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Abstract: This paper presents a mathematical model and an algoriteedlmn ant colony optimization to solve a long distance nguti
problems. The size of freight is relatively small, which sikast In First Out “LIFO” policy and with several time constraints. The
objective consists of reducing costs by optimizing the iogaf goods in vehicles grouping orders and minimizing nemiif routes.
The performance of the algorithm has been proved using Empetal data based on historical data from a large Sparéstsport
company.
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1 Introduction single central depot to serve a set of customers by a fleet
of vehicles, and where all customers are served only once

In operational terms, the distribution of goods has[5]. The most extensively studied variants of the VRP are

increased in complexity due to increases in the number otapacitated VRP, where each vehicle has a maximum

operations, the distances involved, and the value of goodBmit of capacity, and VRP with time windows], where

and also the reduction in tonnage. The profit margin hasach customer must be served inside a time window. In

been reduced and this has brought about an increase 7], waiting time which is restricted and penalized in the

the volume of freightZ]. objective function is allowed. Another variant is
This article is focused on Long Haul Transportation multidepot VRP, and §] deals with both single and

(LHT) and its aim is to optimize transport operations. multidepot.

This problem presents different transport systems:

“customized transportatidnwhere a vehicle is dedicated

to each customer, andcénsolidated transportation 2 Mathematical Formulation

where the demands of several customers are served by the

same vehicle by means of the so-calledlet O° = OU {F1} be the set of orders where
less-than-truckload ~ carrier 2]  Consolidated © = {1...m} is the set of customer orders to be
transportation can use break-bulk terminals, which act adransported andr1 is a fictitious order (initial and the
intermediate transshipment points where the freight isfinal order of every route). Leb = (N*, A) be a complete
unloaded, sorted, consolidated and reloaded, or it can us@aph, WithN = N* U {ng1,nn; } the set of nodes where
peddling/collecting routes, where carriers make multipleN = {1...n} is the set of customers nodes to be served

orders pJ. belong to the ordef1. Every node € N that belong to an

Peddling/collecting routes with some special variantsCrder must be distributed by the same vehicle. The set
of the classic Vehicle Routing Problem (VRP) are A={(i,]):i,j €N} contains the directed arcs.
considered in4]. The VRP objective is to determine the
optimal set of routes originating and terminating at a  Decission variables:
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the customer in the ordeind € {1...totaly}, where
totall is the number of nodes of kind

v _{1’ if 0o€OinveV justbeforeke O (1) @ € {1=picking2=delivery} of the ordero & O.
=

0, otherwise Finally, mp,; is the amount of loaded freight amdd; is
the amount of freight to delivery in the node N,o € O.

1 if oeOinveV CPlis the interregional cost between the zones of the

-7 _ 2) first pickup node and the last delivery node of a route,
0, otherwise where the cost between zones is knd@h;. CP2is the

cost due to the stopovers between the first and the last
node of a route. C2 is known as the cost of stopping for
A3) loading/unloading.CP3 is the cost of the difference

y { 1, if arc(i,j) € A is travelled by € V
ij =

0, otherwise between the calculated distance of a route and the actual
distance travelled taking in new orde@P4is the cost of
1, if veV is activated the total waiting time, and C4 is the cost per unit or time.
V= { , 4) CP5is the penalty cost by percentage of filling.
0, otherwise The objective function is subject to constraints from

(1) to (39). In (11), y3; € 0,1 establishes if nodies N of
ordero € Ois typea € {1 = picking 2 = delivery}, (12
the relationship betweey§; andh; € {0, 1} that indicates
if nodei € N belongs to the ordey € O. (13) refers to the
total a € {1 = picking 2= delivery} nodes of an order

Obijective function:

Min(CP1+CP2+CP3+CP4+CP5) (5) o€ 0. The fictitious nodesy: € N* andny; € N* belong

to F1 € O (14). Let mp; > 0 and md,; > O be the

CP1= Z/ %xglo Clogyd, . o (6) amount of freight to Ioao[/gnload in the notde N of_thg
vey & )7 (ototalg) ordero € O and M a sufficiently large number satisfying

constraints 15). The total load is the same as the total
unload for every ordeo € O (16).

