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Abstract: The diversity of the spread pattern of the Corona virus is one of the most important reasons for the seriousness of
the virus. Therefore, in this paper, we present a fractional mathematical SEIAS model that studies many ways of spreading
(asymptomatic and pre-symptoms transmission) with the hypothesis of the spread of the virus in a heterogeneous network of
individuals. The system consists of nonlinear equations which formed in fractional order. And it turns out that the system has
two equilibrium positions (free and endemic positions). We also calculated the disease prevalence threshold (R,) within the
network. The condition for the existence of the epidemiological situation has been determined. The stability of the free
equilibrium position has been studied. The numerical part has been added to explain the proved theorems of the system in
addition to clarifying the role of the heterogeneous network on the value of the virus spread threshold within the network.
Keywords : Complex Networks, Novel Coronavirus (COVID-19), Asymptomatic and Pre-Symptoms Transmission, Basic

Reproductive Number and Fractional Calculus.

1 Introduction

After the announcement in January 2020 of the beginning
of the spread of coronavirus (COVID-19) in the Chinese
city of Wuhan, which quickly spread in China and all
countries of the world until it became a global epidemic
threatening the lives of many [21-22]. Since then, many
government agencies and international organizations
concerned with the spread of epidemics have sought to
study the outbreak of the COVID-19. From the medical
side, we find the continuous search for a vaccine against
COVID-19, as virologists seek to know the nature of the
virus, which helps to know the pattern of its spread and also
how to confront it [18-20]. And we cannot exclude the role
of mathematical modeling as a tool and a means in order to
predict the pattern of the spread of virus and determine the
basic reproductive number of the spread of virus.
Mathematical models differ from one another due to the
assumptions used in creating the mathematical model. In

this regard, we present a mathematical model simulating
The current situation based on the attained and announced
characteristics of COVID-19.

After the novel corona virus was considered a global
epidemic that invaded most of the countries of the world,
we find that the nature of the spread of the virus is different
from one region to another, which appears in the numbers
of infected people. And when focusing on the method of
spreading, we find that it is recognized that the transmission
of infection occurs from a person with COVID-19 to an
uninfected person. What is meant by a person infected with
COVID-19 here is a person who shows and develops the
common symptoms that characterize the infection of
COVID-19 [8-11]. The infection is transmitted by many
methods, such as close contact with an infected person,
through the droplets that comes out of the infected person
when coughing, sneezing or speaking and by touching the
surfaces on which the injured person's droplets has fallen
[1-7].

On the other hand, the transmission of infection is not
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limited to infected persons who show complete symptoms
of the disease. It is possible to transmit infection in the
period before the symptoms (incubation period), which is
the period from the beginning of exposure to the virus until
the onset of symptoms. The transmission of infections from
people in the incubation period appeared in a number of
reports and medical studies. And those studies were based
on the fact that some tests that were done for some people
to detect the virus show positive results, and that is 1-3 days
before the symptoms appear [6-16].

And not only that, some laboratory cases have been
confirmed as having COVID-19 but without any symptoms
(Asymptomatic) [12-17]. Such cases can help to transmit
infection between individuals, while it is difficult to
determine its source. And such cases are not counted
among the infected numbers in addition to that they do not
enter between the cases of health isolation. Such
phenomena have an effective role on the spread of
infection, as we need to take more precautionary and
preventive measures not similar to the one taken if the
infection is caused by a person with confirmed symptoms.
Also, the transmission of the disease through an
asymptomatic person or pre-symptoms one can lead to a
continuous spread of the infection that prevents it from
being controlled.

During the formation of mathematical models, society is
divided into several groups, according to the nature of the
infection caused by the virus. According to the data issued
by the Korea Centers for Disease Control and prevention,
positive cases of COVID-19 were discovered again after a
complete recovery. On April 9, 2020, this number was 74
cases before it doubled within one week and reached 163
positive cases, which caused a state of panic and intense
fear of the possibility of reinfection again. Accordingly, the
SEIAS type was chosen to be appropriate to the prevalence
of the virus with the addition of a new class that expresses
the asymptomatic individuals.

The heterogeneous nature of daily interactions between
individuals requires us to use heterogeneous network
models because of their preference and accuracy in
expressing the status of an infected community [31]. Where
the infected community is represented by an
epidemiological network in which the individuals are the
network nodes and the connections (links) between those
nodes represent the communication between the members
of the community. In addition, we will use a fractional
order for the system that used to describe infection
transmission instead of using the integer order [23-30].
Where fractional orders are distinguished when used in
differential equations with several features, among them
they have the effect of nonlocality, as well as the memory
in the definition of fractional order. We will use the
definition of Caputo which is defined as [23].

