section V, and Section VI
tree (SPT) can be used to minimize the total energyconcludes this work.
consumption of data transmission in the network. This is
because each node in the SPT can transmit its data to the
sink with the minimum number of hops. However, SPT 2 Related work
cannot achieve the maximum network lifetime because it
does not consider how to conserve the energy of any Recently, the problem of efficient data gathering in
individual node, e.g., a node in a shortest path has toVSN has been investigated extensively. Existing
always receive and transmit large amounts of data fromprotocols can be classified into three categories
other nodes even if its energy is low. cluster-based protocols, chain-based protocols and
In this paper, we model the maximum network tree-based protocols. For continuous monitoring
lifetime problem as one of finding Min-Max-Weight applications with a periodic traffic pattern, tree-based
Spanning Tree (MMWST)which is shown to be topology is often adopted because of its simplici@}. [
NP-complete. In MMWST, the maximum weight of the Therefore, the tree-based protocols are our main concern.
nodes is smaller than other maximum weights of the (1) In cluster-based protocols (e.g., LEACH],[
nodes in other trees for the network. The weight of a nodeHEED [8], EECJ P], MCMC [10], CDE [11], CDC [12],
is defined as the ratio of the number of the node’sand LCTSR [3], etc.), a subset of nodes in the network
descendants to the node’s energy. To the best of ouare selected as cluster heads by probability, and other
knowledge, this paper is the first one that researches howodes join the closest cluster head from them to form a
to maximize the network lifetime by finding MMWST. Voronoi-based topology. Cluster-based protocols are easy
A Q(logn/loglogn)-approximation  centralized to be implemented and managed, but they have some
algorithm MITT (MaxIimum lifetime Tree construction disadvantages such as asymmetry distribution of the
for data gaThering without aggregation) is proposed forcluster heads, heavy load on the cluster heads, etc. In
finding MMWST. MITT starts from an initial tree, which addition, the sizes of the clusters are hard to be controlled
is constructed by performing a breadth first traversal on  (2) In chain-based protocols (e.g., PEGASI®[
the network. The initial tree is a SPT, which can minimize DRAEM [15, CHIRON [16], EECC [17], and
the total energy consumption of data transmission in theCREEC [L§], etc.), all nodes in the network are organized
network but may not be able to maximize the network as a chain. One of these nodes is selected as a head to
lifetime. Then, MITT iteratively transfers descendants of communicate with the sink directly, and other nodes
the nodes with the maximum weight (which are called transmit their data to the head through the chain.
bottleneck nodes) to other nodes with smaller weights toChain-based protocols enable each node to communicate
decrease the maximum weight. MITT terminates whenwith its closest neighbor. However, the long chain causes
the weights of all bottleneck nodes cannot be decreased large delay in data gathering and the head has the
further. Compared with existing data gathering highest burden of relaying data.
algorithms, MITT can achieve longer network lifetime. (3) In tree-based protocols, all nodes in the network
Moreover, MITT needs the information of nodes’ are organized as a tree. Each node in the tree receives data
energies and the network topology, which is hard to befrom all of its children. Then, it transmits its own data and
acquired in large-scale networks. By employing thethe received data to its parent. According to the way of
clustering technique, a solution for extending MITT to constructing a tree, the tree-based protocols for data
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gathering without aggregation can be classified into threehe maximum weight is added to the tree. In MNL, an
categories : linear programming based protocols, growthedge is added to the tree if it can maximize the minimum
based protocols and improvement based protocols. residual energy of the nodes of the new tree. MLDGA and
In linear programming based protocols, the problemMNL also achieve the approximation ratio @f(logn).
of finding a maximum lifetime data gathering tree is Improvement based protocols start with an initial
modeled as a maximum flow problenl9] with energy  feasible solution, and then make improvements by adding
constraints at the nodes. Then, the problem is solved bynd deleting edges as long as improvements are possible.
an integer program with linear constraints. Though To the best of our knowledge, LOCAL-OPR{] is the
finding a feasible solution to the integer program is still only one improvement based protocol that constructs a
NP-complete, it can obtain an approximation result fortree for data gathering without aggregation. It starts from
the problem by relaxing some integrality conditions. an arbitrary treeTy with lifetime Lo. Then, it tries to
MLDR [20] and RSM-MLDA [21] are typical linear change each node’s parent in the tree to one of the node’s
programming based protocols. However, they assume thateighbors in the network to find a new trég which has
the locations of the nodes and the sink are known, whicHifetime L; > Lg. If T; is found, another new tre® that
are hard to be acquired because the nodes and the sink ahnas lifetimel, > L; is found by the same way. The above
seldom equipped with expensive GPS devices. Moreoverprocess of finding new trees is executed iteratively, until a
they assume that each node has the ability to transmit ittree T; with lifetime L; is found and there is no a tréig
packet to any other node in the network or directly to thewith lifetime L; > L;j can be found. LOCAL-OPT
sink, which is unrealistic in a large-scale network. achieves an approximation ratio @ (logn/loglogn),
In [22][23][24], the maximum lifetime problem in which is the current best result for tree construction in
sensor-target surveillance networks is researched. Thdata gathering without aggregation. However,
problem is to schedule the sensors to watch the targetsOCAL-OPT does not consider the situation tffatcan
and forward the sensed data to the sink, such that thée found by changing parents of multiple nodesTirat
lifetime of the surveillance network is maximized. They the same time. Moreover, in above optimization process
firstly compute the maximum lifetime of the surveillance of changing each node’'s parent to one of the node’s
system and a workload matrix by using the linear neighbors to find a new tree, LOCAL-OPT does not use
programming technique. Then, they decompose thehe nodes that are not the changed node’s neighbors to
workload matrix into a sequence of schedule matrices thagnlarge the algorithm’s optimization range.
can achieve the maximum lifetime. Finally, they construct  In this paper, a new improvement based protocol
the sensor surveillance trees based on the above obtain@dITT that can achieve better performance of finding a
schedule matrices, which specify the active sensors anehaximum lifetime data gathering tree than LOCAL-OPT
the routes to pass sensed data to the sink. is proposed. The system model and problem statement
For growth based protocols, their basic ideas arethat MITT considers are described as follows.
similar to the Prim’s algorithm fominimum spanning
tree (MST) Each edge in the network is assigned a
weigh_t._ The data _gathering tree is initi_alized by 3 System model and problem statement
containing only the sink node. Then, the tree is grown by
adding selected edges one by one until it spans all nodes,
The selected edge is from a node in the tree to anothes-1 Network model
node not in the tree. The key difference in these protocols
is how to define each edge’s weight and how to add a Assume thaty,va,...,v, are sensor nodes (or nodes)
proper edge to the tree at each time. In PEDA&H,[the in a WSN andvp is the sink. All nodes are randomly
weight of each edge is defined as the transmission cogieployed over arM x M field. The network forms a
between the edge’s two end nodes. At each time, PEDARonNnective undirected grapB(V,E), whereV is the set
adds an edge with the minimum weight to the tree.of the nodes and the sink, arél is the set of edges.
However, PEDAP does not consider nodes’ energies an¢E| = mis the number of edges. There is an edgev;)
cannot achieve energy-awareness. PEDAP-P25] [ in E if the nodesy; and v; are within each other's
improves PEDAP by considering each node’s energycommunication range. Each node has different initial
during the tree construction. The weight of each edge inergy. The network has following characteristics :
defined as the ratio of the transmission cost between the (1) The network is static, i.e., all nodes and the sink are
two end nodes to the residual energy of the sending nodestationary after deployment.

