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Abstract: This paper presents a mathematical model and an algorithm based on ant colony optimization to solve a long distance routing
problems. The size of freight is relatively small, which uses Last In First Out “LIFO” policy and with several time constraints. The
objective consists of reducing costs by optimizing the loading of goods in vehicles grouping orders and minimizing number of routes.
The performance of the algorithm has been proved using experimental data based on historical data from a large Spanish transport
company.
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1 Introduction

In operational terms, the distribution of goods has
increased in complexity due to increases in the number of
operations, the distances involved, and the value of goods
and also the reduction in tonnage. The profit margin has
been reduced and this has brought about an increase in
the volume of freight [1].

This article is focused on Long Haul Transportation
(LHT) and its aim is to optimize transport operations.
This problem presents different transport systems:
“customized transportation”, where a vehicle is dedicated
to each customer, and “consolidated transportation”,
where the demands of several customers are served by the
same vehicle by means of the so-called
less-than-truckload carrier [2]. Consolidated
transportation can use break-bulk terminals, which act as
intermediate transshipment points where the freight is
unloaded, sorted, consolidated and reloaded, or it can use
peddling/collecting routes, where carriers make multiple
stops for collecting or delivering goods for grouping
orders [3].

Peddling/collecting routes with some special variants
of the classic Vehicle Routing Problem (VRP) are
considered in [4]. The VRP objective is to determine the
optimal set of routes originating and terminating at a

single central depot to serve a set of customers by a fleet
of vehicles, and where all customers are served only once
[5]. The most extensively studied variants of the VRP are
capacitated VRP, where each vehicle has a maximum
limit of capacity, and VRP with time windows [6], where
each customer must be served inside a time window. In
[7], waiting time which is restricted and penalized in the
objective function is allowed. Another variant is
multidepot VRP, and [8] deals with both single and
multidepot.

2 Mathematical Formulation

Let O∗ = O ∪ {F1} be the set of orders where
O = {1. . .m} is the set of customer orders to be
transported andF1 is a fictitious order (initial and the
final order of every route). LetG= (N∗,A) be a complete
graph, withN = N∗ ∪ {no1,nn1} the set of nodes where
N = {1. . .n} is the set of customers nodes to be served
andno1, nn1 are the initial and final fictitious nodes that
belong to the orderF1. Every nodei ∈ N that belong to an
order must be distributed by the same vehicle. The set
A= {(i, j) : i, j ∈ N∗} contains the directed arcs.

Decission variables:
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Xv
ok =

{

1, if o∈ O in v∈V just beforek∈ O

0, otherwise
(1)

Zv
o =

{

1, if o∈ O in v∈V

0, otherwise
(2)

Uv
i j =

{

1, if arc(i, j) ∈ A, is travelled byv∈V

0, otherwise
(3)

av =

{

1, if v∈V is activated

0, otherwise
(4)

Objective function:

Min(CP1+CP2+CP3+CP4+CP5) (5)

CP1= ∑
v∈V

∑
o∈O

Xv
F1O

·C1b(o,1),d(o,total2o)
(6)

CP2=C2· (
∑v∈V ∑o∈O Zv

o · (∑i∈N stoi)−
∑v∈V ∑o∈O Xv

F1O
· (stob(0,1) + stod

(0,total20)
) ) (7)

CP3=C3 · (
∑v∈V ∑i, j∈NUv

i j ·disti j−
∑v∈V ∑o∈OXv

F1O
· (distb(0,1),d(o,total20)

) ) (8)

CP4=C4 · ∑
o∈O

∑
i∈N

wtoi (9)

CP5= ∑
v∈V

penaltyCostv (10)

penaltyCostv =















50, i f 0.5≤
(

∑0∈O Zv
o ∑i∈N mpoi
Qv

)

≤ 0.8

100, i f 0.25≤
(

∑0∈O Zv
o ∑i∈N mpoi
Qv

)

≤ 0.5

200, i f 0≤
(

∑0∈O Zv
o ∑i∈N mpoi
Qv

)

≤ 0.25

0, otherwise















Let disti j , ti j ,ci j be the distance, the time and the cost
to travel from nodei ∈ N to nodej ∈ N through arc(i, j),
whereci j = C3∗ disti j , andC3 is the cost per kilometer;
stoi refers to the service time,wtoi is the waiting time and
boind, anddoind return the identifier node of the picking or
the delivery operation of the ordero∈ O that is placed by

the customer in the orderind ∈ {1. . . totalαo }, where
totalαo is the number of nodes of kind
α ∈ {1= picking,2= delivery} of the order o ∈ O.
Finally, mpoi is the amount of loaded freight andmdoi is
the amount of freight to delivery in the nodei ∈ N,o∈ O.