Svev Yoc0Zy (Tien Shoi) —

CP2=C2-( Svev Yoeo X0 (Stobyg ) + Stbd( ) 0

O,totalg)

Zwygi >1, YoeOVieN,a={12} (11)
i€

vev ijeN Ui\j{ ’ disrij -

Z y& <hgi, Yo€O,VieN (12)
CR3=Cs3. (Evev 2 0c0 Xf\:/:lo : (diStb(O,l)vd(o,tmmg)) ) (8) a=1.2

totaly = $ y&, YocO,a=1{1,2 (13)
(0] ol
i€

CP4=C4- Zj Wi (9)
0=01 Veing =1 Yein, =1 (14)
CP5 = Z/penaltyCoét (10)
ve
M <M-ygi, M <M-y5, VieN,YoeO (15)
penaltyCost =

Zwmpji—zwmd)izo, Yoe O (16)
i Y0c0Z8 FieN MPbi E E
50, if 0.5< (LoBzNIb) <08

100, if 0'25§( OEOZOQV'ENmFb') <05 From (17) to (24) are the constraints for all the

200, if 0< (zoeoZXszieN mn)i) <025 act!vated routes. The order F17) is included in all the
activated routes. There is an ordee O after F1 € O*

(18) in all the activated routes. An order is allocated to

only one vehicle exceptl € O* (19). Before and after an

ordero € O, there is one and only one ordee O* (20).

Constraint 21) is the flow conservation equation that
Let distj,tij,cij be the distance, the time and the cost ensures the continuity of each vehicle route. If an order

to travel from node € N to nodej € N through ard(i, j), 0 € O is allocated to the vehicle v, then vehicle v is

wherecjj = C3xdistj, andC3 is the cost per kilometer; activated 22). ny; € N* is the first nodeZ3) andn,; € N*

sty refers to the service timevty; is the waiting time and  is the last node2d4) for all the activated routes.

boing, @anddging return the identifier node of the picking or

the delivery operation of the orderc O that is placed by Zt,-a'=1 WweV (17)

0, otherwise
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a’- ZDXI\:ILO =0, WeV (18)
oc

Z/Zg’:l, YoeO (19)

Xio = Zo, ;k Xox =2y, YOo€O,WeV
keO* k#0 keO* k#0

(20)
Xy — Xy =0, Voe O,WweV (21)

keO™ k0 keO" k#0
Z!.a <0, YoeO,WeV (22)

ENU%Ol:O, ENUXOLi-aV=O, wev  (23)
i€ 13

Uy . =0, U’ -a’=0, WweV (24)
ieZV ! ieZV e

From 25) to (31) define the arcs between nodes and

ensure the LIFO policy. In 25), the fictitious node
No1 € N* is linked with the first pickup nodé,; of the
first ordero € O in route v; 6) and 9), the pickup and
delivery nodes of ordeo € O in route v follow the
sequences introduced by the customet?), the last
pickup node of ordeo € O with the first pickup node of
orderk € O, if orderk € O is just after ordep € O; (28),
the last pickup node of the last ordee O, with the first
delivery node of ordeo € O; (30), the last delivery node
of ordero € O, with the first delivery node of ordére O,

if orderk € O is just after ordep € O; (31), the fictitious
nodenn; € N* with the last delivery node of the first order
0 € O in route v. From 25 to (31) it is considered
Vv e V,Vo,k e Owhen itis required.

xf\:/l,O : Ur\1/01,b01 S 0 (25)

z-uy <0, inde {1...total}  (26)

Bo,ind)Po,ind+1) =

VoV
Hox Ub(o,tota%)vb(k,l) <0, o#k (27)
X5r1-Up < 28)

(ototald) o)
VoV ; 2
Z5Ud gy domary < 0r ind € {1...totalg}  (29)

XY, -UY /<0, 0#k (30)

(o,total3) G

XY10-UY <0 (31)