PEDAP-PA achieves an approximation ratio®flogn), (2) The sink has infinite power supply and powerful
where n is the number of nodes in the network. computation ability.
MLDGA [26] and MNL [27] improve PEDAP-PA by (3) All nodes have the same transmission range.

designing different edge weights. In MLDGA, the weight Each node mainly consumes energy in
of each edge is defined as the ratio of the minimumcommunication, and the amount of energy required to
lifetime of the edge’s two end nodes to the transmissiontransmit, receive one bit of data By, Ex respectively.
cost between the two nodes. At each time, an edge witfThe energy consumed by nodes in computing and sensing
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is negligible [LO]. At each round, each node generates 3.3 Problem statement

bits data.
o (a) The problem of finding a min-max-weight spanning
3.2 Definitions tree (PMMWST)
Before diving into the problem of finding a maximum In tree-based protocols, a tree can be used for a period

lifetime tree for data gathering without aggregation, someof time or be reconstructed at each round, depending on
fundamental definitions and notations are given, whichgpecific applications. If a tree is used until the first node
will be used throughout this paper . depletes its energy, the network lifetime is equal to the

De finitionl : A round is defined as the process of |ifetime of the tree. If a tree is reconstructed at each round
gathering all the data from nodes to the sink, regardless oy after it is used for several rounds, the network lifetime
how much time it takesZ5]. is decided by the trees that are constructed.

Definition2 : For each nodey that hasS(T,vi) No matter whether the tree is reconstructed or not, it
descendants in a trélg the size of data that it receives at g expected that the tree can effectively conserve nodes’
each round iS(T, v;)I and the size of data that it needs to gnergies at each round so as to maximize the network

transmit is(S(T, v) + 1)l lifetime. A tree with maximum lifetime can achieve above
De finition3 : At each round, the amount of energy expectation, so it is our main concern.
C(T,v;) that each node consumes in a tre€ is : For a networkG, there exists multiple possible trees.
C(T,Vi) = S(T, V)l Erg + (S(T, ) + 1)| Exy 0 Our goal is to find a tree with the maximum lifetime :
= S(T, Vi)l (Erx + Etx) + |Etx max Liee(T) (4)

_ I . . TeTs(G)
Definition4 : The lifetime of a node; in a treeT is

defined as the number of rounds that the node can receive  According to Definitions 4 and 5, Formuld)(can be
data from all of its descendants and transmit these datgefined as :
together with its own data to its parent :

. E(Vi)
E(v) max _min | (5)
L Tv) = 2 TeTs(G)i=1,..n (T, Vi)l (Erx + Eix) + 1E
node( T, Vi) LS(T,Vi)|(Erx+Etx)+|Etx (2) €Ts(G) S(T,vi)l (Ex tx) tx
De finition5 : The lifetime of a tred is defined asthe N Formula §), sinceE andE;y are constanty(T, v;)
number of rounds that the tree can sustain until the firstS the main optimization objective. Being extracted the
node in the tree depletes its energy : constantEr, and Eix from the denominator, the problem
_ for solving Formula %) is transformed to a new problem :
Ltree(T) = min {Lnoge(T,Vi)} 3)
i=1,...n .
yeees . E(V|)
I . ) max min —————— (6)
Definition6 : The network lifetime is defined as the TeTg(G)i=1,..n YT,Vi) +C

number of rounds that the network can perform data
gathering until the first node in the network depletes itswherec = E/(Ex + Eix). In Formula 6), the goal is to
energy. maximize the minimum oE(v;)/(S(T,vi) +c), wherei =

In fact, an alternative definition of the network 1,...,n.In order to achieve this goal, a node with larger
lifetime that can be used is the number of rounds that theenergy (largeE(vi)) should take more responsibilities by
network can perform data gathering until a certainserving more descendants (larg&f,v;)) in a tree, and
percentage of nodes in the network deplete their energiesice versa.
That is because the nodes are often deployed in a network In Formula @), the variable S(T,v;) is in the
densely, the quality of the network is not affected until a denominator, which is not convenient to be analyzed.
significant amount of nodes die. 18(], it is shown that Hence, the problem for solving Formula6)( is
this definition is actually quite similar in nature to transformed to another problem by changing
Definition 6. Therefore, Definition 6 is used in this paper E(v;)/(S(T,vi) +c¢) to (S(T,vi) +¢)/E(v) as follows :

for simplicity.
Definition7 : Let Ts(G) = {Ti,...,T;} be the set of min | max Saevi)+e R
spanning trees in the network andT;) be the weight of a TeTs(G)i=L..n  E(v)
treeT; in Ts(G), wherew(T;) equals the maximum weight
of the nodes in the tre®, i.e., w(T;)= max w(T;,v;). A Each node v in T is given a weight
i wW(T,vi)=(S(T,vi) + ¢)/E(v), then Formula 7) is

spanning tred; is called amin-max-weigyht spanning tree transformed into :
if its weight is the minimum among all treesTg(G), i.e.,

w(Ti)= Ten%(ne) w(T). T»c[nl'é?G) i:nf,?.),(nW(T’ vi) (8)
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Both of the two nodes are connected to the root node.
There arek nodes corresponding 16;,S,...,S in the
third row, and each node corresponding & has
2(]Sj| +c) units of energy, where £ j <kand|S;] is the
size ofS;. Thek nodes are connected to bathandus,. In

the fourth row,n nodes with energy@are corresponding

to then elements ofs. For each node corresponding to the
element v;, there is an edge from it to the node
corresponding t&; if vj is in §j, where 1<i <n.

In Figure 1, each node corresponding;itor each node
corresponding t&; has a weight at most 1/2. The nodes
that can achieve larger weights in the instance are nodes
andu,. Now, it can be claimed that there exists a spanning
tree in which the maximum weight of the nodes is 1 if and
only if a set cover of siz& exists.

