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Abstract: TheFq - code of a symmetri¢v,k, A )- design is a subspace generated by the incidence matrix iythmetric design. In
this paper, we examine the minimality of the codewords irdtial codeC of the binary cod€ of a symmetriqv,k, A )— design. So,
we use the relationship between the minimum and maximumeronzeights in the dual cod2" with the number ofy.
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1 Introduction If we use the way of constructing the secret sharing
scheme described by Mass&y], there are three parts of

It is important that a secret key, passwords, informationsS€Cret sharing scheme basedbhese are
of the plan of a secret place or an important formula of 1) the secret which is element &,

a product or i.e. must be kept secret. One of the ways of) (N— 1) participants and

solving this problem is to give secret sharing schemes.  3) & dealer.

In fact, for a secret sharing the main problem is to ~ The dealer has a secret. So, the main question is "How
divide the secret into pieces instead of storing the whole. is the secret shared between the participants?” and one of
The secret sharing schemes were introduced byhe important problems is "If the dealer ("director”) lose
Blakley [3] and Shamir 15] in 1979. Since then, many the secret, .h.ow is it recovered? In this context, we remind

constructions have been proposed. In this section, it i$ome definitions about the subject.
given some basic definitions on the subject. (In this paper,
the finite fieldGF(q) will be denoted by the symb6t,) Definition 12(Minimal Access Set) A subset of

Definition 11(The Code of a Symmetric Design) The £ Participants is called a minimal access set, if the
code of a symmetriqv,k,A)- design is a subspace participants in the subsets can recover the secret by

generated by the incidence matrix of the symmetric desig/f°MPining their shares but any subset at the participants
[9]. can not do so12].

Before giving the definition of minimal access set we pefinition 13(Support of a \Vector) The set
have to remind some basic notions of the system of secreg — 1o < j < n—1|c; 0} is called support of a vector

sharing: C = C1Cp...Ch € (Fg)". A codeword g covers a codeword

Let G = (9o,01,---,0n-1) be a generator matrix of ¢, if the support of g contains that of ¢[12].
[n,k,d] - code C , where go,01,...,0n-1 are column

vectors ofG. To obtain a secret sharing scheme the first o o

step is to considered a secret space. A secret spadeefinition 14(Minimal Codeword) A minimal codeword ¢
consists of the set of participants and a dealer. (Fois a codeword which covers just only its scalar multiples
example "director”.) [12].
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Lemma 289f A is the bx v incidence matrix of a
2—(v,k,A) design, then the dual of the binary code with
In a secret sharing scheme, to know whether ofgenerator matrix

codewords are minimal is an important problem. We need

minimal codewords to determine the access structure of 1

secret sharing scheme. Before giving our two theorems on '

2 Characterizations of Minimal Codewords

this subject, we will remind some definitions and two D= CA

lemmas given in16] and [9]. 1

Definition 21(2 — (v,k,A) Design A 2— (v,k,A) design o : .

is an incidence structure satisfying the following has minimum weight

requirements: (b1 r+A

i) There are v points. Win > mln{ SR } [16].

i) Any block is incident with k points.
iii) Any 2 points are incident witiA blocks P.

Definition 22(Maximum and Minimum Weight of the
Code) Let C be aifn,k,d] code over f. The elements of

C are called codewords. The weight of a codeword is the
number of nonzero coordinates in it. The minimum weight

ProofLet S be a minimum set of linearly independent
columns of D and supposgS| = m. If the left-most
column vectorj of all ones does not belong & then

r+A
=m>—
IS =m> )

of a code is the smallest nonzero weight of any codeword.
The maximum weight of a code is the biggest weight ofind we are done by Lemma 2.3. Suppgdeelongs toS.

any codeword9].

Lemma 23A code C has minimum weightd, if and only
if every d— 1 columns in a parity-check matrix are linearly
independent16)].

Lemma 24f A is the bx v incidence matrix of a
2—(v,k,A) design, then the dual of the binary code with
generator matrix A has minimum weight

(r+A)
A )

where r is the number of blocks on a poid#].