CP1 is the interregional cost between the zones of the
first pickup node and the last delivery node of a route,
where the cost between zones is knownC1i j . CP2 is the
cost due to the stopovers between the first and the last
node of a route. C2 is known as the cost of stopping for
loading/unloading.CP3 is the cost of the difference
between the calculated distance of a route and the actual
distance travelled taking in new orders.CP4 is the cost of
the total waiting time, and C4 is the cost per unit or time.
CP5 is the penalty cost by percentage of filling.

The objective function is subject to constraints from
(11) to (39). In (11), yα

oi ∈ 0,1 establishes if nodei ∈ N of
ordero∈ O is typeα ∈ {1= picking,2= delivery}, (12)
the relationship betweenyα

oi andhoi ∈ {0,1} that indicates
if nodei ∈ N belongs to the ordero∈ O. (13) refers to the
total α ∈ {1= picking,2= delivery} nodes of an order
o∈ O. The fictitious nodesno1 ∈ N∗ andnn1 ∈ N∗ belong
to F1 ∈ O∗ (14). Let mpoi ≥ 0 and mdoi ≥ 0 be the
amount of freight to load/unload in the nodei ∈ N of the
ordero ∈ O and M a sufficiently large number satisfying
constraints (15). The total load is the same as the total
unload for every ordero∈ O (16).

∑
i∈N

yα
oi ≥ 1, ∀o∈ O,∀i ∈ N,α = {1,2} (11)

∑
α=1,2

yα
oi ≤ hoi, ∀o∈ O,∀i ∈ N (12)

totalαo = ∑
i∈N

yα
oi, ∀o∈ O,α = {1,2} (13)

y1
F1,no1

= 1, y2
F1,nn1

= 1 (14)

mpoi ≤ M ·y1
oi, mdoi ≤ M ·y2

oi, ∀i ∈ N,∀o∈ O (15)

∑
i∈N

mpoi − ∑
i∈N

mdoi = 0, ∀o∈ O (16)

From (17) to (24) are the constraints for all the
activated routes. The order F1 (17) is included in all the
activated routes. There is an ordero ∈ O after F1 ∈ O∗

(18) in all the activated routes. An order is allocated to
only one vehicle exceptF1∈ O∗ (19). Before and after an
ordero∈ O, there is one and only one orderk ∈ O∗ (20).
Constraint (21) is the flow conservation equation that
ensures the continuity of each vehicle route. If an order
o ∈ O is allocated to the vehicle v, then vehicle v is
activated (22). no1 ∈ N∗ is the first node (23) andnn1 ∈ N∗

is the last node (24) for all the activated routes.

Zv
F1 ·a

v = 1, ∀v∈V (17)
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av · ∑
o∈O

Xv
F1,o = 0, ∀v∈V (18)

∑
v∈V

Zv
o = 1, ∀o∈ O (19)

∑
k∈O∗,k6=0

Xv
ko = Zv

o, ∑
k∈O∗,k6=0

Xv
ok = Zv

o, ∀o∈ O,∀v∈V

(20)

∑
k∈O∗,k6=0

Xv
ko − ∑

k∈O∗,k6=0

Xv
ok = 0, ∀o∈ O,∀v∈V (21)

Zv
o ·a

v ≤ 0, ∀o∈ O,∀v∈V (22)

∑
i∈N

Uv
ino1

= 0, ∑
i∈N

Uv
no1,i ·a

v = 0, ∀v∈V (23)

∑
i∈N

Uv
nn1i = 0, ∑

i∈N

Uv
i,nn1

·av = 0, ∀v∈V (24)

From (25) to (31) define the arcs between nodes and
ensure the LIFO policy. In (25), the fictitious node
no1 ∈ N∗ is linked with the first pickup nodebo1 of the
first ordero∈ O in route v; (26) and (29), the pickup and
delivery nodes of ordero ∈ O in route v follow the
sequences introduced by the customer; (27), the last
pickup node of ordero ∈ O with the first pickup node of
orderk ∈ O, if orderk ∈ O is just after ordero∈ O; (28),
the last pickup node of the last ordero∈ O, with the first
delivery node of ordero∈ O; (30), the last delivery node
of ordero∈ O, with the first delivery node of orderk∈ O,
if order k ∈ O is just after ordero∈ O; (31), the fictitious
nodenn1 ∈ N∗ with the last delivery node of the first order
o ∈ O in route v. From (25) to (31) it is considered
∀v∈V,∀o,k∈ O when it is required.