Suppose that there exists a set cover of &z&hen
FIGURE 1 Reduction from SET-COVER to our problem the tree can be constructed as follows. The data from the

K third row nodes and thefourth row nodes can be routed
throughuj to the root. The data from rest of the- K third
row nodes can be routed through Only by this way, both

Note that Formula §) has the same goal with the u;’s andu,’s weights achieve 1, i.e., the maximum weight
initial problem of solving Formulad). From Formula §), of the nodes in the tree is 1.
the initial problem of finding a maximum lifetime tree is Conversely, if there is a spanning tree in which the
transformed to the problem of finding a min-max-weight maximum weight of the nodes is 1, then it is easy to
spanning tree, i.e., PMMWST. Next, we will establish the construct a set cover for the SET-COVER instance. That

hardness of PMMWST. is the union of the subsets corresponding to khéhird
row nodes, which contains all the elementsSin’
(b) Hardness of PMMWST Since PMMWST is hard, an approximate solution

needs to be found. In this paper, an approximation
The decision version of PMMWST is : Given a algorithm MITT is proposed to solve PMMWST. Details
network G(V,E) and node energies, does there exist aof the algorithm are shown as follows.
spanning tree in which the maximum weight of the nodes
isw?
Theorem 1 : The decision version of PMMWST is 4 MITT algorithm
NP-complete.
Proof : The proof employs the minimum set cover i Lo
problem p9] (SET-COVER for short), which is known to  4-1 Algorithm description
be NP-complete. PMMWST'’s decision version is shown
to be NP-complete as follows. Firstly, an initial tre€T is constructed in the netwof&
PMMWST'’s decision version is clearly in NP. Given as follows :
a tree and node energies, it is easy to verify whether the (1) Initially, there is only one node, in the tre€T, and
maximum weight in the tree reaches In order to prove itisinlevel 1 ofT.
that PMMWST’s decision version is NP-Complete, a  (2) All neighbors ofvg are added td as its children,
reduction from SET-COVER to it is shown. and these nodes are in level 2Tof
Given an element se6 = {vi,v2,...,vs} and a (3) The nodes in leveh of T are sorted in descending
collection of subsetsC = {S,%,...,S} of S the order according to their energies, whérg 2. According
decision version of SET-COVER is to determine whetherto the order, each node in levepicks all of its neighbors
there is a selection oK subsets fronC such that the that are not in the tree as its children in turn. When all
union of K subsets cover all then elements, where neighbors of the nodes in levielare added into the trek,
1 < K < k. Given an instance of SET-COVER, an the levelh+ 1 of the tree is formed.
instance of the network can be constructed in polynomial ~ Step (3) is executed iteratively and terminates when alll
time as follows. nodes in the network are added to the tree. When step (3)
The nodes in the network are arranged in four rows, agerminatesT is got. Based on the initial tree,min-max-
shown in Figure 1. The first row just has a root node (theweight spanning tre&s constructed as follows.
sink), which has unlimited energy supply. The second row  Given an arbitrary variablg¢ >0, all nodes inT are
consists of two nodesu; with energy(n+ K) +c anduy classified into three disjoint subséfts V> andVs :
with energy(k— K) + ¢. The two nodes are used to decide (1) Vi = {vi|w(T) — ¢ <w(T,v;) <w(T),vi e V}. Vi
which subsets will be in the set cover and which will not. contains the nodes whose weights are equal to or close to
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i i descendants is) to another nodev; that is notv;’s
Function Capacity(T,x) ) descendant to decreasgs weight. In the transferring
1. {if (xis the sink)x.capacityn; - operation, there are 3 cases that may happen as follows :
) I// nis the ”{’/mber of n,‘id‘fi In sensor network (1)if vj’'s capacityis larger thars, vi can transfer its
- elsq casex eV x.capacity=-1; descendants tov; directly, i.e., vj becomes thes

3. case x € V, x.capacity = min{0,x.parent descendants’ new ancestor
.capacity} ; E : ) . L
4 casex € Vs x.capacity= min{|(w(T) — ¢ — (2)If vj’s capacityequals 0O, it means thag is in a

- sub-tree rooted at sub-bottleneck nodeywherevy, and
T E(x) — . t ty; ’ .
W(T,X)) E(x) —c],x parentcapacity v; may be the same node awmg has the characteristics

5.
6. For each chilg of xin treeT that Vk-Capacity==v;.capacity and
7. CapacityT, y); V. parentcapacity > vi.capacity Since vi's capacity
8.} decidesvj’'s capacity vi’s capacityis increased firstly.
By performing the transferring operation oy
FIGURE 2 Function Capacityf, x) recursively,v’s capacitycan be increased. Therefore, if

vj's capacitybecomes larger thamafter vi’s capacityis
increasedy; can transfer its descendants tg.
(3)If vj’s capacityis not larger thars, v does not

the weightw(T) of the treeT (or the maximum weight of ~ transfer itss descendants tg.

the nodes in the tree). These nodes are cabeidtteneck A Function Transfe,x ki) is defined to implement
nodes. the transferring operation on any nodén the treeT, as
() Vo = {V|W(T)— ¢ — 1/E(vi) < W(T,vi) <W(T)— shown in Figure 3, where the variatke> 0 is an integer

.V €V }. Each node iV, will become abottleneck node  Used to limit the depth of the recursion that the

if the number of its descendants is increased by one. Th&@nsferring operation can be performedkifis set to a

nodes inv; are called $ub-bottleneck nodés large value, e.gki=c, the transferring operation can be
(3)Vs =V —V; — V. V5 contains all remaining nodes performed on anysub-bottleneck nodéhat needs to

and these nodes are calletich node&. Each node iV increase its capacitie and the probability that the
will not become abottleneck nodeven if the number of transferring operation can transfer some dﬁc_&tleneck
its descendants is increased by one nodés descendants to aub-bottleneck nodés high.

However, a node s does not mean that it can be However, the transferring operation may need more time

added more descendants. That is because some of tﬁo terminate ifk is a large value. Ik is set to a small

node’s ancestors may be W or Vb, and they would v%\lue, e.g.ki=1 or k=0, the transferring operation just

become new bottleneck nodes if the number of the node’$ 2, be performed on a few or reab-bottieneck nodes
- . and the probability that dottleneck nodecan transfer
descendants is increased. To represent this property, an :
. - ) e, some of its descendants tsab-bottleneck nodeecomes
attribute capacityis used to denote a node’s ability for

X . . : ..small. However, the transferring operation can terminate
serving more descendants according to its weight and 'tTQ‘n a short time ifk: is a small value
ancestors’ weights. . :

F bottl K it has | iaht th h In Figure 3, Function Transfer(x, ki) is performed by
or abottleneck nodeit has larger weight than other ., ersing the tree rooted win breadth first order. If one
nodes. Therefore, it and its descendants should not b