(2.1)

Wmin =

ProofLet S be a minimum set of linearly dependent
columns ofA, whereA is a matrix over and suppose
|S| = m. Then every set oin— 1 columns is linearly
dependent and Lemma 2.3 shows ti@tn(C+) > m.
Suppose; is the number of rows that hajeones in the
columns ofSadd to a zero column vectar; = 0 for odd

j and we have the incidence equations:

ZZinZi =rm

and
Z 2i(2i — 1)ng = m(m—1)A

So
z 2i(2i — 2)ng = m[(m—1)A —r]

and every summand is non-negative. Therefore

r

1> —
ml*/\

r+A
>
m==3
[16].

Then the columns o® add toj, whereS is the set of all
the columns ofSexceptj. Hence ifn; is the number oA
that havei ones in common with the columns &f then
n; = 0, for eveni and

> MNia=b
and
> @+ 1z =r(m-1)
that is
z 2ingi 1 =r(m—1)—b>0.
So,

r

and we are done.

Theorem 2§Ashikmin-Barg) In arin, k|- code C over F;
let Wiin and Wnax be the minimum and maximum nonzero
weights, respectively. If
q-1
> (2.2)
q

then all of the nonzero codewords of C are minimal [18].

Wmin

Wmax

ProofSuppose ¢ (uo,Ug,...,Un—1) covers
C2 = (Vo,V1,...,Vn—1) @ndcy is not a multiple ofc,. Then

Winin < W(C2) < W(C1) < Wimax

Foranyt € Fy letm = |[{i : v #0,u; =tv; }|. By definition

M = Wo.
tekg

Hence there exists sontesuch thatm > %. For the
codewordc; —tcp.
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Now, suppose that
W2 Wmin q Wmin
w(c1 —tcy) <wp— —— < Wmax— Wimin— = Wi 2(k+A
(1 2)_ 1 q—l_ max q—l q—l min q—l min Winax < ()‘\F )

This means the nonzero codewayd- tc, has weightless  Then,

thanwnin, Which is impossible§]. 1 A
—_—> . (2.4)
Wmax ~ 2(kK+A)

Using the definitions, lemmas and theorem given

above, we give two theorems as follows:

If we multiply both sides of inequality (2.4) b2 ), itis

Theorem 27Let C be the binary code of a symmetric ObPtained that

(v,k,A)- design. If
2(k+A)

W, < ——
max A

(2.3)

for the dual code € of the binary code C, then all of the
nonzero codewords in the dual codeé @re minimal §].

ProofFor a linear cod€, the dual cod€! of the codeC
is also a linear code. From the Theorem 2.6 if

Wmi —
Winin _ =1
Wmax q

for the dual code&€ - of the binary code&, then all of the
nonzero codewords in the dual codé are minimal. For
the binary code = 2, then

g-1 1
q 2
So, if
Wmin }
Wmax ~ 2’

then all of the nonzero codewords in the dual cGdeare
minimal.
Now we have to prove that

Wmin _ 1
Wmax ~ 2’
if
2(k+A)
Wmax< )\ .

Let A,y be the incidence matrix of a 2 (v,k,A)
design. From

k+A
1 1

> (2.5)

SinceWmin > ¥4, it is obtained thatimn > I if it is
max
written Wiin instead of(¥f2) in (2.5). This means all of

the nonzero codewords in the dual c&lfeare minimal.

Theorem 28 et A be the incidence matrix of the
symmetriqv, k, A )— design. All of the nonzero codewords
in the dual code € of the binary code C which is

generated by the rows of the matrix

are minimal if wnax < 2<V—;k) [4].

ProofLet Ay, be the incidence matrix of a2 (v,k,A)
design. Then, from Lemma 2.5 the minimum weight of
the dual code of the binary code generated by the rows of
the matrixD satisfy the boundary

Wimin > min{#,#}. (2.6)

For the symmetriqv,k,A)— design sinc&k =r, b=,
inequality (2.6) is transformed to

W > min v+k k+A
min — k ) )\ .

Lemma 2.4 the dual code of the binary code with Sincek > A, we have

generator matriXA has minimum weight

Wmin = ——

)

wherer is the number of blocks that are incident with a

point. Particularly, in a symmetrig/, k,A)— designk =r
and the minimum weight of the dual co@e of the code
C which is generated by the rows of the matixs

K+ A
LI
Wmin = 2

2.7)

From (2.7) we obtain

L fVEk KA vk
kK A Tk

So

v+k
Winin > ——.
min — k
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