Table 1: The definitions of the parameters.

Parameter | Definition

A Birth rate.

By The infectious rate from infected individual.

B, The infectious rate from asymptomatic
individual.

B The infectious rate from pre-symptoms
individual.

Y1 Recovery rate of infected individual and be
susceptible again.

Yo Recovery rate of asymptomatic individual
and be susceptible again.

B Natural death rate.

d Death rate due to disease.

g Rate of becoming infectious after latency.

U Rate of becoming asymptomatically
infected.

1 t
GDEf(t) = m[ (t—s)"“f'(s)ds,

where 0 < a < 1.
2 Dynamical Models

In this modeling study, the population is divided into four
compartments  susceptible, exposed, infected and
asymptomatic. The susceptible individuals can be exposed
due to interacting with infected, asymptomatic and pre-
symptoms one. The exposed person becomes asymptomatic
at rate u and infected at rate (1 — u) after the incubation
period ¢. The infected and the asymptomatic persons
become susceptible again after the infectious period at rates
y; and y, respectively. The population size is variant due to
births and the deaths.

The dynamical model is defined as follow:

s (&) — 4 - KBS0 _ kBS99

Ni(t) N (t)
_ %’3?3“) + ¥11i (8) + v, 4, () — BS, (1), ey
CDE,(t) = ""’lsﬁ,fiii’ o kﬁzszfr,fgs) =
LA ok, - BB, @

ngxlk(t) =1 = WoEy(t) — y11(t) —dI(t)
—BI, (1), 3)

DA (t) = uoE () — 24, (t) — BA(D), 4
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where, S (t), Ex(t), I, (t) and A,(t) are the number of
susceptible, exposed, infected and asymptomatic persons at
time t with degree k (1 <k <n), n is the maximum
degree of a node. 0, (t), ©,(t) and O;(t) are the probability
to be linked with an infected, asymptomatic and exposed
node respectively, which are defined as

_ kPRI (t)
0,(t) = 0

_ ZikP(k)A(t)
@Z(t) - (k) ]

_ Xk kP(k) E(t)
03(t) - (k) )

where (k) = X, kP(k), P(k) is the degree distribution of
the population and N, (t) is the total population of degree
k.

Fig. 1: The dynamical behavior of system (1)-(4).

2.1 Existence of Steady States

The next theorem explains the existence of the equilibrium
points.

Theorem 1. Define

Ro

_ @[Bl(l — oy, + B) + Buo(y, +d + B) + B3(y, + d + B)(y, + B)]
T (k) (0+B)(y1 +d+B)(y. +B)

)
If Ry < 1 then the system (1)-(4), has a unique free disease

equilibrium point Py = {%,0,0,0} and if Ry > 1, the
1sksn

k<

free disease equilibrium point P, is existing in addition to a
unique endemic point P, = {Sy, Ex, Iy, A} }1<k<n

where,

o _ @B+ d+ BY(A— diy)

k= k¢B(1 — w)o ’
., (n+d+B)
* 1-wo '

e tB0-w
1
=G, ho T d T D B PN B fue
+72)
+ (B +d) (BB +d)
+7,(B + (1 - w)o))]
+A(y, + B)(y, +d + B)(0 + B)
- VD.

Proof. After some algebraic calculations [33-37], we find
the disease-free steady state is P, = {%, 0,0,0}

1sksn.
For the existence of the endemic steady state, we have

_(@+B)(n +d+ B (A—d)

k= k¢B(1 — w)o ’
(v, +d+ B,
Ek -
1-wo

_ulyy +d+ B,
T +BA -

h(ly) = rpIf =1l + 15 = 0, (6)
where,
r,=d{y,+B)y;, +d+B)(c+B)>0,

= kd)[BVl(B +uo +vy,) + (B
+d)(BB+d) +y,(B+ (1 —wo))]
+ Ay, +B)(y; +d+B)(c +B) >0,

1o = A(1 — waokep(y, + B) > 0,

d(t) = B101 (D) + B20,(0) + B305(D). ™

Thus, the existence of the endemic equilibrium depending
on solving equation (5) with respect to I, where the
solution [y € [O,%]. By

solving the second-degree

polynomial, we get two solutions as follow
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1

&= 200 T DG+ d T B)e 7 5) KA[Bri(B + po +72)
+B+d)(BB+d)+y:(B+(1—woa))
+A(y, + B)(y, +d + B)(0 + B) + VD),

I [kp[BY1(B + po +v)