. t D8r more descendants gfare transferred to another node,
added more descendants. As a result, if a node IS &he function returnRUE Otherwise, the function returns
bottleneck nodeor a bottleneck node’s descendant, its FALSE
capacityis setto -1. _ First, each childy of x in the treeT is enqueued in a
For a sub-b_ottleneck nodgeits descend.ant numbgr queueQenilgren. While the queud. is not empty, a node
should not be increased too. Therefore, if a node is gg dequeued fron® into v. Then, each chilg of vin the
sub-bottleneck node, itsapacityis set to the minimum enqueued in the que@ to ensure the breadth first search
between 0 and its ancestorsipacities on the tree rooted at If the nodev has the characteristics
If a nodev; is arich node its capacityis equal to the  thatv.capacity==x.capacityandv.visitecd== “FALSE, the
minimum between (W(T) — ¢ —w(T,vi))E(vi) —c] and  transferring operation tries to transfeto a node that is not

its ancestors’  capacities ~ Note that  xs descendant, where the attribwisitedis used to show
|W(T) — ¢ — w(T,vi))E(vi) —c| is the number of \yhether the transferring operation has been performed on
descendants that can further afford. a node. Limiting thatv.capacity==x.capacityis because

MITT can compute all node€apacitiesby traversing  v.capacitymay be smaller thar.capacityin the tree and
the tree in depth first order once. A Function Capa@ity] v may being performed the transferring operation before
is defined to compute theapacitiesof nodes in atred  the transferring operation is performedxrecursively.
rooted at a nodg, which is shown in Figure 2. In order to increase the probability thatcan be

After all nodes’ capacitiesare got, a transferring transferred to a node that hasapacitylarger than the
operation is performed on eatlottleneck nodejuo try number of nodes including andv's descendants, all of
to transfer some of;’'s descendants (the number of these V's neighbors in the network are sorted in descending
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Function Transfer(T,x,kz)
1. for(each childy of nodex in the treeT)
enqueud], y) ; //enqueue the nodein a queue).
while LengtHQc) > 0)
. { dequeudly, v); //dequeue a node fro@. into v
for(each child/ of nodev in the treeT)
enqueuddc, Y);
if (v.capacity==x.capacityandv.visited=="FALSE)
{ all neighbors ofv in the network are first sorted in
descending order according to the&pacities and then
they are enqueued in a queQg;
9. while (LengtHQn) > 0)
10. { dequeud®n, 2);

©ONoO GO~ WN

11. if(nodezis not a descendant of noden T)
12. { casez.capacity> S(T,v)

13. ChangeParem(2) ;

14. returnTRUE;

15. caseZ.capacitg=0)&& (k; >0)

16. find the ancestoryy of z that has

the characteristics vg.capacity==z.capacity and
V. parentcapacity> z.capacity;

17. if(vk.visited=="FALSE)

18. { W.visited="TRUE';

19. if ( Transfer(T, vk, ki-1) && z.capacity>
S(T.v))

20. { ChangePareni(z) ;

21. returnTRUE;

22. }

23.

24. caseZ.capacity< §(T,v)) break;;

25. } llendif

26. } llendwhile

27.  } llendif

28.} /lendwhile
29. returnFALSE;

Function ChangeParentg)
1. w=v.parent;
2. v.parent=z;
3. updateS(T,v;) for each nodey; that isv's old ancestor
orVv's new ancestor, and lst.visited="FALSE';
4. Capacity T,vo);

FIGURE 3 Function Transfef, x, k;)

(2) If zcapacity=0, v cannot be transferred ta
directly. Therefore, the root nodex of the sub-tree
containing z should be found, which has the

characteristics  that v.capacity==z.capacity and
V. parentcapacity > z.capacity If
Vk.visited=="FALSE, the transferring operation is
performed on vk recursively, i.e., Function

Transfer(, vk, k1) is executed. If some of’'s descendants
are transferred ands capacityis larger than§(T,v), v

can be transferred to Otherwisey does not transfer ta

If the transferring operation succeeds and the tree is
changed, each node that Vs old ancestor onv's new
ancestor sets itsisited attribute to ‘FALSE. Then, the
capacities of all nodes in the tree are re-computed.
Finally, the function return§RUE

(3) If zcapacity< S(T,v), v cannot be transferred to
any of its neighbors. Therefore, the function stops the
current transferring operation om and continues to
dequeue another node fro@y into v to re-perform above
operations.

If zis a descendant of nodein the treeT, v does
not transferred t@a and another node is dequeued fr@mn
into z. Then,v tries to be transferred to the newlf the
queueQy, is empty ands cannot be transferred to any one
of its neighbors, another node is dequeued f@ginto v
to re-perform above above operations. If the quédes
empty and there is no a node in the tree rootexan be
transferred, the function retufFALSE

An algorithm MITT, which uses Function
CapacityT,x) and Transfef,x,k;) to construct a
min-max-weight spanning treis shown in Figure 4. The
inputs of MITT areG, ki, andky, wherek, > 0 is an
integer controlling the number of iterations that the
algorithm can be performed. K, is large value, e.g.,
kp=co, MITT can be performed until a tre€l; is
constructed and there is no a tree that has larger lifetime
thanT;’s lifetime can be found. However, MITT may need
more time to terminate ik; is a large value. Ik, is a
small value, e.g.ko=0, MITT will terminate in a short
time. However, MITT just can find a tree with small
lifetime if ky is a small value.

In Figure 4, MITT firstly constructs an initial trék in
step 1. Then, MITT enters the iteration process of
transferring descendants of bottleneck nodes in step 3. In
each iteration, it first traverses the tre¢o computew(T)
and sets each node/ssitedattribute to ‘FALSE. Then, it

computes thesapacitiesof all nodes inT. Next, it sorts
the nodes inVy in decreasing order according to their
weights and then enqueues these nodes in a qQ@eue
Finally, it performs the transferring operation on each
nodex in V; according to the order, i.e., while the queue
Q is not empty, a node is dequeued fr@rinto x and the
transferring operation is performed gt each time.

If the transferring operation succeeds, i.e., Tran3fer(

order according to theicapacitiesand then they are
enqueued in a queu®,. While the queueQ, is not
empty, a node is dequeued froQy into z If zis not a
descendant of nodein the treeT, there are three cases
that may happen as follows :

(1) If zcapacity> S(T,v), v can be transferred ta
directly, i.e.,v takesz as its new parent. Since the tree is
changed, each node that Vs old ancestor onv's new X, k1))==TRUE MITT breaks out of current iteration and
ancestor sets itgisited attribute to ‘FALSE. Then, the  enters the next iteration. If the transferring operatidls fa
capacities of all nodes in the tree are re-computed. i.e., Transfer(,x,k;)==FALSE MITT performs the
Finally, the function return§RUE transferring operation on the next node that is dequeued
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treeT costO(n) < O(nm) time. Therefore, each iteration

Algorithm MITT costsO(nm) time.

