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Abstract: Data gathering in wireless sensor network (WSN) has attracted a lot of attention in research. Data gathering can be done
with or without aggregation, depending on the degree of correlation among the source data. In this paper, we study the problem of data
gathering without aggregation, aiming to conserving the energy of sensor nodes so as to maximize the network lifetime. We model the
problem as one of finding amin-max-weight spanning tree (MMWST), which is shown to be NP-complete. In MMWST, the maximum
weight of the nodes is minimized. The weight of a node in the tree equals the ratio of the number of the node’s descendants to the
node’s energy. We propose aΩ(logn/ log logn)-approximation centralized algorithm MITT to construct MMWST without requiring
node location information. Moreover, in order to enable MITT to be used inlarge-scale networks, a new solution that employs the
clustering technique is proposed. To the best of our knowledge, MITT isthe first algorithm that constructs MMWST in wireless sensor
networks. Theoretical analyses and simulation results show that MITT can achieve longer network lifetime than existing data gathering
algorithms.
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1 Introduction

A wireless sensor network (WSN) is composed of a
large number of low-cost and low-energy (sensor) nodes
that communicate with each other through multi-hop
wireless links [1]. A basic operation in WSN is data
gathering, i.e., each node periodically transmits its sensed
data to the sink for further processing. Because nodes are
often deployed in remote or inaccessible environments,
where replenishing nodes’ batteries is usually impossible,
a critical issue in data gathering is to conserve nodes’
energies and maximize the network lifetime. The network
lifetime is defined as the time until the first node depletes
its energy [2].

Data gathering can be categorized by the degree of
correlation among the source data [3]. For applications of
statistical queries in WSN, such as SUM, MAX, MIN,
etc., correlation exists among the data sensed by nodes.
Therefore, when these data are transmitted, they could be
aggregated into one data packet with constant size
regardless of the number of data sources. This type of

data gathering is called data gathering with aggregation.
Data gathering without aggregation refers to the opposite
case, where no data reduction is available and all data
need to be transmitted to the sink, e.g., collecting video
images from distant regions of a battlefield. Both types of
data gatherings have many applications, and attract a lot
of research attentions. In this paper, we mainly concern
with data gathering without aggregation. Our goal is to
find an energy-conserving tree at each round of data
gathering to maximize the network lifetime.

For data gathering with aggregation, each node
consumes energy for receiving data with constant size
from all of its children and transmitting the aggregated
data with the same size to its parent. Therefore, the
energy consumption of each node is controlled by the
number of its children (or its degree in the tree). In order
to maximize the network lifetime, the degrees of all nodes
in the tree should be minimized. In [4][5], a
(1+ ε)-approximation centralized algorithm is proposed
to construct anEnergy-Balanced Minimum Degree Data
Gathering Tree(EBMDDGT), whereε > 0. In the tree,
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nodes with higher energy have larger degree, and vice
versa. Therefore, the nodes can consume their energy
uniformly and maximize the network lifetime. However,
if the data cannot be aggregated, a node with smaller
degree in a tree may still need to receive and transmit
large amounts of data from its descendants. Therefore,
EBMDDGT cannot be used in data gathering without
aggregation to maximize the network lifetime.

For data gathering without aggregation, each node
consumes energy for receiving data from all of its
descendants and transmitting these data together with its
own data to its parent. Therefore, the energy consumption
of each node is controlled by the number of its
descendants. In order to maximize the network lifetime,
the descendant numbers of all nodes in the tree should be
minimized. Since a node’s descendant number is often
much larger than its children’s number, the minimization
of all nodes’ descendant numbers is harder than the
minimization of all nodes’ degrees.

In traditional network design fields, a shortest path
tree (SPT) can be used to minimize the total energy
consumption of data transmission in the network. This is
because each node in the SPT can transmit its data to the
sink with the minimum number of hops. However, SPT
cannot achieve the maximum network lifetime because it
does not consider how to conserve the energy of any
individual node, e.g., a node in a shortest path has to
always receive and transmit large amounts of data from
other nodes even if its energy is low.

In this paper, we model the maximum network
lifetime problem as one of finding aMin-Max-Weight
Spanning Tree (MMWST), which is shown to be
NP-complete. In MMWST, the maximum weight of the
nodes is smaller than other maximum weights of the
nodes in other trees for the network. The weight of a node
is defined as the ratio of the number of the node’s
descendants to the node’s energy. To the best of our
knowledge, this paper is the first one that researches how
to maximize the network lifetime by finding MMWST.

A Ω(logn/ log logn)-approximation centralized
algorithm MITT (MaxImum lifetime Tree construction
for data gaThering without aggregation) is proposed for
finding MMWST. MITT starts from an initial tree, which
is constructed by performing a breadth first traversal on
the network. The initial tree is a SPT, which can minimize
the total energy consumption of data transmission in the
network but may not be able to maximize the network
lifetime. Then, MITT iteratively transfers descendants of
the nodes with the maximum weight (which are called
bottleneck nodes) to other nodes with smaller weights to
decrease the maximum weight. MITT terminates when
the weights of all bottleneck nodes cannot be decreased
further. Compared with existing data gathering
algorithms, MITT can achieve longer network lifetime.

Moreover, MITT needs the information of nodes’
energies and the network topology, which is hard to be
acquired in large-scale networks. By employing the
clustering technique, a solution for extending MITT to

large-scale networks is proposed. The network is assumed
to compose of two kinds of nodes : the regular (sensor)
nodes and the cluster-heads. The network is divided into
several clusters by the cluster-heads. All cluster-heads
form a hierarchical structure rooted at the sink. In each
cluster, MITT is performed by the cluster-head and
constructs a min-max-weight spanning tree for the cluster.
Each node in the cluster transmits its data to its
cluster-head by the tree, and the cluster-head is
responsible for transmitting these data to the sink. By this
way, MITT can be implemented in a large-scale network
easily. Since the cost of cluster-heads is much higher than
the regular nodes, the upper bound of the number of
cluster-heads that should be used to achieve the maximum
network lifetime is analyzed.

The remainder of this paper is organized as follows.
Section II reviews related work on data gathering. Section
III describes the system model and formulates the
problem. Section IV describes our algorithm. Simulation
results are presented in section V, and Section VI
concludes this work.

2 Related work

Recently, the problem of efficient data gathering in
WSN has been investigated extensively. Existing
protocols can be classified into three categories :
cluster-based protocols, chain-based protocols and
tree-based protocols. For continuous monitoring
applications with a periodic traffic pattern, tree-based
topology is often adopted because of its simplicity [6].
Therefore, the tree-based protocols are our main concern.

(1) In cluster-based protocols (e.g., LEACH [7],
HEED [8], EECJ [9], MCMC [10], CDE [11], CDC [12],
and LCTSR [13], etc.), a subset of nodes in the network
are selected as cluster heads by probability, and other
nodes join the closest cluster head from them to form a
Voronoi-based topology. Cluster-based protocols are easy
to be implemented and managed, but they have some
disadvantages such as asymmetry distribution of the
cluster heads, heavy load on the cluster heads, etc. In
addition, the sizes of the clusters are hard to be controlled.

