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Abstract: The paper discusses the problem of performing the prioritization of decision elements within the multicriteria optimization
method, analytic hierarchy process (AHP), with incomplete information. An approach is proposed on how to fill in the gap in the
pair-wise comparison matrix generated within an AHP standard procedure; that is, to reproduce one missing judgment of the decision
maker while assuring the reproduced judgment belongs to the same ratio scale used while other judgments are elicited. The first-level
transitivity rule (FLTR) approach is proposed based on screening matrix entries in the neighborhood of a missing one. Scaling (where
necessary) and geometric averaging of screened entries allows filling of the gap in the matrix and later prioritization of involved decision
elements by the eigenvector, or any other known method. Illustrative examples are provided to compare the proposed method with the
other two known methods also aimed to fill-in gaps in AHP matrices. The resultsindicate some similarities in attaining consistency.
However, unlike other methods, the FLTR assures coherency of the generating process in a sense that all numeric values in a matrix
(original entries, plus one generated) come from the same ratio scale and have correct element-wise semantic equivalents.
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1 Introduction

One of the key issues in decision making is eliciting
judgments from the decision maker (DM) about the
importance of a given set of decision elements. If a
problem can be structured hierarchically, then the
fundamental Saaty’s 9-point ratio scale in Table1 [1] can
serve as an efficient tool to assess this hierarchy by
performing pair-wise comparisons. The analytic hierarchy
process (AHP) [1], a well-known multicriteria
optimization method, exploits this feature to create
so-called local comparison matrices at all levels of a
hierarchy. In standard AHP, an eigenvector (EV) method
is used for deriving weights from local matrices; the EV
is called the prioritization method, and the computational
procedure is consequently called prioritization. After
local weights are calculated at all levels of the hierarchy,a
synthesis consists of multiplying the criterion-specific
weight of the alternative with the corresponding criterion
weight and summing up the results to obtain composite
weights of the alternative with respect to the goal; this
procedure is unique for all alternatives and all criteria.

Table 1: The fundamental Saaty’s scale for the comparative
judgments

Numerical value Verbal terms
1 Equally important
3 Moderately more important
5 Strongly more important
7 Very strongly more important
9 Extremely more important
2,4,6,8 Intermediate values

If all comparisons are performed properly by the DM,
then AHP synthesis is straightforward. However, if the
DM for various reasons fails to make some judgments,
then there are empty cells in the corresponding local
matrices. The first case can be treated as decision making
with complete information, and the other case with
incomplete information. Harker [2] discussed three
reasons why one would want to make fewer than the full
set of judgments for each of one or more sets of factors in
an AHP model:
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1.to reduce the time to make judgment
2.he/she is unwilling to make a direct comparison

between two particular elements
3.he/she is unsure about some comparisons

After reviewing the literature, Ishizaka and Labib [3] state
that there are three categories of papers related to
incomplete matrices: calculation of missing comparisons,
starting rules and stopping rules.

This paper deals with the calculation of missing
comparisons. Different ways to tackle the missing
judgments problem, both in individual and group
decision-making contexts, can be found in the literature.
Harker [4,5], was one of the first who proposed how to
solve the incomplete matrices problem. In [4], he takes
the geometric average of all the indirectly calculated
missing comparisons, based on the concept of connecting
path.

Connecting paths in fact implement the general
transitive rule (GTR) based on the following
mathematics: if ai j (i 6= j) is missed in a positive
reciprocal matrix,ai j can be determined by a connecting
path of sizek, CPk, as follows:

CPk = ai,p1ap1,p2 . . .apk, j (1)

The missing elementai j is a geometric mean of all
connecting paths related toai j:

ai j =
q

√
q

∏
k=1

CPk (2)

whereCPk is a connecting path,k defines the number of
elements in the connecting path, andq is the number of
all possible connecting paths. A major drawback of this
method is that the number of connecting paths can be high
for large matrices. For example, for a matrix of size 10, the
number of connecting paths is 109.000.

Another approach is given in [5], where eigenvector is
derived directly without estimating unknown comparisons.