Input : NetworkG(V, E), the parameterl; andky

Output : a min-max-weigh spanning treéor data On the other hand, the attribute pacityensures that

gathering without aggregation the transferring operation just transfers descendantseof t
1. construct an initial tre€ ; nodes with larger weights to the nodes with smaller
2. Ischanged=TRUFE’; weights and there is no new bottleneck nodes will be
3. while((Ischanged=FRUE") && (k2 >=1)) generated after the transferring. Therefore, the maximum
4. { Ischanged=FALSE’; ko =kz —1; weight of the nodes in the network can only be decreased.
5. traverse the tre@ to computew(T), and let each When the weights of all bottleneck nodes cannot be

nodev.visited="FALSE'; decreased, MITT terminates. The largest number of
6. Capacity T, vo); iterations that MITT is performed when it terminates is

7. allthe nodes iV, are first sorted in descending order

. L analyzed as follows.
according to their weights, and then they are enqueue y

o

in a queue; Let w* denote the weight of the optimal tree, which
8.  while (Lengt{Q) > 0) equals the maximum weight of the nodes in the optimal
9. { dequeue, x); tree. In MITT, a bottleneck node can be changed to a
10. if(TransferT, x,ki)) sub-bottleneck node or a rich node, if its weight is
11, { Ischanged=TRUE’; decreased to a value that is smaller thdfl ) — ¢. When
12. break ; the weights of all bottleneck nodes are smaller than
13. }/lendif w(T) — ¢, w(T) is decreased by at leagt When MITT
14.  } /lendwhile terminates, it is performed at mow(T) —w*)/¢1Z <
15. } /lendwhile [((n + ©)/Emin — 0)/$1Z = [(n + ©)/($Emin)|Z

iterations, where is the number of iterations that MITT
needs to decrease the weights of all bottleneck nodes to
values that are smaller thanw(T) — ¢ and

FIGURE 4 MITT Algorithm

from Q, and so on. If the queu® is empty, it means that For a bottleneck node, its weight will be decreased
the weights of all bottleneck nodes W cannot be by 1/E(v;) if one of its descendants is transferred.
decreased and the algorithm MITT terminates. Therefore, after at most¢/(1/E(vi))] = [¢E(W)]

In MITT, each node'siisited attribute is firstly set to  iterations, its weight will be smaller than(T) — ¢. In
“FALSE when the algorithm is executed. If a nogeis order to decrease the weights of all bottleneck nodes to
performed the transferring operation, i.e., Functionvalues that are smaller thav(T) — ¢, the largest number
Transfer(, v, ky) is executed, itvisited attribute is set to ~ of iterationsZ’ that MITT needs to be performed is :
“TRUE'. When the number of the node’s descendants is
changed, i.e., the transferring operation succeeds, the
node’svisitedattribute becomesFALSE again. For each

node, it would not be performed the transferring operation 7 — [PE(V)] < (PE(vi) +1)
again if its visited attribute equals TRUE'. Therefore, vi;1 Y=
the visited attribute prevents each node from being <4 E(vi) + Vi 9)
performed the transferring operation repeatedly, which Y : 1
can eliminate the appearance of dead lock. e
Proposition 1 : For MITT, each iteration will be
finished in polynomial time. When MITT terminates, it is :
performed at mosD(n?(1+1/(¢Emin))) iterations. TFor any quttlegeckT n(_)r(;l]e Vif' there o IS
Proof : As shown in Figure 4, step 1 is to construct WT) — ¢ < W(Tw) < W(T). erefore, we have
- ¢ < (STwvw) + Cc/EM) =

an initial treeT. It starts with a tree that contains only the :

. . . —@)E(vi T,vi) +c. SinceS(T,v;) < n, for all
sink node, and then selects a node that is not in the tree t (T)— $)E(v) < S(T,vi) +c. SinceS(T,vi) <
join the tree at each time iteratively. Hence, aftdimes
of selecting, all nodes are added into the tree.

Steps 3-15 describe the process of transferring
descendants of bottleneck nodes in the trEeby
iterations. In each iteration, MITT needs to traverse the (W(T) _¢)v~;/ E(v) < W& (S(T.w) +0)
sub-trees rooted at tHeottleneck nodegmay be include e e

ottleneck nodes we have :

other sub-trees rooted atib-bottleneck nodpand check <n’+cn (10)
neighbors of the nodes in these sub-trees, which costs - E(v) < (N2 +cn)/(wW(T) —

O(nm) time. Computing theapacitiesof all nodes in the V&, () < )/(w(T) = 9)
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Since|V1| < nandc = Eix/(Ex + Eix) < 1, Formula 9)
is transformed into a new form as follows by combining
with Formula (L0) :

Z<¢ E(vi)+ V4|

< ¢(n*+cn)/(W(T) —¢)+n
< (#n®+nW(T))/(W(T) — ¢)

Notice thatw(T) < [(n+c)/Emin| andZ < Z', there is
Z = O(N(@Emin+ 1)). Therefore, when MITT terminates,
it is performed at mosf(n+¢)/($Emin)]Z = O(n?(1+
1/(¢Emin))) iterations.™

(11)

4.2 Time complexity analysis

Theorem 2 : The time complexity of MITT is
O(M*M(1+1/($Enmin)).

Proof : In Figure 4, step 1 cost®(n) time to
construct the initial tree by traversing the network in
breadth first order. In step 3-15, the algorithm is
performed at mosO(n?(1+ 1/(¢Emin))) iterations, and
each iteration cost®(nm) time. Therefore, the total time
spent in step 3-15 is
O(M(1 + 1/(¢Emin)))O(NM)=0(nPm(L + 1/(¢Emin))).-

o O © O © 0O O O O
(a) Network topology

%i\

G o g o o o o o o o o

o O O o0 O o o o o o
(b) The optimal tree

O

O,

o%\mo

N

o O 6 O 6 6 o © O
(c) The initial tree

O,

Based upon the above analysis, the time complexity of the

whole algorithm iSO(n*m(1+ 1/($Emin))). O

4.3 Approximation ratio

In this subsection, the approximation ratio of MITT is
analyzed by a network instance as follows.

Theorem 3 : The MITT algorithm can achieve an
approximation ratio of at lea$? (logn/loglogn).

Proof : Consider a networls that is shown in Figure
5(a). Assume that each node hasinits of energy and

generates one bit of data at each round. Moreover, eac

node will consumea, b units of energy in receiving,
sending one bit of data. An optimal tree is shown in

Figure 5(b), in which the bottleneck nodes have just one’*=

child. The lifetime of the optimal tree is
Lopt = €/(a+ 2b). Figure 5(c) shows the initial tree
constructed by MITT, in which each bottleneck node has
4 children.

For MITT, whenk;=0, the function Transfef(, x, ki)
cannot be performed on argub-bottleneck node.e.,
MITT cannot transfer dottleneck node descendants to
a sub-bottleneck nodeby firstly transferring some
descendants of theub-bottleneck nodi a third node to
increase thesub-bottleneck nodecapcity Therefore, in

O 0 O 6 O © o © 6 O O
(d) A tree constructed by MITT wheky =0

FIGURE 5 A network topology and some of its trees

MITT cannot find another tree that has larger lifetime
than the tree.

In Figure 5(d), the bottleneck node on the leftmost of
fhe middle row hag=3 children. Therefore, the lifetime
of the locally optimal tree idmiTr=€/(q(a+b)+b). In
this situation, MITT achieves an approximation ratio
Lopt/LmitT=(q(a+b) +b)/(a+ 2b).