(2) In chain-based protocols (e.g., PEGASIS [14],
DRAEM [15], CHIRON [16], EECC [17], and
CREEC [18], etc.), all nodes in the network are organized
as a chain. One of these nodes is selected as a head to
communicate with the sink directly, and other nodes
transmit their data to the head through the chain.
Chain-based protocols enable each node to communicate
with its closest neighbor. However, the long chain causes
a large delay in data gathering and the head has the
highest burden of relaying data.

(3) In tree-based protocols, all nodes in the network
are organized as a tree. Each node in the tree receives data
from all of its children. Then, it transmits its own data and
the received data to its parent. According to the way of
constructing a tree, the tree-based protocols for data
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gathering without aggregation can be classified into three
categories : linear programming based protocols, growth
based protocols and improvement based protocols.

In linear programming based protocols, the problem
of finding a maximum lifetime data gathering tree is
modeled as a maximum flow problem [19] with energy
constraints at the nodes. Then, the problem is solved by
an integer program with linear constraints. Though
finding a feasible solution to the integer program is still
NP-complete, it can obtain an approximation result for
the problem by relaxing some integrality conditions.
MLDR [20] and RSM-MLDA [21] are typical linear
programming based protocols. However, they assume that
the locations of the nodes and the sink are known, which
are hard to be acquired because the nodes and the sink are
seldom equipped with expensive GPS devices. Moreover,
they assume that each node has the ability to transmit its
packet to any other node in the network or directly to the
sink, which is unrealistic in a large-scale network.
In [22][23][24], the maximum lifetime problem in
sensor-target surveillance networks is researched. The
problem is to schedule the sensors to watch the targets
and forward the sensed data to the sink, such that the
lifetime of the surveillance network is maximized. They
firstly compute the maximum lifetime of the surveillance
system and a workload matrix by using the linear
programming technique. Then, they decompose the
workload matrix into a sequence of schedule matrices that
can achieve the maximum lifetime. Finally, they construct
the sensor surveillance trees based on the above obtained
schedule matrices, which specify the active sensors and
the routes to pass sensed data to the sink.

For growth based protocols, their basic ideas are
similar to the Prim’s algorithm forminimum spanning
tree (MST). Each edge in the network is assigned a
weight. The data gathering tree is initialized by
containing only the sink node. Then, the tree is grown by
adding selected edges one by one until it spans all nodes.
The selected edge is from a node in the tree to another
node not in the tree. The key difference in these protocols
is how to define each edge’s weight and how to add a
proper edge to the tree at each time. In PEDAP [25], the
weight of each edge is defined as the transmission cost
between the edge’s two end nodes. At each time, PEDAP
adds an edge with the minimum weight to the tree.
However, PEDAP does not consider nodes’ energies and
cannot achieve energy-awareness. PEDAP-PA [25]
improves PEDAP by considering each node’s energy
during the tree construction. The weight of each edge is
defined as the ratio of the transmission cost between the
two end nodes to the residual energy of the sending node.
PEDAP-PA achieves an approximation ratio ofΩ(logn),
where n is the number of nodes in the network.
MLDGA [ 26] and MNL [27] improve PEDAP-PA by
designing different edge weights. In MLDGA, the weight
of each edge is defined as the ratio of the minimum
lifetime of the edge’s two end nodes to the transmission
cost between the two nodes. At each time, an edge with

the maximum weight is added to the tree. In MNL, an
edge is added to the tree if it can maximize the minimum
residual energy of the nodes of the new tree. MLDGA and
MNL also achieve the approximation ratio ofΩ(logn).

Improvement based protocols start with an initial
feasible solution, and then make improvements by adding
and deleting edges as long as improvements are possible.
To the best of our knowledge, LOCAL-OPT [28] is the
only one improvement based protocol that constructs a
tree for data gathering without aggregation. It starts from
an arbitrary treeT0 with lifetime L0. Then, it tries to
change each node’s parent in the tree to one of the node’s
neighbors in the network to find a new treeT1, which has
lifetime L1 > L0. If T1 is found, another new treeT2 that
has lifetimeL2 > L1 is found by the same way. The above
process of finding new trees is executed iteratively, until a
treeTi with lifetime Li is found and there is no a treeTj
with lifetime L j > Li can be found. LOCAL-OPT
achieves an approximation ratio ofΩ(logn/ log logn),
which is the current best result for tree construction in
data gathering without aggregation. However,
LOCAL-OPT does not consider the situation thatTj can
be found by changing parents of multiple nodes inTi at
the same time. Moreover, in above optimization process
of changing each node’s parent to one of the node’s
neighbors to find a new tree, LOCAL-OPT does not use
the nodes that are not the changed node’s neighbors to
enlarge the algorithm’s optimization range.

In this paper, a new improvement based protocol
MITT that can achieve better performance of finding a
maximum lifetime data gathering tree than LOCAL-OPT
is proposed. The system model and problem statement
that MITT considers are described as follows.

3 System model and problem statement

3.1 Network model

Assume thatv1,v2, . . . ,vn are sensor nodes (or nodes)
in a WSN andv0 is the sink. All nodes are randomly
deployed over anM × M field. The network forms a
connective undirected graphG(V,E), whereV is the set
of the nodes and the sink, andE is the set of edges.
|E| = m is the number of edges. There is an edge(vi ,v j)
in E if the nodesvi and v j are within each other’s
communication range. Each node has different initial
energy. The network has following characteristics :

(1) The network is static, i.e., all nodes and the sink are
stationary after deployment.

(2) The sink has infinite power supply and powerful
computation ability.

(3) All nodes have the same transmission range.
Each node mainly consumes energy in

communication, and the amount of energy required to
transmit, receive one bit of data isEtx, Erx respectively.
The energy consumed by nodes in computing and sensing
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is negligible [10]. At each round, each node generatesl
bits data.

3.2 Definitions

Before diving into the problem of finding a maximum
lifetime tree for data gathering without aggregation, some
fundamental definitions and notations are given, which
will be used throughout this paper .

De f inition1 : A round is defined as the process of
gathering all the data from nodes to the sink, regardless of
how much time it takes [25].

De f inition2 : For each nodevi that has S(T,vi)
descendants in a treeT, the size of data that it receives at
each round isS(T,vi)l and the size of data that it needs to
transmit is(S(T,vi)+1)l .

De f inition3 : At each round, the amount of energy
C(T,vi) that each nodevi consumes in a treeT is :

C(T,vi) = S(T,vi)lErx +(S(T,vi)+1)lEtx

= S(T,vi)l(Erx +Etx)+ lEtx
(1)

De f inition4 : The lifetime of a nodevi in a treeT is
defined as the number of rounds that the node can receive
data from all of its descendants and transmit these data
together with its own data to its parent :

Lnode(T,vi) = ⌊
E(vi)

S(T,vi)l(Erx +Etx)+ lEtx
⌋ (2)

De f inition5 : The lifetime of a treeT is defined as the
number of rounds that the tree can sustain until the first
node in the tree depletes its energy :

Ltree(T) = min
i=1,...,n

{Lnode(T,vi)} (3)

De f inition6 : The network lifetime is defined as the
number of rounds that the network can perform data
gathering until the first node in the network depletes its
energy.