Xv
F1,o ·U

v
no1,bo1

≤ 0 (25)

Zv
o ·U

v
b(o,ind),b(o,ind+1)

≤ 0, ind ∈
{

1. . . total1o
}

(26)

Xv
o,k ·U

v
b
(o,total1o)

,b(k,1)
≤ 0, o 6= k (27)

Xv
o,F1 ·U

v
b
(o,total1o)

,d(o,1)
≤ 0 (28)

Zv
o ·U

v
d(o,ind),d(o,ind+1)

≤ 0, ind ∈
{

1. . . total2o
}

(29)

Xv
ok ·U

v
d
(o,total2o)

,d(k,1)
≤ 0, o 6= k (30)

Xv
F1,o ·U

v
d
(o,total2o)

,nn1
≤ 0 (31)

The service timestoi is composed of a fixed term,stf ,
and a variable term,stvoi, which is a linear function of
demand. Each service of nodes should begin and end
within a pre-specified time window[eoi, loi] for every
nodei ∈ N of ordero ∈ O. A vehicle is allowed to arrive
at the node before the time window starts,wtoi. Let atoi,
be the arrival time of nodei ∈ N of ordero ∈ O, andEm
andCm the maximum levels of driving and waiting time.
Time constraints are shown from (32) to (36) and it is
considered∀v ∈ V, ∀i, j ∈ N, ∀o,k ∈ O when it is
required.

atoi +
(

1−Uv
no1,i

)

·M ≥ 0 (32)

atk j −atoi+
(

1−Uv
i j

)

·M ≥ wtoi + stoi + ti j (33)

atF1,nn1 −atoi+
(

1−Uv
i,nn1

)

·M ≥ wtoi + stoi+ ti,nn1 (34)

atoi +wtoi +(1−hoi) ·M ≥ eoi (35)

atoi +wtoi ≤ loi +(1−hoi) ·M (36)

(37) to (39) define the limits for the amount of freight,
the total waiting time and the total driving time for all
activated routes.

∑
o∈O

Zv
o ·

(

∑
i∈N

mdoi

)

≤ Qv ·av, ∀v∈V (37)

∑
i∈N

∑
j∈N

Uv
i j · ti j ≤Cm ·av, ∀v∈V (38)

∑
o∈O

Zv
o ∑

i∈N
wtoi ≤ Em ·av, ∀v∈V (39)

3 Aco Algorithm

Mathematical model is unsolvable for problems of
realistic size, so a metaheuristic based on Ant Colony
Optimization (ACO) is proposed. ACO is a method
inspired by the behavior of real ant colonies. ACO has
been successfully applied to several combinatorial
optimization problems and has achieved satisfactory
performances [9] and [10].

ACO algorithms are construction algorithms where
each ant is a solution and its movement depends on two
kinds of information. Heuristic information determines
the preference of moving and pheromone trail
information measures the “learned desirability” of the
movement, depending on whether or not the movement in
question has been previously carried out.

The algorithm has three phases with a different ACO.
The choice of the main road depending on the
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intermediate nodes, traffic, etc. and is selected using the
ACO-I. ACO-II selects the first order of a new route and
ACO-III adds new orders while possible. The outline of
the proposed algorithm is presented in Figure1.

Fig. 1: Proposed algorithm

Each ant builds a solution to the problem according to
a pseudo-random-proportional rule. At each step the ant
makes a move in order to complete the solution choosing
between elements from a set of expansion states,
following a probability function that takes into account
the following: the attractivenessηou of the moveo−→ u
according to the heuristic information about the problem
(ACO-I: cost to carry out ordero by road u; ACO-II:
available capacity of the vehicle after loading ordero and
the distance required to dispatch ordero; ACO-III:
available capacity of the vehicle after loading orderso
andu and the distance required to dispatch orderso andu,
and the levelτou of pheromone of the moveo −→ u that
indicates how good the move was in the past. As a
solution is found, this value is updated.