Clearly, the construction of the locally optimal tree
can be extended to arbitray Consider the following
recurrence. LetN(f) be the number of nodes that have
0 < f < q children. From Figure 5(d), there alN{3)=1,
N(2)=2, N(1)=4 and N(0)=4. Therefore, a recurrent
inference is formed as followsN(q)=1, N(q—1)=g— 1,
N(q—2)=(q—1)N(g—1) andN(q—3)=(q—2)N(q—-2).
From the above inference, the functional formNyff) is
got:

one of the worst cases, the initial tree is changed to a (F+DN(F+2), ifO =f=g-2
locally optimal tree, as shown in Figure 5(d), where the ~ N(f)=<{d-1, if f=q-1, (12)
locally optimal tree is a tree that MITT constructs and 1, if f=q.
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parent, it sety; as its parent. Ther; is assigned a level
] Level=Levej+1. Finally, v; broadcasts a packet

For the sinkvg :

1. vp is assigned a levélevep=0;
2. Vp broadcasts a packegtackefvp)=(vp,Levep) that
contains its ID and its level to its neighbors;;

For each nods; :

1. if (vi receives a packepacketvj)=(v;j,Leve}) andy;
does not set a node as its parent)

2. { vj setsvj as its parent;

3. Level=Leve}+1;

4. v; broadcasts a packetacketvi)=(vi,Leve|) to its
neighbors;

packetv;)=(vi,Level) to its neighbors. When the above
process terminates, a hierarchical structure with the sink
being the root is constructed.

By the hierarchical structure, each node can transmit
the information of its energy and its neighbors to the sink.
To guarantee that all the information can be received by
the sink, reliable data delivery mechanisms like hop-by-
hop acknowledgments are usddl [After the sink receives
the information of all nodes, it computesran-max weight
spanning treeby using MITT for the network. Finally, it
informs each node the information of the tree, including

5} each node’s parent and children. At this time, the set-up
phase terminates and the steady-state phase begins.

In the steady-state phase, each node firstly receives the
data from its children. Then, it transmits its data and all of
its children’s data to its parent.

FIGURE 6 The scheme of constructing a hierarchical structure
with the sink being the root for all nodes in the network

q
Since n > ZlfN(f) O, g=<(logn/loglogn). 4.5 Extension to large-scale networks
Therefore, the approximation ratio of MITT is
A= Q(logn/loglogn). In a large-scale network, it is not easy for the sink to
Whenk; > 0, MITT can achieve higher performance collect the information of all nodes. Therefore, the
than MITT with k;=0. For example, in Figure 5, the implementation of MITT is hard to achieve. In order to
locally optimal tree can continue to be optimized to a treeenable MITT to be executed easily in a large-scale
with higher lifetime or the optimal tree by MITT if network, a clustering-based solution is proposed as
ki > 1. Therefore, MITT can achieve an approximation follows.
ratio of at leas®2(logn/loglogn). Clustering is a promising technique for algorithm’s
implementation in large-scale sensor networks because of
its high scalability and efficiency3f]. By dividing the
whole network into small clusters, each cluster-head can
collect the information of nodes in its cluster easily. Then
Since some nodes may die for depleting their energythe cluster-head can execute MITT to construetin-max
or physical damage, and some other nodes may b&eight spanning treéor the cluster. In the process of data
supplemented to the network at some time, the set of th@athering, each node only needs to transmit its data to its
nodes may be changed at each round. In order to adapt t@uster-head in short distance. Moreover, each node just
the dynamic characteristic of the network, the tree isneeds to relay a few or no data from other nodes.
reconstructed at each round. The implementation ofTherefore, each node can conserve its energy effectively.
MITT is similar to LEACH and IAA, where each round Similar to [32], the network is assumed to compose of
begins with a set-up phase, and then is followed by atwo kinds of nodes that are deployed in the field randomly :
steady-state phase. MITT is performed to compute aegular (sensor) nodes and cluster-heads :
min-max-weight spanning treia the set-up phase, and (1)The regular nodes have limited energy and limited
data gathering based on the tree is carried through in théransmission range, and they perform operations such as
steady-state phase. sensing as well as data relaying. In the network, each
In the set-up phase, the sink firstly collects the regular node joins the closest cluster-head to form a
information of all nodes’ energies and neighbors. SinceVoronoi cell. Since the regular node’s energy is limited,
each node does not know the path from it to the sink, ithow to conserve each regular node’s energy to maximize
cannot transmit its information to the sink. In order to the network lifetime is our main concern.
solve this problem, a scheme is proposed to construct a (2)The cluster-heads are equipped with enough
hierarchical structure with the sink being the root for all energy, so they can work for a long time. The
nodes in the network, as shown in Figure 6. transmission range of the cluster-heads is much longer
In Figure 6, the sink is firstly assigned a level than that of the regular nodes. Each cluster-head is
Levep=0. Then, the sink broadcasts a packetresponsible for collecting data from nodes within its
packetvo)=(vp,Levep) that contains its ID and its level cluster and transmitting these data to the sink. Note that
to its neighbors. For each nodg if it receives a packet the sink can act as a cluster-head too. In order to
packetvj)=(vj,Leve}) and it does not set a node as its implement the data transmission from each cluster-head

4.4 Implementation of MITT
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to the sink, all cluster-heads forms a hierarchical stmectu Therefore, ifN; is set to be equal to or larger than

with the sink being the root. log(1— 2'°9P/M) /log(1 — rr2/M?), each regular node can
Through the clusters, data gathering is performed agommunicate with at least one cluster-head directly and

follows : the network lifetime is maximized, where 9 P < 1.

(1) Intra-Cluster. In each cluster, the cluster-headConsidering the high cost of each cluster-head, in order to
collects the information of regular nodes’ energies andmaximize the network lifetime with the lowest cost,
their neighbors. Then, MITT is performed at the Jog(1— 2'°9P/") /log(1— mr2/M?) is the upper bound of
cluster-head to computerain-max-weight spanning tree the number of the cluster-heads.
for the cluster. At each round, the regular nodes will  Corollary 1 : In a network withn regular nodes and
transmit their data to the cluster-head by the tree. Ne cluster-heads, if

(2) Inter-Cluster. When each cluster-head gathers theNc < log(1 — 2'°9P/M) /log(1 — an/MZ), the extended
data from all the regular nodes in its cluster, it transmitsimplementation of MITT achieves an approximate ratio
these data to its parent (which may be another cluster-heagf Q (log(n/N;)/loglog(n/Nc)).
or the sink). Proof : Since the network contairs; cluster-heads,