In fact, an alternative definition of the network
lifetime that can be used is the number of rounds that the
network can perform data gathering until a certain
percentage of nodes in the network deplete their energies.
That is because the nodes are often deployed in a network
densely, the quality of the network is not affected until a
significant amount of nodes die. In [30], it is shown that
this definition is actually quite similar in nature to
Definition 6. Therefore, Definition 6 is used in this paper
for simplicity.

De f inition7 : Let TS(G) = {T1, . . . ,Tz} be the set of
spanning trees in the network andw(Ti) be the weight of a
treeTi in TS(G), wherew(Ti) equals the maximum weight
of the nodes in the treeTi , i.e., w(Ti)= max

i=1,...,z
j=1,...,n

w(Ti ,v j). A

spanning treeTi is called amin-max-weight spanning tree
if its weight is the minimum among all trees inTS(G), i.e.,
w(Ti)= min

T∈TS(G)
w(T).

3.3 Problem statement

(a) The problem of finding a min-max-weight spanning
tree (PMMWST)

In tree-based protocols, a tree can be used for a period
of time or be reconstructed at each round, depending on
specific applications. If a tree is used until the first node
depletes its energy, the network lifetime is equal to the
lifetime of the tree. If a tree is reconstructed at each round
or after it is used for several rounds, the network lifetime
is decided by the trees that are constructed.

No matter whether the tree is reconstructed or not, it
is expected that the tree can effectively conserve nodes’
energies at each round so as to maximize the network
lifetime. A tree with maximum lifetime can achieve above
expectation, so it is our main concern.

For a networkG, there exists multiple possible trees.
Our goal is to find a tree with the maximum lifetime :

max
T∈TS(G)

Ltree(T) (4)

According to Definitions 4 and 5, Formula (4) can be
defined as :

max
T∈TS(G)

min
i=1,...,n

⌊
E(vi)

S(T,vi)l(Erx +Etx)+ lEtx
⌋ (5)

In Formula (5), sinceErx andEtx are constant,S(T,vi)
is the main optimization objective. Being extracted the
constantErx and Etx from the denominator, the problem
for solving Formula (5) is transformed to a new problem :

max
T∈TS(G)

min
i=1,...,n

E(vi)

S(T,vi)+c
(6)

wherec = Etx/(Erx +Etx). In Formula (6), the goal is to
maximize the minimum ofE(vi)/(S(T,vi)+c), wherei =
1, . . . ,n. In order to achieve this goal, a node with larger
energy (largerE(vi)) should take more responsibilities by
serving more descendants (largerS(T,vi)) in a tree, and
vice versa.

In Formula (6), the variable S(T,vi) is in the
denominator, which is not convenient to be analyzed.
Hence, the problem for solving Formula (6) is
transformed to another problem by changing
E(vi)/(S(T,vi)+c) to (S(T,vi)+c)/E(vi) as follows :

min
T∈TS(G)

max
i=1,...,n

S(T,vi)+c
E(vi)

(7)

Each node vi in T is given a weight
w(T,vi)=(S(T,vi) + c)/E(vi), then Formula (7) is
transformed into :

min
T∈TS(G)

max
i=1,...,n

w(T,vi) (8)
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FIGURE 1 Reduction from SET-COVER to our problem

Note that Formula (8) has the same goal with the
initial problem of solving Formula (4). From Formula (8),
the initial problem of finding a maximum lifetime tree is
transformed to the problem of finding a min-max-weight
spanning tree, i.e., PMMWST. Next, we will establish the
hardness of PMMWST.

(b) Hardness of PMMWST

The decision version of PMMWST is : Given a
network G(V,E) and node energies, does there exist a
spanning tree in which the maximum weight of the nodes
is w?

Theorem 1 : The decision version of PMMWST is
NP-complete.

Proo f : The proof employs the minimum set cover
problem [29] (SET-COVER for short), which is known to
be NP-complete. PMMWST’s decision version is shown
to be NP-complete as follows.

PMMWST’s decision version is clearly in NP. Given
a tree and node energies, it is easy to verify whether the
maximum weight in the tree reachesw. In order to prove
that PMMWST’s decision version is NP-Complete, a
reduction from SET-COVER to it is shown.

Given an element setS = {v1,v2, . . . ,vn} and a
collection of subsetsC = {S1,S2, . . . ,Sk} of S, the
decision version of SET-COVER is to determine whether
there is a selection ofK subsets fromC such that the
union of K subsets cover all then elements, where
1 ≤ K ≤ k. Given an instance of SET-COVER, an
instance of the network can be constructed in polynomial
time as follows.

The nodes in the network are arranged in four rows, as
shown in Figure 1. The first row just has a root node (the
sink), which has unlimited energy supply. The second row
consists of two nodes :u1 with energy(n+K)+c andu2
with energy(k−K)+c. The two nodes are used to decide
which subsets will be in the set cover and which will not.

Both of the two nodes are connected to the root node.
There arek nodes corresponding toS1,S2, . . . ,Sk in the
third row, and each node corresponding toSj has
2(|Sj |+c) units of energy, where 1≤ j ≤ k and|Sj | is the
size ofSj . Thek nodes are connected to bothu1 andu2. In
the fourth row,n nodes with energy 2c are corresponding
to then elements ofS. For each node corresponding to the
element vi , there is an edge from it to the node
corresponding toSj if vi is in Sj , where 1≤ i ≤ n.

In Figure 1, each node corresponding tovi or each node
corresponding toSj has a weight at most 1/2. The nodes
that can achieve larger weights in the instance are nodesu1
andu2. Now, it can be claimed that there exists a spanning
tree in which the maximum weight of the nodes is 1 if and
only if a set cover of sizeK exists.

Suppose that there exists a set cover of sizeK. Then
the tree can be constructed as follows. The data from the
K third row nodes and then fourth row nodes can be routed
throughu1 to the root. The data from rest of thek−K third
row nodes can be routed throughu2. Only by this way, both
u1’s andu2’s weights achieve 1, i.e., the maximum weight
of the nodes in the tree is 1.

Conversely, if there is a spanning tree in which the
maximum weight of the nodes is 1, then it is easy to
construct a set cover for the SET-COVER instance. That
is the union of the subsets corresponding to theK third
row nodes, which contains all the elements inS. �

Since PMMWST is hard, an approximate solution
needs to be found. In this paper, an approximation
algorithm MITT is proposed to solve PMMWST. Details
of the algorithm are shown as follows.

4 MITT algorithm

4.1 Algorithm description

Firstly, an initial treeT is constructed in the networkG
as follows :

(1) Initially, there is only one nodev0 in the treeT, and
it is in level 1 ofT.

(2) All neighbors ofv0 are added toT as its children,
and these nodes are in level 2 ofT.

(3) The nodes in levelh of T are sorted in descending
order according to their energies, whereh≥ 2. According
to the order, each node in levelh picks all of its neighbors
that are not in the tree as its children in turn. When all
neighbors of the nodes in levelh are added into the treeT,
the levelh+1 of the tree is formed.

Step (3) is executed iteratively and terminates when all
nodes in the network are added to the tree. When step (3)
terminates,T is got. Based on the initial tree, amin-max-
weight spanning treeis constructed as follows.