(ototald) M1 —

The service timesty; is composed of a fixed terrsts,
and a variable termst,oi, which is a linear function of
demand. Each service of nodes should begin and end
within a pre-specified time windovjey, loi] for every
nodei € N of ordero € O. A vehicle is allowed to arrive
at the node before the time window stanig,;. Let aty;,
be the arrival time of nodec N of ordero € O, andEn,
andCy, the maximum levels of driving and waiting time.
Time constraints are shown fron32) to (36) and it is
consideredvv € V, Vi,j € N, Yo,k € O when it is
required.

ati+ (1-Uy ;)-M=>0 (32)

Moy,

altj — atoi+ (1—UyY) - M > Wy + St +tij (33)

atr1n, —ati+ (1— U},

1,Nn1

) - M > Wi + Sy +tin,,  (34)
atoi + Wioi + (1 — hoi) - M > e (35)
atoj + Wihoi < loj + (1 —hoi) - M (36)

(37) to (39) define the limits for the amount of freight,

the total waiting time and the total driving time for all
activated routes.

- mo, | <QV-a', wweVv (37)
3z (gme)

Uy -tij <Cp-a’, WeV (38)
ijx Wl < Ep-a’, WevV (39)
o€ i€
3 Aco Algorithm

Mathematical model is unsolvable for problems of
realistic size, so a metaheuristic based on Ant Colony
Optimization (ACO) is proposed. ACO is a method
inspired by the behavior of real ant colonies. ACO has
been successfully applied to several combinatorial
optimization problems and has achieved satisfactory
performancesd] and [10].

ACO algorithms are construction algorithms where
each ant is a solution and its movement depends on two
kinds of information. Heuristic information determines
the preference of moving and pheromone trail
information measures the “learned desirability” of the
movement, depending on whether or not the movement in
question has been previously carried out.

The algorithm has three phases with a different ACO.
The choice of the main road depending on the
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Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

ne E oD

B. Royo et. al.: Solving a Long-Distance Routing Problenmgsi

intermediate nodes, traffic, etc. and is selected using the

ACO-I. ACO-II selects the first order of a new route and ((7-tirstg)?17st- (1 _firstg)Prirs )

ACO-IIl adds new orders while possible. The outline of P Oﬁesgmerm(<T—fif5tﬂ>”“’51'(n-firstmﬁf"ﬂ) ’} “3)
the proposed algorithm is presented in Figlire °  Yif oerestorderyr)
0,otherwise

Finally ACO IIl selects the ordet that goes right after order
o and the probability rule is shown in expressioAd)and @5).

Generate an inftal fexmnble soletion of problem
Ingtialize ACO parameters

While (the sep condition is et verified) do 1,if k= argmax ((t_resf,)qes . (n_resf,)Pes)
Wiile {the number of ants =<3 do Prk = { kerestorderg(r)
Whkile {tise niamber of erders o <0 da 0 0. oth .
ACC:L Order-touroad aliscaton £ , otherwise
End do; (44)
While (the nember of coders ¢ < O) de
ACO-I: Firsf orger-disrause frcarsar 0 arest Brest
Whibs (ot end of Toute) de ((Tresp,) Mrest-(nrest,,)rest)
ACO-ML: Rert of the orders:tecroute inzartion §) r Berg )((r_resgu)ﬂrest.(r,_restéu)ﬁrest) ’
End do; pr — { ucrestordersr 45
End do; o= {0 e restordergr) } (45)
UCpduic pheromoene ouil of eleceed arcs {hocal wpdaningl; 0.otherwise
Esd do: ’
_— Updure pheromone wall (global updasing) The parametera andp establish the relative influence pf
LF

versust. The initial value of pheromong) = 1/(n-OBJ) is equal

for the three ACOs, wherg is the total number of orders and

OBJ the objective of the initial solution. After each ant finds a

solution, the pheromone levels of visited arcs are modifisch(
Each ant builds a solution to the problem according toupdating) in orde_r to diversify the solutions obtained by émts

a pseudo-random-proportional rule. At each step the antith the formula in ¢6).

makes a move in order to complete the solution choosing r—(1-¢) T+ T, 0<p<1 (46)

between elements from a set of expansion states,
Once all the ants of the iteration have been considered, the

following a probability function that takes into account )
the following: the attractivenesg,, of the moveo — u pheromone levels are updated (global updating), whestOBJ

according to the heuristic information about the problemS the best solution obtained, as it is shown4)(