However, since the cluster-heads have higher energyhere areN. clusters in the network and the number of
and longer communication range than the regular nodesiegular nodes in each cluster scales approximately as
they have more complex hardware than the regular nodesi/N.. In each cluster, MITT is performed to construct a
As a result, the cost of a cluster-head is much higher thamin-max-weight spanning tre€ombining with Theorem
that of a regular node, where the cost of a cluster-head (08, MITT achieves an approximate ratio of
regular node) is defined as the manufacturing cost of theR (log(n/Nc)/loglog(n/Nc)) in each clustei]
hardware as well as the battery of the cluster-head (or the
node). Therefore, it is unrealistic to deploy large number

of cluster-heads in the network. 5 Simulations
Theorem 4 : In order to maximize the lifetime of a
network that is composed afi regular nodes andN. The simulations are assumed to be performed in a

cluster-heads with the lowest cost, the upper bound.of square field of 100m100m, in which nodes are
is log(1 — 2'°9P/M) /log(1 — mr?/M?), where P is the  randomly dispersed. Each node in the field is assigned an
probability that each regular node can communicate withinitial energy level, which is randomly selected from the
at least one cluster-head directly. set of [0.5, 0.6, 0.7, 0.8, 0.9, 1] Joules(J). Each node
Proof : From Formula 6), the network lifetime is  produces 16 bytes of data at each round. The transmission
maximized if the descendant numb&T,v;) of each range of nodes is set to 25m. According to previous
regular nodev; in a treeT is minimized. Therefore, if measurements3p], the transmission power is about two
each regular node’s descendant number equals 0, thémes the reception power, i.d&,=2Ex. ThereforeEy is
network lifetime achieves its maximum. set to 50nJ/bit andky is 100nJd/bit. We mainly concern
On the other hand, if the numbeN. of the  aboutthe problem of finding a maximum lifetime tree, so
cluster-heads is large enough, each regular node cathe parameterk; andk; are set to large enough values to
transmit its data to at least one of the cluster-headsnable MITT to be performed without any constraints,
directly and has no descendants in the tree constructed ia.g., ki=n and ko=n®. In data gathering without
its cluster. Therefore, there is a connection between the&ggregation, large amounts of data should be transmitted
value of N; and the value ofP. Next, the relationship to the sink and the nodes close to the sink will suffer from
betweerN; andP is analyzed. heavy loads of data transmissions. In order to avoid
Since each regular node’s communication rangg is congestion and retransmission among the nodes, we
the size of its coverage area imr?. Therefore, the assume that there are effective congestion control
probability that there is a cluster-head in a regular node’smechanisms in the network.

communication range ism?/M2. As a result, the The simulations are performed on a personal
probability that each regular node can communicate withcomputer (PC) with a Pentium 4, 2.8 GHz processor and
at least one cluster-head directly is : 1 GB RAM. The effect of parameteyf on MITT is first
evaluated. Then, the network lifetime achieved by MITT
P=(1—(1—mmr2/M2)Neyn (13) is examined. Finally, the effect of the cluster-heads’

number on the extended implementation of MITT is

From Formula 13), we have : X . .
B evaluated. All simulations are performed 20 times and the

logP = nlog(1 — (1— rr?/M?)Ne) average values of their results are took as the final results.
_— l— (1_ mZ/MZ)NC — 2IogP/n
— (1—m?/M?)Ne — 1 logP/n (14) 5.1 Effect ofp
— 2\ _ __ologP/n . .
= Nolog(1— 7r?/M?) = log(1—2/%9/") In MITT, ¢ is an important parameter that affects the
— N = log(1—2'°9"/M) /log(1 — rr?/M?) classification of nodes. Therefore, the performance of
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Since MITT and the four algorithms are all performed
at the sink, their implementations are the same at each
round, e.g., in the set-up phase, the sink collects the
information of nodes’ energies and the network topology
to compute a tree, and then informs the tree information
to all nodes; in the steady-state phase, all nodes transmit
their data to the sink by the tree.

: : : : : : In the set-up phase of each round, each node will
L5 10 15 20 25 30 35 consume some extra energy in aspects such as
¢ transmitting its energy’s and its neighbors’ information t
(a) Effect ofg on tree lifetime the sink and receiving the tree information from the sink.
This part of energy consumption is almost the same at
6 each round, and it is independent of the algorithms.
Moreover, it is insignificant compared with the energy
consumption in the steady-state phdy{&f0]. Therefore,
we ignore this part of energy consumption and mainly
concern with the energy consumption in the steady-state
phase. The network lifetime and run time of the
algorithms in different network instances are shown in
: : : : : : Figure 8.
50100 1520 25 30 3 In Figure 8(a), the network lifetime achieved by the
4 algorithms in scenario 1 is shown. Since MITT can
(b) Effect of¢ on run time construct amin-max-weight spanning trete effectively
conserve the energies of nodes at each round, it achieves
longer network lifetime than other algorithms.
FIGURE 7 Effect of¢ LOCAL-OPT achieves longer network lifetime than
PEDAP, PEDAP-AP and MNL. However, the network
lifetime achieved by LOCAL-OPT is lower than that of
) ) . MITT. The network lifetime achieved by PEDAP is the
MITT is examined under dnfferent vglues of. Assume _lowest, because it is not energy-aware. PEDAP-AP
that there are 100 nodes in the field, and the sink ismp6yes PEDAP and achieves longer network lifetime
located at the center of the field. The tree lifetime 30 PEDAP. The network lifetime achieved by MNL is
achieved by MITT under different values ¢fis shown in longer than that of PEDAP-AP and PEDAP, but it is lower
Figure 7(a), and the corresponding run time of MITT iS {4an that of LOCAL-OPT and MITT.
shownin Figure 7(b). o In Figure 8(c), the network lifetime achieved by the

In Figure 7(a), there is a trend that the tree lifetime 4140rithms in scenario 2 is shown. Compared with Figure
achieved by MITT decreases gsincreases. In Figure gy the network lifetime achieved by MITT decreases by
7(b), the run time of MITT also decreases with the 51,6,,t 4805, and the network lifetime achieved by PEDAP,
increase ofp. That is because the numbers of nodegiin PEDAP-AP, MNL and LOCAL-OPT decreases by about
andV; increase with the increase ¢f and the number of 3504 2494 239 and 47% in average, respectively. This is
nodes inV3 decreases at the same time. Therefore, thgecayse the number of the sink’s neighbors decreases,
nodes inV; are hard to find the nodes W to transfer  \ynen the sink is located at the edge of the field.
their descendants. As a result, whens increased, the  Therefore, the sink’s neighbors have to relay more data
aI_gonthm terminates quickly and just constructs a treeqom other nodes further away from the sink and die
with short lifetime. sooner. As a result, the network lifetime achieved by all

algorithms decreases. However, though the network
lifetime achieved by MITT decreases the largest, it is still
5.2 Network lifetime longer than that of other algorithms.
In Figure 8(b) and Figure 8(d), wherever the sink is