Given an arbitrary variableϕ >0, all nodes inT are
classified into three disjoint subsetsV1,V2 andV3 :

(1) V1 = {vi |w(T)−ϕ < w(T,vi) ≤ w(T),vi ∈ V}. V1
contains the nodes whose weights are equal to or close to
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Function Capacity(T,x)
1. { if (x is the sink)x.capacity=n ;

// n is the number of nodes in sensor network
2. else{ casex∈V1 x.capacity=-1 ;
3. case x ∈ V2 x.capacity = min{0,x.parent
.capacity} ;

4. casex ∈ V3 x.capacity= min{⌊(w(T) − ϕ −
w(T,x)) E(x)−c⌋,x.parent.capacity} ;

5. }
6. For each childy of x in treeT
7. Capacity(T, y) ;
8. }

FIGURE 2 Function Capacity(T, x)

the weightw(T) of the treeT (or the maximum weight of
the nodes in the tree). These nodes are called “bottleneck
nodes”.

(2) V2 = {vi |w(T)−ϕ −1/E(vi)< w(T,vi)≤ w(T)−
ϕ,vi ∈V}. Each node inV2 will become abottleneck node
if the number of its descendants is increased by one. The
nodes inV2 are called “sub-bottleneck nodes”.

(3) V3 =V −V1−V2. V3 contains all remaining nodes,
and these nodes are called “rich nodes”. Each node inV3
will not become abottleneck nodeeven if the number of
its descendants is increased by one.

However, a node inV3 does not mean that it can be
added more descendants. That is because some of the
node’s ancestors may be inV1 or V2, and they would
become new bottleneck nodes if the number of the node’s
descendants is increased. To represent this property, an
attributecapacity is used to denote a node’s ability for
serving more descendants according to its weight and its
ancestors’ weights.

For abottleneck node, it has larger weight than other
nodes. Therefore, it and its descendants should not be
added more descendants. As a result, if a node is a
bottleneck nodeor a bottleneck node’s descendant, its
capacityis set to -1.

For a sub-bottleneck node, its descendant number
should not be increased too. Therefore, if a node is a
sub-bottleneck node, itscapacity is set to the minimum
between 0 and its ancestors’capacities.

If a nodevi is a rich node, its capacityis equal to the
minimum between⌊(w(T)−ϕ −w(T,vi))E(vi)− c⌋ and
its ancestors’ capacities. Note that
⌊(w(T) − ϕ − w(T,vi))E(vi) − c⌋ is the number of
descendants thatvi can further afford.

MITT can compute all nodes’capacitiesby traversing
the tree in depth first order once. A Function Capacity(T,x)
is defined to compute thecapacitiesof nodes in a treeT
rooted at a nodex, which is shown in Figure 2.

After all nodes’ capacities are got, a transferring
operation is performed on eachbottleneck node vi to try
to transfer some ofvi ’s descendants (the number of these

descendants iss) to another nodev j that is not vi ’s
descendant to decreasevi ’s weight. In the transferring
operation, there are 3 cases that may happen as follows :

(1)if v j ’s capacityis larger thans, vi can transfer itss
descendants tov j directly, i.e., v j becomes thes
descendants’ new ancestor.

(2)If v j ’s capacityequals 0, it means thatv j is in a
sub-tree rooted at asub-bottleneck node vk, wherevk and
vi may be the same node andvk has the characteristics
that vk.capacity==vi .capacity and
vk.parent.capacity> vi .capacity. Since vk’s capacity
decidesv j ’s capacity, vk’s capacity is increased firstly.
By performing the transferring operation onvk
recursively,vk’s capacitycan be increased. Therefore, if
v j ’s capacitybecomes larger thans after vk’s capacityis
increased,vi can transfer itssdescendants tov j .

(3)If v j ’s capacity is not larger thans, vi does not
transfer itssdescendants tov j .

A Function Transfer(T,x,k1) is defined to implement
the transferring operation on any nodex in the treeT, as
shown in Figure 3, where the variablek1 ≥ 0 is an integer
used to limit the depth of the recursion that the
transferring operation can be performed. Ifk1 is set to a
large value, e.g.,k1=∞, the transferring operation can be
performed on anysub-bottleneck nodethat needs to
increase its capacitie and the probability that the
transferring operation can transfer some of abottleneck
node’s descendants to asub-bottleneck nodeis high.
However, the transferring operation may need more time
to terminate ifk1 is a large value. Ifk1 is set to a small
value, e.g.,k1=1 or k1=0, the transferring operation just
can be performed on a few or nosub-bottleneck nodes
and the probability that abottleneck nodecan transfer
some of its descendants to asub-bottleneck nodebecomes
small. However, the transferring operation can terminate
in a short time ifk1 is a small value.

In Figure 3, Function Transfer(T,x,k1) is performed by
traversing the tree rooted atx in breadth first order. If one
or more descendants ofx are transferred to another node,
the function returnsTRUE. Otherwise, the function returns
FALSE.

First, each childy of x in the treeT is enqueued in a
queueQchildren. While the queueQc is not empty, a node
is dequeued fromQc into v. Then, each childy′ of v in the
enqueued in the queueQc to ensure the breadth first search
on the tree rooted atx. If the nodev has the characteristics
thatv.capacity==x.capacityandv.visited== “FALSE”, the
transferring operation tries to transferv to a node that is not
x’s descendant, where the attributevisited is used to show
whether the transferring operation has been performed on
a node. Limiting thatv.capacity==x.capacity is because
v.capacitymay be smaller thanx.capacityin the tree and
v may being performed the transferring operation before
the transferring operation is performed onx recursively.

In order to increase the probability thatv can be
transferred to a node that has acapacity larger than the
number of nodes includingv and v’s descendants, all of
v’s neighbors in the network are sorted in descending
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Function Transfer(T,x,k1)
1. for(each childy of nodex in the treeT)
2. enqueue(Qc, y) ; //enqueue the nodey in a queueQc
3. while (Length(Qc)> 0)
4. { dequeue(Qc, v) ; //dequeue a node fromQc into v
5. for(each childy′ of nodev in the treeT)
6. enqueue(Qc, y′) ;
7. if (v.capacity==x.capacityandv.visited==“FALSE”)
8. { all neighbors ofv in the network are first sorted in

descending order according to theircapacities, and then
they are enqueued in a queueQn ;

9. while (Length(Qn)> 0)
10. { dequeue(Qn, z) ;
11. if(nodez is not a descendant of nodex in T)
12. { casez.capacity> S(T,v)
13. ChangeParent(v, z) ;
14. returnTRUE;
15. case (z.capacity==0)&& (k1 >0)
16. find the ancestorvk of z that has

the characteristics vk.capacity==z.capacity and
vk.parent.capacity> z.capacity;

17. if(vk.visited==“FALSE”)
18. { vk.visited=“TRUE” ;
19. if ( Transfer(T,vk,k1-1) && z.capacity>

S(T,v))
20. { ChangeParent(v,z) ;
21. returnTRUE;
22. }
23. }
24. case (z.capacity≤ S(T,v)) break ;
25. } //endif
26. } //endwhile
27. } //endif
28.} //endwhile
29. returnFALSE;

Function ChangeParent(v,z)
1. w= v.parent;
2. v.parent= z;
3. updateS(T,vi) for each nodevi that isv’s old ancestor

or v’s new ancestor, and letvi .visited=“FALSE” ;
4. Capacity (T,v0) ;

FIGURE 3 Function Transfer(T,x,k1)

order according to theircapacities and then they are
enqueued in a queueQn. While the queueQn is not
empty, a node is dequeued fromQn into z. If z is not a
descendant of nodex in the treeT, there are three cases
that may happen as follows :

(1) If z.capacity> S(T,v), v can be transferred toz
directly, i.e.,v takesz as its new parent. Since the tree is
changed, each node that isv’s old ancestor orv’s new
ancestor sets itsvisited attribute to “FALSE”. Then, the
capacities of all nodes in the tree are re-computed.
Finally, the function returnsTRUE.