Most recent methods used for solving problem of
incomplete matrices are: consistency optimization [6]; the
neural network based method [7,8]; connecting paths [9];
van Udens approximation rule for estimating missing
judgment [10,11]; and graph representation [12], to name
but a few.

Simulation employed in [7] comparing the efficiency
of four methods (connecting paths, revised geometric
mean method [2], characteristic polynomial-based
method [13], and neural network based method), showed
that connecting paths can be considered as the most
efficient for small-sized matrices.

We propose an adapted version of GTR method for
generating missing data in matrices where gaps occur.
Only a case with one missing entry in a given matrix is
considered, assuming that a reciprocal and symmetric
entry (with respect to main diagonal) is also missing. A
method is named the First-level transitive rule (FLTR) to

indicate that the transitive property of pair-wise
comparisons is considered, and only the first and explicit
transitive relations between compared elements are used
to perform the generation of missing data.

Two matrices of size 5 are used to illustrate an
approach. Comparisons of FLTR’s results are provided
with respect to two other well known approaches in
generating missing data in comparison matrices, Harker’s
[2] and van Uden’s method [10]. Because the computed
consistency indices (CR), the total Euclidean distances
(ED) and minimum violations criterion (MV) usually
serve as an indication of the decision-making quality,
these three consistency measures are used in our
comparisons. In order to create common framework, the
prioritization is performed with the eigenvector (EV)
method in all cases, and a standard 9-point fundamental
ratio scale [1] is used for eliciting judgments of decision
elements. Based on our best experience with AHP, the
results presented here and compared with the results
obtained by other researchers, the FLTR is correct and a
trustful concept which produces consistent results within
the AHP philosophy based on its uniqueness (in
application) of prioritization method, scale and
consistency measurement. Moreover, proposed method is
conceptually clear, robust in use for any size of
comparison matrix, any level of its consistency, and any
single missing entry; and finally, it is easy to implement
FLTR in AHP-related computer software. Finally, FLTR
is applicable if any other ratio scale is used, not only
Saaty’s, because its inherent property is normalization
and preserving that reproduced missing data belong to the
discrete set of values defined in the scale as associates to
semantic statements used by the decision maker while
eliciting his/her judgments.

2 Analytic hierarchy process in brief

2.1 Main features

AHP is a multicriteria method aimed at supporting
decision-making processes in individual and group
contexts. The core of AHP lies in presenting the problem
as a hierarchy and comparing the hierarchical elements in
a pair-wise manner using Saaty’s 9-point scale to express
the importance of one element over another in regards to
the element in the higher level. The major feature of AHP
is that it involves a variety of tangible and intangible
goals, attributes, and other decision elements. In addition,
it reduces complex decisions to a series of pair-wise
comparisons; implements a structured, repeatable, and
justifiable decision-making approach; and builds
consensus.

2.2 Pair-wise comparisons

Without losing generality, the problem can be formalized
by considering the prioritization of n elements
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E1,E2, . . . ,En at a given level of hierarchy. The DM
semantically compares any two elementsEi and E j and
indirectly (verbally) or directly (numerically), using the
scale in Table1, assigns the valueai j that represents a
judgment of the relative importance of decision element
Ei overE j. If elementEi is of the same importance for the
DM, then ai j = 1, and if Ei is preferred toE j, then
ai j > 1. The reciprocal propertya ji = 1/ai j by
assumption always holds, andaii = 1 for all i = 1,2, . . . ,n.

If n elements of one level of hierarchy are compared
regarding the element in the upper level, a comparison
matrix A has the following quadratic form:

A =




a11 a11 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann


 (3)

Each matrix elementai j provided by the DM is a
subjective judgment of the mutual importance of the two
elements,i and j. If the DM is fully consistent, then the
transition ruleai ja jk = aik should apply for alli, j, andk
in the range 1 ton.

The problem is to derive the priority vector
w = (w1,w2, . . . ,wn)

T from the matrix, providing the
elements ofw satisfy the relation:

ai j = wi/w j (4)

wherewi andw j are the local weights of elementsi and j
regarding the element in the upper level. So, the weight’s
vector w that corresponds to matrix (3) comprises the
local weights of all the elements in the given hierarchy
level regarding the element in the upper level.