(ACO-I: cost to carry out ordep by roadu; ACO-II:

available capacity of the vehicle after loading ordeand

the distance required to dispatch order ACO-III:

available capacity of the vehicle after loading orders

andu and the distance required to dispatch oraeasdu,

and the levelry, of pheromone of the move — u that

indicates how good the move was in the past. As a ) )

solution is found, this value is updated. 4 Computational Experiments
The pseudo-random-proportional rule combines

random selection with the best option. leebe a random 4,1 Experimental Data

number in[0,1] and ¢y, a pre-specified parameter, such

Fig. 1: Proposed algorithm

1
T:(l—P)'T+P'(m)7 0<p<1l (47)

that 0< o < 1. In ACO |, the ordero uses roadr
following the rule: If (g < qp) then the probability follows
the rule in expressior() else the expressiod) .

1 if r=

( argmax  ((T_roadyy)°oad - (1_roads,)Proad )
Por =

ucFeasibleroadgo) }
0, otherwise

(40)

((T-roady ) oad- (1 _roady )Fraod)

S ((110ady,)Toad:(1)_0ady,)Proad)
ueFeasibleroadgo) }

if r € Feasibleroadq0)
0,otherwise

Por = { (41)

In ACO I, ordero assigned to road will be the first on the
route.In this case, g < qp) then the probability follows the rule
in expressions42)and @3).

The instances were based on the daily work of a large trahspor
company in Spain. A random value was assigned to all the
parameters considering:

eThe fleet is heterogeneous in technical properties. Twestype
of goods were considered, normal (N) with the 70% and
refrigerated (F) the rest. The vehicles have a maximum
capacity of 24.000 Kg, 13,5 linear meters, 33 non-stackable
pallets and 92,951.

eThere are three types of orders according to the size of goods
45% small orders (0-10 pallets), 35% medium orders (11-23
pallets) and 20% large orders (24-33 pallets). The time to
serve to each customer is the sum of a fixed time (1 hour)
and an extra time (0.03 hours * number of pallets).

eCustomers are allocated to different zones in Spain. The
percentages of pickups and deliveries by zone are shown in

1,if o= argmax ((T_first})%mst . (n_first})Pist) Figure2. _ _ _ o
P, = ocrestordergr) eAll pickup operations are made in the morning considering
0, otherwise three time ranges: 50% are made from 6:00 to 9:00, 30%
(42) from 9:00 to 11:00 and 20% from 11:00 to 13:00.
@© 2015 NSP
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The results of the experiments are listed in Table
Regarding the value of the objective functidp, the results
suggest that the allocation of the road a posteriori impsdie
solution considerably because all orders can be combined
mutually, decreasing the number of vehicles required (ab%u

s ' wotivinas in all cases).
The number of vehicles required is not proportional to the
Fig. 2: Percentage of pickups and deliveries by zones number of ordersf). The size and the geographical distribution

of the orders must be considered.

An important result to note is that solutions with higher
percentages of vehicles with two or more ordefs) (do not
fimply a lower cost. In the experiment with 500 orders, when th
fwo types of road allocation are compared, the percentage of

deliveries. If it is less than 400 kilometers, the range is vehicles with more than one order is greater a priori .(11.7 VS
randomly selected between 17:00 and 21:00 of the same-0:6%). However, the percentage of grouped orders witteatsp
day. If not, it is randomly selected between 6:00 and 13.001° total orders.fy, is greater in a posteriori (32.5%) than in a

of the next day. The size of each time window is calculated Prioi allocation (29.6%).Thus, better solutions are oted
adding a quantity to the lower limit of each time window: when many orders are grouped in fewer vehicles. The last part

one hour is added in 40% of cases, one hour and 30 minute§ the study involved the influence of the time windows stgte
in 30% of cases and 2 hours in the other 30%. ecause is the most restrictive data for grouping orderghifn

case, it is possible to extend the window decreasing therlowe

Euclidean distance from the GPS position of the nodes is!iMit by two hours. The cases were: € no decrease
used to calculate distances between nodes since the nurber - = ONlY Pickups 2D = only deliveriesand 2D = both All