(2) If z.capacity==0, v cannot be transferred toz
directly. Therefore, the root nodevk of the sub-tree
containing z should be found, which has the
characteristics that vk.capacity==z.capacity and
vk.parent.capacity > z.capacity. If
vk.visited==“FALSE”, the transferring operation is
performed on vk recursively, i.e., Function
Transfer(T,vk,k1) is executed. If some ofvk’s descendants
are transferred andz’s capacity is larger thanS(T,v), v
can be transferred toz. Otherwise,v does not transfer toz.
If the transferring operation succeeds and the tree is
changed, each node that isv’s old ancestor orv’s new
ancestor sets itsvisited attribute to “FALSE”. Then, the
capacities of all nodes in the tree are re-computed.
Finally, the function returnsTRUE.

(3) If z.capacity≤ S(T,v), v cannot be transferred to
any of its neighbors. Therefore, the function stops the
current transferring operation onv and continues to
dequeue another node fromQc into v to re-perform above
operations.

If z is a descendant of nodex in the treeT, v does
not transferred tozand another node is dequeued fromQn
into z. Then,v tries to be transferred to the newz. If the
queueQn is empty andv cannot be transferred to any one
of its neighbors, another node is dequeued fromQc into v
to re-perform above above operations. If the queueQc is
empty and there is no a node in the tree rooted atx can be
transferred, the function returnFALSE.

An algorithm MITT, which uses Function
Capacity(T,x) and Transfer(T,x,k1) to construct a
min-max-weight spanning tree, is shown in Figure 4. The
inputs of MITT areG, k1, and k2, wherek2 > 0 is an
integer controlling the number of iterations that the
algorithm can be performed. Ifk2 is large value, e.g.,
k2=∞, MITT can be performed until a treeTi is
constructed and there is no a tree that has larger lifetime
thanTi ’s lifetime can be found. However, MITT may need
more time to terminate ifk2 is a large value. Ifk2 is a
small value, e.g.,k2=0, MITT will terminate in a short
time. However, MITT just can find a tree with small
lifetime if k2 is a small value.

In Figure 4, MITT firstly constructs an initial treeT in
step 1. Then, MITT enters the iteration process of
transferring descendants of bottleneck nodes in step 3. In
each iteration, it first traverses the treeT to computew(T)
and sets each node’svisitedattribute to “FALSE”. Then, it
computes thecapacitiesof all nodes inT. Next, it sorts
the nodes inV1 in decreasing order according to their
weights and then enqueues these nodes in a queueQ.
Finally, it performs the transferring operation on each
nodex in V1 according to the order, i.e., while the queue
Q is not empty, a node is dequeued fromQ into x and the
transferring operation is performed onx at each time.

If the transferring operation succeeds, i.e., Transfer(T,
x, k1)==TRUE, MITT breaks out of current iteration and
enters the next iteration. If the transferring operation fails,
i.e., Transfer(T,x,k1)==FALSE, MITT performs the
transferring operation on the next node that is dequeued
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Algorithm MITT
Input : NetworkG(V,E), the parametersk1 andk2
Out put : a min-max-weigh spanning treefor data
gathering without aggregation

1. construct an initial treeT ;
2. Ischanged=“TRUE” ;
3. while((Ischanged==“TRUE” ) && ( k2 >= 1) )
4. { Ischanged=“FALSE” ; k2 = k2−1 ;
5. traverse the treeT to computew(T), and let each

nodev.visited=“FALSE” ;
6. Capacity (T,v0) ;
7. all the nodes inV1 are first sorted in descending order

according to their weights, and then they are enqueued
in a queueQ ;

8. while (Length(Q)> 0)
9. { dequeue(Q, x) ;
10. if(Transfer(T,x,k1))
11. { Ischanged=“TRUE” ;
12. break ;
13. } //endif
14. } //endwhile
15. } //endwhile

FIGURE 4 MITT Algorithm

from Q, and so on. If the queueQ is empty, it means that
the weights of all bottleneck nodes inV1 cannot be
decreased and the algorithm MITT terminates.

In MITT, each node’svisited attribute is firstly set to
“FALSE” when the algorithm is executed. If a nodevi is
performed the transferring operation, i.e., Function
Transfer(T,vi ,k1) is executed, itsvisitedattribute is set to
“TRUE”. When the number of the node’s descendants is
changed, i.e., the transferring operation succeeds, the
node’svisitedattribute becomes “FALSE” again. For each
node, it would not be performed the transferring operation
again if its visited attribute equals “TRUE”. Therefore,
the visited attribute prevents each node from being
performed the transferring operation repeatedly, which
can eliminate the appearance of dead lock.

Proposition 1 : For MITT, each iteration will be
finished in polynomial time. When MITT terminates, it is
performed at mostO(n2(1+1/(ϕEmin))) iterations.

Proo f : As shown in Figure 4, step 1 is to construct
an initial treeT. It starts with a tree that contains only the
sink node, and then selects a node that is not in the tree to
join the tree at each time iteratively. Hence, aftern times
of selecting, all nodes are added into the tree.

Steps 3-15 describe the process of transferring
descendants of bottleneck nodes in the treeT by
iterations. In each iteration, MITT needs to traverse the
sub-trees rooted at thebottleneck nodes(may be include
other sub-trees rooted atsub-bottleneck nodes) and check
neighbors of the nodes in these sub-trees, which costs
O(nm) time. Computing thecapacitiesof all nodes in the

treeT costO(n) < O(nm) time. Therefore, each iteration
costsO(nm) time.

On the other hand, the attributecapacityensures that
the transferring operation just transfers descendants of the
nodes with larger weights to the nodes with smaller
weights and there is no new bottleneck nodes will be
generated after the transferring. Therefore, the maximum
weight of the nodes in the network can only be decreased.
When the weights of all bottleneck nodes cannot be
decreased, MITT terminates. The largest number of
iterations that MITT is performed when it terminates is
analyzed as follows.

Let w∗ denote the weight of the optimal tree, which
equals the maximum weight of the nodes in the optimal
tree. In MITT, a bottleneck node can be changed to a
sub-bottleneck node or a rich node, if its weight is
decreased to a value that is smaller thanw(T)−ϕ. When
the weights of all bottleneck nodes are smaller than
w(T)−ϕ, w(T) is decreased by at leastϕ. When MITT
terminates, it is performed at most⌈(w(T)−w∗)/ϕ⌉Z <
⌈((n + c)/Emin − 0)/ϕ⌉Z = ⌈(n + c)/(ϕEmin)⌉Z
iterations, whereZ is the number of iterations that MITT
needs to decrease the weights of all bottleneck nodes to
values that are smaller thanw(T) − ϕ and
Emin = min

i=0,...,n
E(vi).