However, vectorw is unknown, and the problem is
that there is no such unique vector because of the
well-known inconsistencies of the DM or the limitations
imposed by any used scale. In order to measure the
successfulness of thew vector determination by any of
the existing methods, e.g. [1,14,15,16,17,18,19,20,21],
one can define several metrics and compare the original
matrix A and corresponding matrixC:

C =




w1/w1 w1/w2 . . . w1/wn
w2/w1 w2/w2 . . . w2/wn

...
...

. . .
...

wn/w1 wn/w2 . . . wn/wn


 (5)

An issue of comparisons is usually considered as
’measuring consistency’, and several measures have been
defined by different authors as will be discussed in
section2.4.

2.3 Prioritization by the Eigenvector method

Over the years, several methods have been proposed for
estimating the weights from a matrix of pairwise

comparisons, including additive normalization (AN),
eigenvector (EV), logarithmic least squares (LLS),
weighted logarithmic least square (WLS), logarithmic
goal programing (LGP), fuzzy preference programing
(FPP), and others. A brief description of these competing
methods is provided by Harker and Vargas [4], and
Srdjevic [20]. Herein, we present the main features of the
EV method that is commonly used in practice, and which
we used in our research.

The EV method is a widely used method to generate
priority vectors for given pairwise matrices. The method,
originally proposed by Saaty [1], solves an eigenvalue
problem associated with a quadratic pairwise comparison
matrix of sizen and is nicely described in Chandran et al
[22] as partly quoted below with some additions for better
understanding.

Let A = (ai j), for i, j = 1,2, . . . ,n denote a square
pairwise comparison matrix, where entryai j gives the
importance of elementi relative to elementj. Each entry
is a positive value (ai j > 0) with a reciprocala ji = 1/ai j
(for all i, j = 1,2, . . . ,n). The decision maker wants to
compute a vector of weights (w1,w2, . . . ,wn) associated
with A.

If the matrixA is consistent (that is,ai j = aikak j for all
i, j,k = 1,2, . . . ,n), thenA contains no errors. Therefore,
the weights are already known, and we have

ai j = wi/w j, i, j = 1,2, . . . ,n. (6)

Summing over allj, we obtain

n

∑
j=1

ai jw j = nwi, i, j = 1,2, . . . ,n. (7)

In matrix notation, it is equivalent to

Aw = nw, eT w = 1. (8)

The vector w is the principal right eigenvector of
matrix A corresponding to the eigenvaluen. If the vector
of weights is not known, then it can be estimated from the
pairwise comparison of matrixA′ generated by the
decision maker and solving

A′w′ = λ ′w′, eT w′ = 1 (9)

for w′. The matrixA′ contains the pairwise judgments of
the decision maker and approximates the matrixA whose
entries are unknown. In Eq. (9), λ ′ is an eigenvalue ofA′,
andw′ is the estimated vector of weights. Saaty [1] uses
the largest eigenvalueλmax of A′ when solving forw in

A′w′ = λmaxw′, eT w′ = 1. (10)

Saaty has shown thatλmax is always greater than or
equal ton and if its value is close ton, then the estimated
vector of weightsw′ solves Eq. (10) approximately.

A good estimate of the principal eigenvector for an
inconsistent matrix is obtainable by consecutively
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squaring the matrix, normalizing the row sums each time,
and stopping the procedure when the difference between
the normalized sums in two consecutive calculations is
smaller than a prescribed value.

It was shown by various researchers that for small
deviations around the consistent ratioswi/w j, the EV
method gives a reasonably good approximation of the
priorities’ vector. However, when the inconsistencies are
large, it is generally accepted that the solutions are not so
satisfactory.

2.4 Consistency measures

Consistency analysis of the individual DM can be based on
theCR defined by Saaty [1], and the totalL2 ED for each
comparison matrix. Whichever method is used to derive
the priority vector from the given local AHP matrix [20],
whether it already has all the entries elicited from the DM,
or is filled in with FLTR data, consistency is necessary to
measure in order to preserve integrity that the outcomes
are trustful.