available nodes in our database is greater than 400 ooqthe experiments were calculated with a posteriori roactation
Therefore, it is unfeasible to store a real distance matiigis since the best results are achieved with this option. Thaltees

unviable economically to access a geographical informatio @' listedin Table. o

system (GIS). An average speed of 70 km/h is established in _ 1he TW extension to serve customers has a significant

accordance with historical data from a large Spanish tramsp influence on the improvement of solu_tlons. Wlth respect ® th

company. In 8], which deal with long distances and routing total cost, the gaseF’D.(k.)gth operations) achieves the best

design for less-than-truckload, the average speed veetegn  'eSults, decreasing the initial cost up to 41-45%. Note that

80 and 75 km/h and with real distances between nodes. total gost |§ Ie§s if the time window is extendeq in plgkupbea

Other restrictions are 9 hours as maximum driving time andthan in deliveries because the routes can begin earlier.

a maximum daily waiting time of 3 hours plus 15 minutes per

route. The number of roads considered for the Iberian Pelains

is 18; the number of daily orders varies from 100 to 1500. It 5 Conclusions

should be noted that at least double the number of customers

will be visited. The influence to allocate the road beforeftera  This paper solves a long-distance routing problem basechon a

finding the solution is considerd® : after 1 :before. ACO meta-heuristic. Furthermore, several instances haea b
solved from the historical data of a company with a number of
orders between 100 and 1500, in which the influence of road

4.2 Results and Discussion selection has been studied as well as the extending of time

windows in terms of the objective function (cost), the védsc

involved with respect to total orders, vehicles with morarth

one order with respect to the total vehicles used and grouped

orders with respect to total orders.

Future research could address the possibility of using the
proposal outlined in this paper to solve more general forfns o
the vehicle routing problem, which would contain more
real-world objectives and constraints. The powerful cépaaf
the algorithm to find excellent solutions to a difficult
combinatorial optimization problem should make it a useful
model for solving many other problems in transportation and
logistics.

eThe distance between the pickup and the delivery point o
each order is needed to establish the time range o

The experiments were performed on a PC Intel Core i5 at
4.8GHz with 4GB of RAM under Windows 7. It was necessary
to estimate the value of the set of parameters that influethees
three ACOs implemented in the algorithm. For this purpdse, t
literature was reviewed and a set of experiments relatetieo t
real problem was carried out. The parameter values for tieeth
ACOsarea =1, =2and$ =p=0.1.

To measure the efficiency of the solution were used
measured in terms of the upper and lower value of four
performance metrics:

o f1: Total cost optimized with respect to the cost of the initial
solution.

ofy: Percentage of vehicles involved with respect to total
orders.

e f3: Percentage of vehicles with more than one order with
respect to the total vehicles used.

o f4: Percentage of grouped orders with respect to total orders.

(@© 2015 NSP
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Table 1: Results of algorithm experiments with different road &aditians