For a bottleneck nodevi , its weight will be decreased
by 1/E(vi) if one of its descendants is transferred.
Therefore, after at most⌈ϕ/(1/E(vi))⌉ = ⌈ϕE(vi)⌉
iterations, its weight will be smaller thanw(T)− ϕ. In
order to decrease the weights of all bottleneck nodes to
values that are smaller thanw(T)−ϕ, the largest number
of iterationsZ′ that MITT needs to be performed is :

Z′ = ∑
vi∈V1

⌈ϕE(vi)⌉ ≤ ∑
vi∈V1

(ϕE(vi)+1)

≤ ϕ ∑
vi∈V1

E(vi)+ |V1|
(9)

For any bottleneck node vi , there is
w(T) − ϕ < w(T,vi) ≤ w(T). Therefore, we have
w(T) − ϕ < (S(T,vi) + c)/E(vi) ⇒
(w(T)−ϕ)E(vi)< S(T,vi)+c. SinceS(T,vi)< n, for all
bottleneck nodes we have :

(w(T)−ϕ) ∑
vi∈V1

E(vi)< ∑
vi∈V1

(S(T,vi)+c)

< n2+cn

⇒ ∑
vi∈V1

E(vi)< (n2+cn)/(w(T)−ϕ)

(10)
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Since|V1|< n andc=Etx/(Erx+Etx)< 1, Formula (9)
is transformed into a new form as follows by combining
with Formula (10) :

Z′ ≤ ϕ ∑
vi∈V1

E(vi)+ |V1|

< ϕ(n2+cn)/(w(T)−ϕ)+n

< (ϕn2+nw(T))/(w(T)−ϕ)

(11)

Notice thatw(T)≤ ⌈(n+c)/Emin⌉ andZ ≤ Z′, there is
Z = O(n(ϕEmin+1)). Therefore, when MITT terminates,
it is performed at most⌈(n+ c)/(ϕEmin)⌉Z = O(n2(1+
1/(ϕEmin))) iterations.�

4.2 Time complexity analysis

Theorem 2 : The time complexity of MITT is
O(n3m(1+1/(ϕEmin))).

Proo f : In Figure 4, step 1 costsO(n) time to
construct the initial tree by traversing the network in
breadth first order. In step 3-15, the algorithm is
performed at mostO(n2(1+ 1/(ϕEmin))) iterations, and
each iteration costsO(nm) time. Therefore, the total time
spent in step 3-15 is
O(n2(1 + 1/(ϕEmin)))O(nm)=O(n3m(1 + 1/(ϕEmin))).
Based upon the above analysis, the time complexity of the
whole algorithm isO(n3m(1+1/(ϕEmin))). �

4.3 Approximation ratio

In this subsection, the approximation ratio of MITT is
analyzed by a network instance as follows.

Theorem 3 : The MITT algorithm can achieve an
approximation ratio of at leastΩ(logn/ log logn).

Proo f : Consider a networkG that is shown in Figure
5(a). Assume that each node hase units of energy and
generates one bit of data at each round. Moreover, each
node will consumea, b units of energy in receiving,
sending one bit of data. An optimal tree is shown in
Figure 5(b), in which the bottleneck nodes have just one
child. The lifetime of the optimal tree is
Lopt = e/(a + 2b). Figure 5(c) shows the initial tree
constructed by MITT, in which each bottleneck node has
4 children.

For MITT, whenk1=0, the function Transfer(T,x,k1)
cannot be performed on anysub-bottleneck node, i.e.,
MITT cannot transfer abottleneck node’s descendants to
a sub-bottleneck nodeby firstly transferring some
descendants of thesub-bottleneck nodeto a third node to
increase thesub-bottleneck node’s capcity. Therefore, in
one of the worst cases, the initial tree is changed to a
locally optimal tree, as shown in Figure 5(d), where the
locally optimal tree is a tree that MITT constructs and

(a) Network topology

(b) The optimal tree

(c) The initial tree

(d) A tree constructed by MITT whenk1=0

FIGURE 5 A network topology and some of its trees

MITT cannot find another tree that has larger lifetime
than the tree.

In Figure 5(d), the bottleneck node on the leftmost of
the middle row hasq=3 children. Therefore, the lifetime
of the locally optimal tree isLMITT=e/(q(a+ b)+ b). In
this situation, MITT achieves an approximation ratio
A=Lopt/LMITT=(q(a+b)+b)/(a+2b).

Clearly, the construction of the locally optimal tree
can be extended to arbitraryq. Consider the following
recurrence. LetN( f ) be the number of nodes that have
0 ≤ f ≤ q children. From Figure 5(d), there areN(3)=1,
N(2)=2, N(1)=4 and N(0)=4. Therefore, a recurrent
inference is formed as follows :N(q)=1, N(q−1)=q−1,
N(q−2)=(q−1)N(q−1) andN(q−3)=(q−2)N(q−2).
From the above inference, the functional form ofN( f ) is
got :

N( f ) =











( f +1)N( f +1), if 0 ≤ f ≤ q−2,
q−1, if f = q−1,
1, if f = q.

(12)
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For the sinkv0 :
1. v0 is assigned a levelLevel0=0 ;
2. v0 broadcasts a packetpacket(v0)=(v0,Level0) that

contains its ID and its level to its neighbors ;

For each nodevi :
1. if (vi receives a packetpacket(v j )=(v j ,Levelj ) andvi

does not set a node as its parent)
2. { vi setsv j as its parent ;
3. Leveli=Levelj+1 ;
4. vi broadcasts a packetpacket(vi)=(vi ,Leveli) to its

neighbors ;
5. }

FIGURE 6 The scheme of constructing a hierarchical structure
with the sink being the root for all nodes in the network

Since n >
q

∑
f=1

f N( f )=O(qq), q=Ω(logn/ log logn).

Therefore, the approximation ratio of MITT is
A= Ω(logn/ log logn).

Whenk1 > 0, MITT can achieve higher performance
than MITT with k1=0. For example, in Figure 5, the
locally optimal tree can continue to be optimized to a tree
with higher lifetime or the optimal tree by MITT if
k1 > 1. Therefore, MITT can achieve an approximation
ratio of at leastΩ(logn/ log logn). �

4.4 Implementation of MITT

Since some nodes may die for depleting their energy
or physical damage, and some other nodes may be
supplemented to the network at some time, the set of the
nodes may be changed at each round. In order to adapt to
the dynamic characteristic of the network, the tree is
reconstructed at each round. The implementation of
MITT is similar to LEACH and IAA, where each round
begins with a set-up phase, and then is followed by a
steady-state phase. MITT is performed to compute a
min-max-weight spanning treein the set-up phase, and
data gathering based on the tree is carried through in the
steady-state phase.

In the set-up phase, the sink firstly collects the
information of all nodes’ energies and neighbors. Since
each node does not know the path from it to the sink, it
cannot transmit its information to the sink. In order to
solve this problem, a scheme is proposed to construct a
hierarchical structure with the sink being the root for all
nodes in the network, as shown in Figure 6.

In Figure 6, the sink is firstly assigned a level
Level0=0. Then, the sink broadcasts a packet
packet(v0)=(v0,Level0) that contains its ID and its level
to its neighbors. For each nodevi , if it receives a packet
packet(v j)=(v j ,Levelj) and it does not set a node as its

parent, it setsv j as its parent. Then,vi is assigned a level
Leveli=Levelj+1. Finally, vi broadcasts a packet
packet(vi)=(vi ,Leveli) to its neighbors. When the above
process terminates, a hierarchical structure with the sink
being the root is constructed.