The pseudo-random-proportional rule combines
random selection with the best option. Letq be a random
number in[0,1] and qo, a pre-specified parameter, such
that 0≤ qo ≤ 1. In ACO I, the ordero uses roadr
following the rule: If(q≤ q0) then the probability follows
the rule in expression (40) else the expression (41) .

Por = {
1, i f r = argmax

u∈Feasibleroads(o)
((τ roadou)

αroad · (η roadou)
βroad)

0, otherwise
} (40)

Por = {

((τ roador)
αroad ·(η roador)

βraod)

∑
u∈Feasibleroads(o)

((τ roadou)
αroad·(η roadou)

βroad)
,

i f r ∈ Feasibleroads(o)
0,otherwise

} (41)

In ACO II, ordero assigned to roadr will be the first on the
route.In this case, if(q≤ q0) then the probability follows the rule
in expressions (42)and (43).

Pr
o = {

1, i f o = argmax
o∈rest orders(r)

((τ f irstr
o)

α f irst · (η f irstr
o)

β f irst )

0, otherwise
}

(42)

Pr
o = {

((τ f irstr
o)

α f irst ·(η f irstr
o)

β f irst )

∑
o∈rest orders(r)

((τ f irstr
u)

α f irst ·(η f irstr
u)

β f irst )
,

i f o ∈ rest orders(r)
0,otherwise

} (43)

Finally ACO III selects the orderk that goes right after order
o and the probability rule is shown in expressions (44)and (45).

Pr
ok = {

1, i f k = argmax
k∈rest orders(r)

((τ restrok)
αrest · (η restrok)

βrest)

0, otherwise
}

(44)

Pr
ok = {

((τ restrou)
αrest ·(η restrou)

βrest)

∑
u∈rest orders(r)

((τ restrou)
αrest·(η restrou)

βrest)
,

i f u ∈ rest orders(r)
0,otherwise

} (45)

The parametersα andβ establish the relative influence ofη
versusτ. The initial value of pheromoneτ0 = 1/(n·OBJ) is equal
for the three ACOs, wheren is the total number of orders and
OBJ the objective of the initial solution. After each ant finds a
solution, the pheromone levels of visited arcs are modified (local
updating) in order to diversify the solutions obtained by the ants
with the formula in (46).

τ = (1−ϕ) · τ +ϕ · τ0, 0≤ ϕ ≤ 1 (46)

Once all the ants of the iteration have been considered, the
pheromone levels are updated (global updating), wherebestOBJ
is the best solution obtained, as it is shown in (47).

τ = (1−ρ) · τ +ρ ·

(

1
best OBJ

)

, 0≤ ρ ≤ 1 (47)

4 Computational Experiments

4.1 Experimental Data

The instances were based on the daily work of a large transport
company in Spain. A random value was assigned to all the
parameters considering:

•The fleet is heterogeneous in technical properties. Two types
of goods were considered, normal (N) with the 70% and
refrigerated (F) the rest. The vehicles have a maximum
capacity of 24.000 Kg, 13,5 linear meters, 33 non-stackable
pallets and 92,95m3.

•There are three types of orders according to the size of goods:
45% small orders (0-10 pallets), 35% medium orders (11-23
pallets) and 20% large orders (24-33 pallets). The time to
serve to each customer is the sum of a fixed time (1 hour)
and an extra time (0.03 hours * number of pallets).

•Customers are allocated to different zones in Spain. The
percentages of pickups and deliveries by zone are shown in
Figure2.

•All pickup operations are made in the morning considering
three time ranges: 50% are made from 6:00 to 9:00, 30%
from 9:00 to 11:00 and 20% from 11:00 to 13:00.
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Fig. 2: Percentage of pickups and deliveries by zones

•The distance between the pickup and the delivery point of
each order is needed to establish the time range of
deliveries. If it is less than 400 kilometers, the range is
randomly selected between 17:00 and 21:00 of the same
day. If not, it is randomly selected between 6:00 and 13.00
of the next day. The size of each time window is calculated
adding a quantity to the lower limit of each time window:
one hour is added in 40% of cases, one hour and 30 minutes
in 30% of cases and 2 hours in the other 30%.