T 2d(y, +B)(y, +d + B)(o + B)
+B+d(BB+d)+y(B+(1—woa))
+A(y, +B)(y, +d + B)(o + B) — VD,

where, D = 17 — 41,7,.
We have I} * IZ = :—0 > 0and I{ > 0. So, we get
2

0<I?<It.
Also, h (é) < 0. Therefore, 0 < I2 < 2

B B
It leads to I? is the unique solution of k(1) in [0, %].
Then, the endemic equilibrium point is
_(0+B)(yy +d + B (A—dl)

*

k k¢B(1 — w)o ’
. (n+d+B)I
Ef =—/—mmm——,
1-wo

.l +d+B)

T +BA -
. 1
I = Zd()/z +B)()/1 +d +B)(0' T B) [k¢[BV1(B +HJ+V2) + (B
+d)(BB +d) +7,(B+ 1 - o))
+AQy, + B)(y, +d + B)(o + B) — VD].

Substituting with Iy, A}, and Ej into the definition of ¢(t)

we get the following self-consistency equation:

_ » ZikPR)L Ly kP (k) Ay Ly kP (K)Ey,
L (R 7 N
¢ = g(¢), where,

_ 1 . pl +d+B)
9($) = <">Z KPUOL; (m e
(yy +d+B)
and,
$(0) =0, 0<¢(t) <P+ B+ Ps.

. d d?
We have g(0) =0, q%l_r}gog@) > O,ﬁ >0 and ﬁ <0

then, a non-trivial solution exists if and only if Z—g > 1.
$=0

Therefore,

(k_2>[ﬁ1(1 —)o(y2 + B) + fopo(y, +d + B) + f3(y1 + d + B)(y2 + B)] 1

(k) (e+B)(y1+d+B)(v2+B) '

We define

_ (k*) [B1(1 = D0 (y2 + B) + Bopta(yy + d + B) + B3(y1 + d + B)(y2 + B)]
7)) (0+B)(1 +d +B)(y; +B) '

As the basic reproductive number, where

(k2) =Y Kk2P(k).

2
2.2 The Threshold Value with Next Generation
Method and Local Stability

By using the next generation method [32], we present the
following theorem.

Theorem 2. The disease-free equilibrium point P, of model
(1)-(4) is locally asymptotically stable if R, < 1 and
unstable if Ry > 1.

Proof. We take only the three equations of exposed,
infected and asymptomatic persons Ej (t), [, (t) and A, (t)
as follow:

kS
CDEE, (t) = % _ GE,(t) - BE(®),

ngxlk(t) = (1 = WoEy(t) — y11 (t) — dI, (t)
— B, (t),

thaAk(t) = UoEy(t) — v, A (t) — BA (D).

Fi1 Fiz Fis
F=|F1 Foy Fps )

‘7:31 T32 ‘7:33

The matrix

3nx3n

referred to the new infected cases entering Ej (t), I (t) and
A, (t) compartments and evaluated at the disease-free
equilibrium point P,. We have

P(1) 2P(2) nP(n)
F b3 2P(1) 2%2P(2) 2nP(n)
LET5Y W : ; ’
nP(1) 2nP(2) n*P(n)/ ,.n
P(1) 2P(2) . nP(n)
Fo Bi [ 2P(1) 22P(2) 2nP(n)
LTS : ; ’
nP(1) 2nP(2) n*P(n)/ ,un
P(1) 2P(2) . nP(n)
7o Bz [ 2P(1) 22P(2) 2nP(n)
BTy : : ’
nP(1) 2nP(2) n*P(n)/ ,un
Fo1=Fp =Fp3 =Fz1 = Fz, = Fa3
0 0 .. 0
_[0 0 .. 0
0 0 .. 0/,xn
And the matrix
Vll V12 v13
V=(Var Vo Va3 ,
Vii Viz Vi 3nx3n

referred to the transmission between and out of exposed,
infected and asymptomatic compartments and evaluated at
the disease-free equilibrium point P,. We get
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1 0 .. 0
Vi.=(@+B) O 1 o 0 ,
0 0 .. 1/ ,.xn
1 0 ... 0
0o 1 ..
VZI = (_(1 - ,Ll)O') O )]
0 0 1/ ixn
1 0 0
0o 1 ..
Vp=m+d+B)( ) T oo ),
0 0 1/ s
1 0 0
0o 1 ..
VSI = (—MO') 0 ,
0 0 1/ wxn
1 0 0
0 1
v33 - (]/2 + B) H ' 0 )
0 0 1/ hxn
0 0 .. 0
0o 0 ..
Via =Vi3 =Vo3 =V5, = o 0
0 0 ... 0/,xn

Then, the matrix FV =1 has the characteristic equation

2n <(k2> [1(1 —@a(y, + B) + Bopa(y1 + d + B) + B3(y1 + d + B)(y, + B)]
(k) (0+B)y1+d+B)(y2+B)

n
—x) =0.