By the hierarchical structure, each node can transmit
the information of its energy and its neighbors to the sink.
To guarantee that all the information can be received by
the sink, reliable data delivery mechanisms like hop-by-
hop acknowledgments are used [4]. After the sink receives
the information of all nodes, it computes amin-max weight
spanning treeby using MITT for the network. Finally, it
informs each node the information of the tree, including
each node’s parent and children. At this time, the set-up
phase terminates and the steady-state phase begins.

In the steady-state phase, each node firstly receives the
data from its children. Then, it transmits its data and all of
its children’s data to its parent.

4.5 Extension to large-scale networks

In a large-scale network, it is not easy for the sink to
collect the information of all nodes. Therefore, the
implementation of MITT is hard to achieve. In order to
enable MITT to be executed easily in a large-scale
network, a clustering-based solution is proposed as
follows.

Clustering is a promising technique for algorithm’s
implementation in large-scale sensor networks because of
its high scalability and efficiency [31]. By dividing the
whole network into small clusters, each cluster-head can
collect the information of nodes in its cluster easily. Then,
the cluster-head can execute MITT to construct amin-max
weight spanning treefor the cluster. In the process of data
gathering, each node only needs to transmit its data to its
cluster-head in short distance. Moreover, each node just
needs to relay a few or no data from other nodes.
Therefore, each node can conserve its energy effectively.

Similar to [32], the network is assumed to compose of
two kinds of nodes that are deployed in the field randomly :
regular (sensor) nodes and cluster-heads :

(1)The regular nodes have limited energy and limited
transmission range, and they perform operations such as
sensing as well as data relaying. In the network, each
regular node joins the closest cluster-head to form a
Voronoi cell. Since the regular node’s energy is limited,
how to conserve each regular node’s energy to maximize
the network lifetime is our main concern.

(2)The cluster-heads are equipped with enough
energy, so they can work for a long time. The
transmission range of the cluster-heads is much longer
than that of the regular nodes. Each cluster-head is
responsible for collecting data from nodes within its
cluster and transmitting these data to the sink. Note that
the sink can act as a cluster-head too. In order to
implement the data transmission from each cluster-head
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to the sink, all cluster-heads forms a hierarchical structure
with the sink being the root.

Through the clusters, data gathering is performed as
follows :

(1) Intra-Cluster. In each cluster, the cluster-head
collects the information of regular nodes’ energies and
their neighbors. Then, MITT is performed at the
cluster-head to compute amin-max-weight spanning tree
for the cluster. At each round, the regular nodes will
transmit their data to the cluster-head by the tree.

(2) Inter-Cluster. When each cluster-head gathers the
data from all the regular nodes in its cluster, it transmits
these data to its parent (which may be another cluster-head
or the sink).

However, since the cluster-heads have higher energy
and longer communication range than the regular nodes,
they have more complex hardware than the regular nodes.
As a result, the cost of a cluster-head is much higher than
that of a regular node, where the cost of a cluster-head (or
regular node) is defined as the manufacturing cost of the
hardware as well as the battery of the cluster-head (or the
node). Therefore, it is unrealistic to deploy large number
of cluster-heads in the network.

Theorem 4 : In order to maximize the lifetime of a
network that is composed ofn regular nodes andNc
cluster-heads with the lowest cost, the upper bound ofNc

is log(1 − 2logP/n)/log(1 − πr2/M2), where P is the
probability that each regular node can communicate with
at least one cluster-head directly.

Proo f : From Formula (6), the network lifetime is
maximized if the descendant numberS(T,vi) of each
regular nodevi in a treeT is minimized. Therefore, if
each regular node’s descendant number equals 0, the
network lifetime achieves its maximum.

On the other hand, if the numberNc of the
cluster-heads is large enough, each regular node can
transmit its data to at least one of the cluster-heads
directly and has no descendants in the tree constructed in
its cluster. Therefore, there is a connection between the
value of Nc and the value ofP. Next, the relationship
betweenNc andP is analyzed.

Since each regular node’s communication range isr,
the size of its coverage area isπr2. Therefore, the
probability that there is a cluster-head in a regular node’s
communication range isπr2/M2. As a result, the
probability that each regular node can communicate with
at least one cluster-head directly is :

P= (1− (1−πr2/M2)Nc)n (13)

From Formula (13), we have :

logP= nlog(1− (1−πr2/M2)Nc)

=⇒ 1− (1−πr2/M2)Nc = 2logP/n

=⇒ (1−πr2/M2)Nc = 1−2logP/n

=⇒ Nclog(1−πr2/M2) = log(1−2logP/n)

=⇒ Nc = log(1−2logP/n)/log(1−πr2/M2)

(14)

Therefore, ifNc is set to be equal to or larger than
log(1−2logP/n)/log(1−πr2/M2), each regular node can
communicate with at least one cluster-head directly and
the network lifetime is maximized, where 0< P < 1.
Considering the high cost of each cluster-head, in order to
maximize the network lifetime with the lowest cost,
log(1− 2logP/n)/log(1− πr2/M2) is the upper bound of
the number of the cluster-heads.�

Corollary 1 : In a network withn regular nodes and
Nc cluster-heads, if
Nc < log(1 − 2logP/n)/log(1 − πr2/M2), the extended
implementation of MITT achieves an approximate ratio
of Ω(log(n/Nc)/ log log(n/Nc)).

Proo f : Since the network containsNc cluster-heads,
there areNc clusters in the network and the number of
regular nodes in each cluster scales approximately as
n/Nc. In each cluster, MITT is performed to construct a
min-max-weight spanning tree. Combining with Theorem
3, MITT achieves an approximate ratio of
Ω(log(n/Nc)/ log log(n/Nc)) in each cluster.�

5 Simulations

The simulations are assumed to be performed in a
square field of 100m×100m, in which nodes are
randomly dispersed. Each node in the field is assigned an
initial energy level, which is randomly selected from the
set of [0.5, 0.6, 0.7, 0.8, 0.9, 1] Joules(J). Each node
produces 16 bytes of data at each round. The transmission
range of nodes is set to 25m. According to previous
measurements [33], the transmission power is about two
times the reception power, i.e.,Etx=2Erx. Therefore,Erx is
set to 50nJ/bit andEtx is 100nJ/bit. We mainly concern
about the problem of finding a maximum lifetime tree, so
the parametersk1 andk2 are set to large enough values to
enable MITT to be performed without any constraints,
e.g., k1=n and k2=n3. In data gathering without
aggregation, large amounts of data should be transmitted
to the sink and the nodes close to the sink will suffer from
heavy loads of data transmissions. In order to avoid
congestion and retransmission among the nodes, we
assume that there are effective congestion control
mechanisms in the network.

The simulations are performed on a personal
computer (PC) with a Pentium 4, 2.8 GHz processor and
1 GB RAM. The effect of parameterϕ on MITT is first
evaluated. Then, the network lifetime achieved by MITT
is examined. Finally, the effect of the cluster-heads’
number on the extended implementation of MITT is
evaluated. All simulations are performed 20 times and the
average values of their results are took as the final results.