Euclidean distance from the GPS position of the nodes is
used to calculate distances between nodes since the number of
available nodes in our database is greater than 400,000.
Therefore, it is unfeasible to store a real distance matrix and it is
unviable economically to access a geographical information
system (GIS). An average speed of 70 km/h is established in
accordance with historical data from a large Spanish transport
company. In [3], which deal with long distances and routing
design for less-than-truckload, the average speed varies between
80 and 75 km/h and with real distances between nodes.

Other restrictions are 9 hours as maximum driving time and
a maximum daily waiting time of 3 hours plus 15 minutes per
route. The number of roads considered for the Iberian Peninsula
is 18; the number of daily orders varies from 100 to 1500. It
should be noted that at least double the number of customers
will be visited. The influence to allocate the road before or after
finding the solution is considered(0 : a f ter,1 : be f ore).

4.2 Results and Discussion

The experiments were performed on a PC Intel Core i5 at
4.8GHz with 4GB of RAM under Windows 7. It was necessary
to estimate the value of the set of parameters that influencesthe
three ACOs implemented in the algorithm. For this purpose, the
literature was reviewed and a set of experiments related to the
real problem was carried out. The parameter values for the three
ACOs are:α = 1, β = 2 andϕ = ρ = 0.1.

To measure the efficiency of the solution were used
measured in terms of the upper and lower value of four
performance metrics:

• f1: Total cost optimized with respect to the cost of the initial
solution.

• f2: Percentage of vehicles involved with respect to total
orders.

• f3: Percentage of vehicles with more than one order with
respect to the total vehicles used.

• f4: Percentage of grouped orders with respect to total orders.

The results of the experiments are listed in Table1.
Regarding the value of the objective functionf1, the results
suggest that the allocation of the road a posteriori improves the
solution considerably because all orders can be combined
mutually, decreasing the number of vehicles required (about 5%
in all cases).

The number of vehicles required is not proportional to the
number of orders (f2). The size and the geographical distribution
of the orders must be considered.

An important result to note is that solutions with higher
percentages of vehicles with two or more orders (f3) do not
imply a lower cost. In the experiment with 500 orders, when the
two types of road allocation are compared, the percentage of
vehicles with more than one order is greater a priori (11.7 vs.
10.6%). However, the percentage of grouped orders with respect
to total orders,f4, is greater in a posteriori (32.5%) than in a
priori allocation (29.6%).Thus, better solutions are obtained
when many orders are grouped in fewer vehicles. The last part
of the study involved the influence of the time windows strategy
because is the most restrictive data for grouping orders. Inthis
case, it is possible to extend the window decreasing the lower
limit by two hours. The cases were: 0= no decrease;
2P= only pickups; 2D = only deliveries; and 2PD = both. All
the experiments were calculated with a posteriori road allocation
since the best results are achieved with this option. The results
are listed in Table2.

The TW extension to serve customers has a significant
influence on the improvement of solutions. With respect to the
total cost, the case 2PD (both operations) achieves the best
results, decreasing the initial cost up to 41-45%. Note thatthe
total cost is less if the time window is extended in pickups rather
than in deliveries because the routes can begin earlier.

5 Conclusions

This paper solves a long-distance routing problem based on an
ACO meta-heuristic. Furthermore, several instances have been
solved from the historical data of a company with a number of
orders between 100 and 1500, in which the influence of road
selection has been studied as well as the extending of time
windows in terms of the objective function (cost), the vehicles
involved with respect to total orders, vehicles with more than
one order with respect to the total vehicles used and grouped
orders with respect to total orders.