It has 2n eigenvalues equal to zero and n eigenvalues equal
to

(k_2>[51(1 — oy, + B) + fopo(y, +d + B) + f3(y1 + d + B)(y2 + B)]
(k) (@+B)y1+d+B)(y2+B) '

which represents the basic reproductive number R,,.

3 Numerical Simulations

Obviously, from equation (5) the value of R, depends on
(k2) .
W which
heterogeneity of the network. Figures 2 explain the change
in R, value with respect the value of maximum degree k.

an important parameter represent the

In table (2) we have the parameters values for three
countries (USA, South Korea and Italy). We used the
Predictor-Corrector method [27-29] for
solving the system (1)-(4) and showing the prediction curve

Adams-type

of infected individuals.

Considering our network is a scale free network with
p(k) = pk™, where p is a constant satisfies Y, p(k) =1
and 2<v <3 is the exponent of the power law
distribution. Choosing v = 2.3 and n = 100 [37, 38].

10 T T T T T T T T

Ry
(9]
\
\

. . . . . . . . .
] 10 20 30 40 50 60 70 80 90 100
Maximum dgree &k

Fig. 2(a): The change in R, value with respect the value of
maximum degree k (South Korea).
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Fig. 2(b): The change in R, value with respect the value of
maximum degree k (Italy).
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Fig. 2(c): The change in R, value with respect the value of
maximum degree k (USA).
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Table (2-a): Parameters values.

Parameter | South Korea Italy
A 980 1244
B4 0.59 0.59
B> 0.1 0.3
B3 0.1 0.1
Y1 0.4349 0.4349
Y2 0.4349 0.4349
B 0.005573 0.0107
0.0000048 0.00046
0.2657 0.2657
u 0.8 0.8
Ny 51640000 60480000
So 51639556 60479556
E, 84 9
Iy 6 1
4, 22 2

Table (2-b): Parameters values.

Parameter USA NYC

A 3481608 300

B1 0.3813 0.1813

B2 0.7065 0.2065

B3 0.7065 0.1065

Y1 0.4349 0.0149

Y2 0.4349 0.049

B 6.7063x107-8 | 0.000037596
0.00019 0.0000011975
0.2657 0.2657

u 0.8 0.1

N, 328.2 million 8202000

So 328199856 8200000

E, 45 500

I, 3 1000

A, 12 500

Figure 3 for South Korea, figure 4 for Italy and figure 5 for
USA for different @ and k.

Also we used the transmission rates f5;, S, and B; as a
function of time

_ B1 — Bos

pi(t) = Trea T Bo1»
_ B2 — Boz

O = er +how
_ B3 — Bos

PO =" +how

%108

oo
WA=
[ =N=]

t
Fig.3(@): ¢ = 0.7.

x10°

L I I I I L L I
0 10 20 30 40 50 60 70 80 20

100

k=5

k=20

k=50

k=98

t

Fig. 3(c): a = 0.95.

Fig. 3: Ry = 9.1724 (South Korea).
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0<c<1is a parameter that reflect the extent of px0?
adherence to the preventive instructions, Sy, 8, and By3 —K1 R
o ) : .
are the least value of transmission rates of infection due to k20|
infected, asymptomatic and pre-symptoms individual ——el
respectively.
4 X100 ‘ ‘ ‘ ‘ ; ; ;
—_—k=1
36 Tk
k=20
k=50 ]
3r k=98 |
25 ¢ 1

L
90 100

15+
N Fig.5(a): a = 0.7.
05t 0
k=1 [
0 y 35t —k=s [
0 10 20 30 40 50 60 70 80 90 100 k=20
t k=50
ir k=03 [
Fig. 4(a): a = 0.7. ael
. %105 =2
— &l 15t
351 —k=5 ||
k=20
— k=50 1r
3t _
s
25}
o . . . . . . . ‘ ‘
&5 2 0 10 20 30 40 50 60 70 80 S0 100
t
151
1 Fig. 5(b): a = 0.85.
L 7
05 5 x107
— k=t
o ‘ ! ‘ ‘ ‘ ‘ ‘ ! sl H
0 10 20 30 40 50 60 70 80 90 100 vz
t 4r k=50
k=08
. 35r B
Fig. 4(b): a = 0.85.
al
x10° a5t
5L
35+
15f
ar WL
25 05t
. o ! I I -
0 10 20 30 40 50 6 70 80 S0 100
t
15¢
ik Fig. 5(c): a = 0.95.
os Fig. 5: R, = 46.8750 (USA).
0 ‘ ‘ ‘ ! ! ! ‘ ‘
0 10 20 30 40 5 60 70 80 9 100 — — —
; We assumed 55, = 0.03, By, = 0.009 and Sy; = 0.009.