5.1 Effect ofϕ

In MITT, ϕ is an important parameter that affects the
classification of nodes. Therefore, the performance of
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(a) Effect ofϕ on tree lifetime

 

(b) Effect ofϕ on run time

FIGURE 7 Effect of ϕ

MITT is examined under different values ofϕ. Assume
that there are 100 nodes in the field, and the sink is
located at the center of the field. The tree lifetime
achieved by MITT under different values ofϕ is shown in
Figure 7(a), and the corresponding run time of MITT is
shown in Figure 7(b).

In Figure 7(a), there is a trend that the tree lifetime
achieved by MITT decreases asϕ increases. In Figure
7(b), the run time of MITT also decreases with the
increase ofϕ. That is because the numbers of nodes inV1
andV2 increase with the increase ofϕ, and the number of
nodes inV3 decreases at the same time. Therefore, the
nodes inV1 are hard to find the nodes inV3 to transfer
their descendants. As a result, whenϕ is increased, the
algorithm terminates quickly and just constructs a tree
with short lifetime.

5.2 Network lifetime

In this subsection, four typical algorithms : PEDAP,
PEDAP-AP, MNL and LOCAL-OPT are selected to
compare with MITT. Assume that the network instances
comprise 100, 150, 200, 250, 300, 350, and 400 nodes,
respectively. In order to examine the scalability of MITT,
two scenarios are considered : (1) The sink is located at
the center of the field (its coordinate is (50, 50)) ; (2) The
sink is located at the edge of the field (its coordinate is
(100, 50)).

Since MITT and the four algorithms are all performed
at the sink, their implementations are the same at each
round, e.g., in the set-up phase, the sink collects the
information of nodes’ energies and the network topology
to compute a tree, and then informs the tree information
to all nodes ; in the steady-state phase, all nodes transmit
their data to the sink by the tree.

In the set-up phase of each round, each node will
consume some extra energy in aspects such as
transmitting its energy’s and its neighbors’ information to
the sink and receiving the tree information from the sink.
This part of energy consumption is almost the same at
each round, and it is independent of the algorithms.
Moreover, it is insignificant compared with the energy
consumption in the steady-state phase[4][30]. Therefore,
we ignore this part of energy consumption and mainly
concern with the energy consumption in the steady-state
phase. The network lifetime and run time of the
algorithms in different network instances are shown in
Figure 8.

In Figure 8(a), the network lifetime achieved by the
algorithms in scenario 1 is shown. Since MITT can
construct amin-max-weight spanning treeto effectively
conserve the energies of nodes at each round, it achieves
longer network lifetime than other algorithms.
LOCAL-OPT achieves longer network lifetime than
PEDAP, PEDAP-AP and MNL. However, the network
lifetime achieved by LOCAL-OPT is lower than that of
MITT. The network lifetime achieved by PEDAP is the
lowest, because it is not energy-aware. PEDAP-AP
improves PEDAP and achieves longer network lifetime
than PEDAP. The network lifetime achieved by MNL is
longer than that of PEDAP-AP and PEDAP, but it is lower
than that of LOCAL-OPT and MITT.

In Figure 8(c), the network lifetime achieved by the
algorithms in scenario 2 is shown. Compared with Figure
8(a), the network lifetime achieved by MITT decreases by
about 48%, and the network lifetime achieved by PEDAP,
PEDAP-AP, MNL and LOCAL-OPT decreases by about
35%, 24%, 23% and 47% in average, respectively. This is
because the number of the sink’s neighbors decreases,
when the sink is located at the edge of the field.
Therefore, the sink’s neighbors have to relay more data
from other nodes further away from the sink and die
sooner. As a result, the network lifetime achieved by all
algorithms decreases. However, though the network
lifetime achieved by MITT decreases the largest, it is still
longer than that of other algorithms.

In Figure 8(b) and Figure 8(d), wherever the sink is
located, MITT needs more time than other algorithms to
terminate. However, since all of above algorithms are
performed at the sink and the sink has powerful
computation ability, the run time of the algorithms is not
our main concern. Therefore, though MITT has higher
time complexity than other algorithms, it is still a better
choice for data gathering without aggregation because it
can achieve longer network lifetime than existing
algorithms.
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(a) Network lifetime in scenario 1

(b) Run time in scenario 1

(c) Network lifetime in scenario 2

(d) Run time in scenario 2

FIGURE 8 Network lifetime and run time of algorithms

5.3 Effect of Nc

In the extended implementation of MITT in
large-scale networks,Nc cluster-heads are deployed in the
network to divide the network into small clusters.
According to Corollary 1, the extended implementation of
MITT has an approximate ratio of
Ω(log(n/Nc)/ log log(n/Nc)). Therefore, the numberNc
of the cluster-heads would affect the performance of the
algorithm, i.e., ifNc is a large value, the approximate ratio

(a) Effect ofNc on the cost of the cluster-heads

(b) Effect ofNc on the network lifetime

FIGURE 9 Effect ofNc

is a small value, and vice versa. However, the costs of the
cluster-heads are high, it is unrealistic to deploy large
number of cluster-heads in the network. In this
subsection, the relationship between the number of
cluster-heads and the network lifetime achieved by MITT
is examined.

Assume that there areNc cluster-heads and 100 regular
nodes in the network. The cost of a cluster-head is set to 1
unit price. The communication range of the regular nodes
is r=25m. The effects ofNc’s different values on the cost
of the cluster-heads and the network lifetime are shown in
Figure 9.

In Figure 9(a), the cost of the cluster-heads increases
proportionally with the increase of the number of the
cluster-heads. That is because that the cost of a
cluster-head is set to 1 unit price, andNc cluster-heads
cost Nc unit prices accordingly. Since the cost of the
cluster-heads increases with the increase of the number of
the cluster-heads, large number of cluster-heads will bring
high cost for the deployment of the network. According to
the low-cost characteristic of sensor network, the number
of cluster-heads should not be a large value.

In Figure 9(b), whenNc <40, the network lifetime
increases with the increase ofNc. That is because the
increase ofNc helps that more nodes can communicate
with at least one cluster -head directly, and these part of
nodes do not need other nodes relay their data and save
the other nodes’ energy. Therefore, the increase ofNc will
benefit to increase the network lifetime. However, when
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Nc ≥40, the network lifetime achieves its maximum and
would not be increased. On the other hand, when
Nc ≤ 20, the network lifetime increases quickly with the
increase ofNc. WhenNc > 20, the effect of the increase
of Nc on the network lifetime becomes smaller. Therefore,
the increasing of the number of the cluster-heads will not
always bring proportional increasing of the network
lifetime. As a result, the number of the cluster-headsNc
should not larger than its upper bound.

6 Conclusions

In this paper, the problem of constructing a
min-max-weight spanning treefor the data gathering
without aggregation is studied. The problem is proved to
be NP-complete, and our goal is to maximize the network
lifetime. A novel approximation algorithm MITT is
proposed for solving the problem. MITT achieves an
approximation ratio ofΩ(logn/ log logn). Moreover, a
solution for extending MITT to large-scale networks is
presented. Simulation results show that MITT can achieve
longer network lifetime than existing algorithms. In the
future, we will research a new scheme with low time
complexity and a distributed scheme.
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