In this subsection, four typical algorithms : PEDAP, located, MITT needs more time than other algorithms to
PEDAP-AP, MNL and LOCAL-OPT are selected to terminate. However, since all of above algorithms are
compare with MITT. Assume that the network instancesperformed at the sink and the sink has powerful
comprise 100, 150, 200, 250, 300, 350, and 400 nodes;omputation ability, the run time of the algorithms is not
respectively. In order to examine the scalability of MITT, our main concern. Therefore, though MITT has higher
two scenarios are considered : (1) The sink is located atime complexity than other algorithms, it is still a better
the center of the field (its coordinate is (50, 50)) ; (2) The choice for data gathering without aggregation because it
sink is located at the edge of the field (its coordinate iscan achieve longer network lifetime than existing
(100, 50)). algorithms.

o
3 =

Run time (rounds)

i
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100 150 200 250 300 350 400 is a small value, and vice versa. However, the costs of the
Number of nodes cluster-heads are high, it is unrealistic to deploy large
(c) Network lifetime in scenario 2 number of cluster-heads in the network. In this
subsection, the relationship between the number of
o cluster-heads and the network lifetime achieved by MITT
o b is examined.
g2 .| Assume that there afé; cluster-heads and 100 regular
5 nodes in the network. The cost of a cluster-head is setto 1
é g 1of —o— PEDAP-AP unit price. The communication range of the regular nodes
= s M = is r=25m. The effects oR,’s different values on the cost
o of the cluster-heads and the network lifetime are shown in
100 150 200 250 300 350 400 Figure 9
Number of nodes

In Figure 9(a), the cost of the cluster-heads increases
(d) Run time in scenario 2 proportionally with the increase of the number of the
cluster-heads. That is because that the cost of a
cluster-head is set to 1 unit price, ahg cluster-heads
cost N; unit prices accordingly. Since the cost of the
cluster-heads increases with the increase of the number of
the cluster-heads, large number of cluster-heads wilbbrin
5.3 Effect of N high cost for the deployment of the network. According to
the low-cost characteristic of sensor network, the number
In the extended implementation of MITT in of cluster-heads should not be a large value.
large-scale network$\; cluster-heads are deployed in the In Figure 9(b), whenN; <40, the network lifetime
network to divide the network into small clusters. increases with the increase dbk. That is because the
According to Corollary 1, the extended implementation of increase of\; helps that more nodes can communicate
MITT has an approximate ratio of with at least one cluster -head directly, and these part of
Q(log(n/N¢)/loglog(n/N¢)). Therefore, the numbeX, nodes do not need other nodes relay their data and save
of the cluster-heads would affect the performance of thethe other nodes’ energy. Therefore, the increadé.ofill
algorithm, i.e., ifN. is a large value, the approximate ratio benefit to increase the network lifetime. However, when

FIGURE 8 Network lifetime and run time of algorithms
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N¢ >40, the network lifetime achieves its maximum and [4] Yan Wu, Sonia Fahmy, Ness B. shroff, On the Construction
would not be increased. On the other hand, when of a Maximum-Lifetime Data Gathering Tree in Sensor
N < 20, the network lifetime increases quickly with the Networks : NP-Completeness and Approximation Algorithm.
increase ofN;.. WhenN; > 20, the effect of the increase In : Proceedings Of The IEEE 27th Conference on Computer
of N on the network lifetime becomes smaller. Therefore, ~Communications (INFOCOM2008), 356-360 (2008) .

the increasing of the number of the cluster-heads will not[5] Tung-Wei Kuo, Ming-Jer Tsai, On the construction of data
always bring proportional increasing of the network  aggregation tree with minimum energy cost in wireless sensor
lifetime. As a result, the number of the cluster-he&ls networks : NP-completeness and approximation algorithms,
should not larger than its upper bound. In : Proceedings Of The IEEE 31th Conference on Computer

Communications (INFOCOM2012), 2591-2595 (2012).

[6] Maleq Khan, Gopal Pandurangan, Anil Vullikanti,
6 Conclusions Distributed Algorithms for Constructing Approximate
Minimum Spanning Trees in Wireless Sensor Networks,
In this paper, the problem of constructing a  IEEE Transactions on Parallel and Distributed Systezfis,
min-max-weight spanning treér the data gathering 124-139 (2009).
without aggregation is studied. The problem is proved to[7] wendi Rabiner Heinzelman, Anantha Chandrakasan, Hari
be NP-complete, and our goal is to maximize the network  Balakrishnan, Energy-efficient communication protocol for

lifetime. A novel approximation algorithm MITT is wireless microsensor networks. In : Proc. of the Hawaii Int'l
proposed for solving the problem. MITT achieves an  Conf. on System Sciences. San Francisco : IEEE Computer
approximation ratio ofQ(logn/loglogn). Moreover, a Society, 3005-3014 (2000).

solution for extending MITT to large-scale networks is [g] ossama Younis, Sonia Fahmy, HEED : A hybrid energy
presented. Simulation results show that MITT can achieve " efficient distributed clustering approach for ad hoc sensor
longer network lifetime than existing algorithms. In the  networks. IEEE Transactions on Mobile ComputiBg366-
future, we will research a new scheme with low time 379 (2004).

complexity and a distributed scheme. [9] Chamam Ali, Pierre Samuel, On the Planning of Wireless

Sensor Networks : Energy-Efficient Clustering under the
Joint Routing and Coverage Constraint, IEEE Transactions
Acknowledgement on Mobile Computing8, 1077-1086 (2009).

. . . . 10] Hongbin Chen, Chi K Tse, Jiuchao Feng, Minimizing
This paper is an extended and revised version of Ou'[ effective energy consumption in multi-cluster sensor

prev!ous paper_ "An Efficient Algorithm for (;onstrL_Jctlng networks for source extraction, IEEE Transactions on
Maxmum I|f_et|m_e Tree for Data Gather!ng Wlthogt Wireless Communications, 1480-1489 (2009).
Aggregation in Wireless Sensor Networks”, in proceeding o _ o
of the IEEE 29th Conference on Computer [ll]Jgn Eang, .Hongbln Li, Power constrained qlstrlbuted
Communications (INFOCOM2010), mini conference estimation with cluster-based sensor collaboration, IEEE
San Diego, CA, USA, March 15_19’ 2010, pp 356-366 Transactions on Wireless Communicatios, 3822-3832
Our work is sponsored by the National Natural Science (2009).
Foundation of China under Grant No0s.61103245,[12] Wang Pu, Dai Rui, Akyildiz lan F., Collaborative Data
60963022, 61262003; the Guangxi Natural Science Compression Using Clustered Source Coding for Wireless
Foundation under Grant Nos. 2012GXNSFBA053163, Multimedia Sensor NetWOI’kS, in Proc.of The 29th IEEE
2013GXNSFGAO019006. Conference on Computer Communications (INFOCOM
The authors are grateful to the anonymous referee for 2010), 327-336 (2010).

a careful Checking of the details and for he|pfu| Comments[13] Roseline R. A., Sumathi P., Local clustering and threshold
that improved this paper. sensitive routing algorithm for Wireless Sensor Networks,

in Proc.of the 2012 International Conference on Devices,
Circuits and Systems (ICDCS 2012), 365-369 (2012).
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