Fig. 4(c): & = 0.95. In t'his case the value of R, becomes a function in time and
taking the form

Fig. 4: R, = 12.8568 (Italy).
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_ (k2 [B1()A = oy, + B) + B,(Oua(yy + d + B) + B3 (t)(y1 + d + B)(y, + B)]

(k) (6+B)(y1+d+B)(y2+B)

The effect of parameter ¢ appears in figures 6-11. A high
value of ¢ makes the peak of the infected individuals
lower.

0 L L L L L L L L L
0 20 40 60 80 100 120 140 160 180 200

t
Fig. 6(a): ¢ = 0.2 (South Korea).

%108

25

Ro(t)

0 L L L L L L L L L
0 20 40 60 80 100 120 140 160 180 200
t

Fig. 7(a): ¢ = 0.9 (South Korea).
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Fig. 8(a): ¢ = 0.2 (Italy).
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Fig. 9(a): ¢ = 0.9 (Italy).
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Fig. 9(b): ¢ = 0.9 (Italy).

— o= 95|
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o] 20 40 60 80 100 120 140 160 180 200
t

Fig. 10(a): ¢ = 0.2 (USA).

=107

k=1 |
k=5
k=20

k=50
k=08

o 20 40 60 80 100 120 140 160 180 200
t

Fig. 10(b): ¢ = 0.2 (USA).

0 20 40 60 80 100 120 140 160 180 200
t

Fig. 11(a): ¢ = 0.9 (USA).

k=1
- k=5

251 == k=20
k=50
k=08

05 ™~ =

Fig. 11(b): ¢ = 0.9 (USA).

In figures (12), we plot the actual data collected from the
beginning of the outbreak in New York city with light blue
curve. At plotting the prediction curves for different k, we
choose f3;, 5, and f5 as a function of time that defined in
Egs. (9). We take ¢ =0.92, §,; =0.001,53,, = 0.001,
Bos = 0.001 and the parameters value defined in table (2)
for different values a. We observed that, the actual data
curve agreed with the prediction curve (yellow curve) when
k =20 and a = 0.75 but after t = 50 see figure (12-a). In
figure (12-b), with a = 0.85 the prediction curve (red
curve) at k=05 matches more with the actual data.
Changing the value of ¢ = 0.9, the actual curve does not
match with any curve see figure (12-c). For another value
for ¢ = 0.98, the actual data agree with the prediction
curve (blue curve) at k = 1 see figure (12-d). From this
comparison with the actual data, we can summarize that the
fractional order a and the degree k of the node in the
network give us more possible cases that could be agree
with the real data.

x10°

New York | 4

n
o

[SERN AR
I m—

o -
T

0 10 20 30 40 50 60 70 80 90 100
t

Fig. 12(a): ¢ = 0.75.
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o
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o
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o
o
=}
@
=}
~
o
@
=}
©
o
o
5]

k=98 a
New York

Fig. 12(c): a = 0.9.

6
Ex10 .

o=

k=
k=

5| k=20 4
k=50
k=98
New York [

1] 10 20 30 40 50 60 70 80 90 100
t

Fig. 12(d): a = 0.98.
Fig. 12: ¢ = 0.92 (New York).

4 Conclusions

In this paper, a fractional SEIAS model is presented in
heterogeneous network. The nodes of the network are
chosen to be varying. The transmission due to
asymptomatic and pre-symptoms persons plays an
important role in the outbreak of COVID-19 so, we take
into account its effect. We proved the existence of the
disease-free equilibrium point and the endemic point. Also,
we calculated the threshold value of system (1)-(4) in
addition we studied the local stability of the disease-free
equilibrium point. In the numerical section, the role of the
heterogeneity and the degree of the node in the network is

illustrated. We observed that when the maximum degree k
of a node is increasing the value of R, increases see Fig. 2.
On another hand, we supposed the transmission rates 3, 3,
and f5 as a function of time, it leads to the value of R,
becomes a function of t. This means that the R, value may
be greater or less than unity during the change of time see
figures 6-11. It also depends directly on the definition of
transmission functions and the parameter c. See Figs. 6-11
for Korea, Italy and the United States of America. When
studying the impact of adherence to social distancing
instructions, we found that the higher rate of commitment,
the fewer number of infected individuals i.e., when
parameter ¢ takes a high value, it makes the peak of
infectious lower.
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