% Total cost / % Vehicles / % Vehicle with more| % Grouped orders
Number of Orders| Roads| Cost initial solution Orders than one order Total orders
f{nax f{nln ffve f2maX fénln fgve f3rnax fénln fgve waax f4mln fzve
100 0 68.3 | 67.4 | 679| 68.0 | 67.0 | 67.1 | 235 | 16.4 | 20.5 | 49.0 | 43.0| 46.7
1 765 | 726 | 75.1| 740 | 71.0 | 725| 243 | 19.7 | 21.9 | 46.0 | 42.0| 434
200 0 778 | 777 | 77.7| 745 | 745 | 745| 20.1 | 187 | 19.1 | 40.5 | 39.5| 39.8
1 83.0| 80.0| 819|815 | 785| 79.6| 159 | 121 | 154 | 345 | 29.0| 32.3
500 0 80.1 | 79.7 | 80.0| 758 | 75.2| 75.5| 11.3 | 10.3 | 10.6 | 33.2 | 32.0| 325
1 84.7 | 84.1| 845| 80.0| 79.4| 79.6 | 12.7 | 105 | 11.7 | 30.6 | 28.6 | 29.6
1000 0 70.1 | 69.5| 69.9| 66.6 | 66.0 | 66.2 | 21.0 | 20.4 | 20.7 | 47.7 | 47.1 | 47.4
1 76.9 | 75.7| 76.3| 731 | 719 | 725| 20.3 | 183 | 19.4 | 429 | 40.8 | 415
1500 0 66.8 | 66.3 | 66.6 | 62.3 | 61.7 | 62.0| 29.1 | 289 | 29.0 | 56.3 | 55.5 | 55.9
1 729 | 718 | 72.4| 68.6 | 67.2 | 67.8| 274 | 25.4 | 26.6 | 51.1 | 48.5| 50.2
Table 2: Results of algorithm experiments with the time windows egien
% Total cost / % Vehicles / % Vehicle with more| % Grouped orders
Number of Orders| ATW | Costinitial solution Orders than one order Total orders
f{nax f]l:nln ffve fzmax fé‘nln fzaVe fé‘ﬂax f3m|n f?z:lve f[llT'IaX f[ll'nln fjlve
0 68.3 | 674 | 679 | 68 67 | 67.1| 235 | 16.4 | 205 | 49.0 | 43.0 | 46.7
100 2P 655 654 | 655 | 64 63 | 63.3] 328 | 269 | 31.2 | 58.0 | 53.0 | 56.5
2D 67.3 | 67.3| 67.3| 67.0| 66.0| 66.4| 253 | 182 | 22.6 | 51.0 | 45.0 | 48.6
2PD | 59.1 | 589|59.0| 57.0| 57.0| 57.0| 47.3 | 45.6 | 46.8 | 70.0 | 69.0 | 69.7
0 778 | 77.7| 77.7| 745 | 745| 745| 20.1 | 18.7 | 19.1 | 40.5 | 39.5| 39.8
200 2P 748 | 73.7 | 740 | 720 | 705| 71.1| 25.0 | 22.7| 23.9 | 475 | 440 | 45.9
2D 773|764 ] 766 | 745 | 73.5| 73.9| 20.1 | 19.7| 19.9 | 415 | 40.0 | 40.8
2PD | 55.1 | 55.1| 55.1| 595 | 59.5| 59.5| 29.3 | 29.4| 29.4 | 58.0 | 58.0 | 58.0
0 80.1 | 79.7| 80.0| 758 | 75.2| 75.5| 11.3 | 10.3 | 10.6 | 33.2 | 32.0 | 32.5
500 2P 76.2 | 75.7 | 76.0| 70.2 | 69.6 | 69.9| 196 | 186 | 19.0 | 44.0 | 42.8 | 43.4
2D 765|763 ] 764 | 73.4| 73.2| 73.3| 13.3| 128 | 13.0 | 36.6 | 36.0 | 36.2
2PD | 58.1 | 579| 58.0| 55.2 | 55.0 | 55.1 | 38.4 | 37.4| 27.6 | 66.2 | 65.4 | 65.6
0 70.1 | 69.5| 69.9 | 66.6 | 66.0 | 66.2 | 21.0 | 20.4 | 20.7 | 47.7 | 47.1 | 47.4
1000 2P 66.8 | 66.3 | 66.5| 62.0| 61.5| 61.8| 288 | 281 | 285 | 56.2 | 55.5 | 55.8
2D 66.0 [ 65.7 | 65.8| 63.8 | 63.5]| 63.6 | 24.1 | 239 | 240 | 51.9 | 51.5| 51.7
2PD | 56.2 | 559 | 56.1| 535 | 53.1 | 53.2| 43.1 | 37.8| 395 | 68.1 | 66.6 | 67.5
0 66.8 | 66.3 | 66.6 | 62.3 | 61.7 | 62.0| 29.1 | 289 | 29.0 | 56.3 | 55.5 | 55.9
1500 2P 645 [ 64.1| 64.3| 59.2 | 589|599| 359 | 340 | 353 | 62.2 | 61.0 | 61.8
2D 625 | 62.2 | 624 | 59.0 | 58.6 | 58.8| 344 | 33.4| 339 | 61.6 | 60.6 | 61.1
2PD | 554 | 55.1| 55.2| 52.2 | 51.6 | 51.8 | 46.8 | 445 | 46.0 | 72.8 | 70.8 | 72.0
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