Future research could address the possibility of using the
proposal outlined in this paper to solve more general forms of
the vehicle routing problem, which would contain more
real-world objectives and constraints. The powerful capacity of
the algorithm to find excellent solutions to a difficult
combinatorial optimization problem should make it a useful
model for solving many other problems in transportation and
logistics.
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Table 1: Results of algorithm experiments with different road allocations

Number of Orders Roads
% Total cost / % Vehicles / % Vehicle with more % Grouped orders /

Cost initial solution Orders than one order Total orders
f max
1 f min

1 f ave
1 f max

2 f min
2 f ave

2 f max
3 f min

3 f ave
3 f max

4 f min
4 f ave

4

100
0 68.3 67.4 67.9 68.0 67.0 67.1 23.5 16.4 20.5 49.0 43.0 46.7
1 76.5 72.6 75.1 74.0 71.0 72.5 24.3 19.7 21.9 46.0 42.0 43.4

200
0 77.8 77.7 77.7 74.5 74.5 74.5 20.1 18.7 19.1 40.5 39.5 39.8
1 83.0 80.0 81.9 81.5 78.5 79.6 15.9 12.1 15.4 34.5 29.0 32.3

500
0 80.1 79.7 80.0 75.8 75.2 75.5 11.3 10.3 10.6 33.2 32.0 32.5
1 84.7 84.1 84.5 80.0 79.4 79.6 12.7 10.5 11.7 30.6 28.6 29.6

1000
0 70.1 69.5 69.9 66.6 66.0 66.2 21.0 20.4 20.7 47.7 47.1 47.4
1 76.9 75.7 76.3 73.1 71.9 72.5 20.3 18.3 19.4 42.9 40.8 41.5

1500
0 66.8 66.3 66.6 62.3 61.7 62.0 29.1 28.9 29.0 56.3 55.5 55.9
1 72.9 71.8 72.4 68.6 67.2 67.8 27.4 25.4 26.6 51.1 48.5 50.2

Table 2: Results of algorithm experiments with the time windows extension

Number of Orders ∆TW
% Total cost / % Vehicles / % Vehicle with more % Grouped orders /

Cost initial solution Orders than one order Total orders
f max
1 f min

1 f ave
1 f max

2 f min
2 f ave

2 f max
3 f min

3 f ave
3 f max

4 f min
4 f ave

4

100

0 68.3 67.4 67.9 68 67 67.1 23.5 16.4 20.5 49.0 43.0 46.7
2P 65.5 65.4 65.5 64 63 63.3 32.8 26.9 31.2 58.0 53.0 56.5
2D 67.3 67.3 67.3 67.0 66.0 66.4 25.3 18.2 22.6 51.0 45.0 48.6

2PD 59.1 58.9 59.0 57.0 57.0 57.0 47.3 45.6 46.8 70.0 69.0 69.7

200

0 77.8 77.7 77.7 74.5 74.5 74.5 20.1 18.7 19.1 40.5 39.5 39.8
2P 74.8 73.7 74.0 72.0 70.5 71.1 25.0 22.7 23.9 47.5 44.0 45.9
2D 77.3 76.4 76.6 74.5 73.5 73.9 20.1 19.7 19.9 41.5 40.0 40.8

2PD 55.1 55.1 55.1 59.5 59.5 59.5 29.3 29.4 29.4 58.0 58.0 58.0

500

0 80.1 79.7 80.0 75.8 75.2 75.5 11.3 10.3 10.6 33.2 32.0 32.5
2P 76.2 75.7 76.0 70.2 69.6 69.9 19.6 18.6 19.0 44.0 42.8 43.4
2D 76.5 76.3 76.4 73.4 73.2 73.3 13.3 12.8 13.0 36.6 36.0 36.2

2PD 58.1 57.9 58.0 55.2 55.0 55.1 38.4 37.4 27.6 66.2 65.4 65.6

1000

0 70.1 69.5 69.9 66.6 66.0 66.2 21.0 20.4 20.7 47.7 47.1 47.4
2P 66.8 66.3 66.5 62.0 61.5 61.8 28.8 28.1 28.5 56.2 55.5 55.8
2D 66.0 65.7 65.8 63.8 63.5 63.6 24.1 23.9 24.0 51.9 51.5 51.7

2PD 56.2 55.9 56.1 53.5 53.1 53.2 43.1 37.8 39.5 68.1 66.6 67.5

1500

0 66.8 66.3 66.6 62.3 61.7 62.0 29.1 28.9 29.0 56.3 55.5 55.9
2P 64.5 64.1 64.3 59.2 58.9 59.9 35.9 34.0 35.3 62.2 61.0 61.8
2D 62.5 62.2 62.4 59.0 58.6 58.8 34.4 33.4 33.9 61.6 60.6 61.1

2PD 55.4 55.1 55.2 52.2 51.6 51.8 46.8 44.5 46.0 72.8 70.8 72.0
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