Standard AHP uses EV, the prioritization method, and
the consistency coefficientCR to indicate the
inconsistency of the DM [1]. The other commonly used
consistency measures are the total Euclidean distanceED
and minimum violation (rank reversal) criterionMV .

2.4.1 Consistency ratio

The CR is calculated as a part of the standard AHP
procedure. First, the consistency index (CI) is calculated
using the following equation:

CI =
λmax −n

n−1
(11)

where λmax is the principal eigenvalue of matrix (3).
Knowing the consistency index and random consistency
index (RI) defined also by Saaty [1], the consistency ratio
is obtained:

CR =
CI
RI

. (12)

Saaty [1] suggested considering the maximum level of
the DM’s inconsistency to be 0.10; that is,CR should be
less or equal to 0.10.

2.4.2 TotalL2 Euclidean distance

Total L2 Euclidean distance

ED = [
n

∑
i=1

n

∑
j=1

(ai j −wi/w j)
2]1/2 (13)

represents the distance measured between all elements in a
comparison matrix (3) and the corresponding elements in
the related matrix (5). The lower is theED, and the higher
is the consistency of the DM.

2.4.3 Minimum violations(MV )

This measure (criterion) is given by Eqs. (14) and (15):

MV =
1
n2

n

∑
i=1

n

∑
j=1

Li j (14)

Li j =





1 if wi > w j anda ji > 1
0.5 if wi = w j anda ji 6= 1
0.5 if wi 6= w j anda ji = 1
0 otherwise .

(15)

Eqs. (14) and (15) sum up and then average all
violations associated with the priority vectorw. The
conditions of violation defined by (15) penalize possible
order reversals such as this: if thejth alternative is
preferred to theith one (i.e.a ji > 1), but the derived
priorities are such thatwi > w j, then there is a violation,
or element preference reversal (14).

3 Two well-known methods for filling-in
incomplete matrices

3.1 Harker’s method [4]

For given incomplete matrixA(ai j), corresponding
reciprocal matrix̃A(ãi j) is defined as

ãi j =





1+mi if i = j
0 if ai j is missing
ai j otherwise .

(16)

wheremi is the number of missing elements in thei-th row.

3.2 Van Uden’s method [10]

If only one entryaik is missing, van Uden proposes the
following equation for calculating the missing element

aik =
n−2

√
X
Y

(17)

where X = ∏ j
j 6=k

ai j and Y = ∏ j
j 6=i

ak j. Also, aik =
wi

wk
,

assuming that matrixW is a consistent approximation of
matrix A.

4 First-level transitive rule (FLTR) method

In pertinent literature, it is commonly said that a given
square comparison matrixA = {ai j} of order n is fully
consistent if the transitive ruleai j = aik ·ak j applies for all
i, j, andk. In reality, one may expect only matrices of an
order up to 4 to be fully consistent. In most cases, there
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are one or more violations of the transition rule and
inconsistency occurs.

The general transitive rule (GTR) presented in the
previous section deals with numerous connecting paths;
that is, with chains of all matrix entries with equal inner
(neighbor) indices. For large matrices, the general rule is
not efficient.

If only FLTR is applied, then in the case of say a matrix
of order five and missing entrya45, there are only three
first-level transitions, namely:

a45 = a41 ·a15

a45 = a42 ·a25

a45 = a43 ·a35

The two remaining first-level transitions

a45 = a44 ·a45

a45 = a45 ·a55

make no sense, becausea44 = a55 = 1.
If a matrix is of order seven, then in the case of, for

example, elementa57, FLTR gives five transitions:

a57 = a51 ·a17

a57 = a52 ·a27

a57 = a53 ·a37

a57 = a54 ·a47

a57 = a56 ·a67

Again, two remaining FLTR transitions

a57 = a55 ·a57

a57 = a57 ·a77

do not provide any relevant information, becausea55 =
a77 = 1.

Obviously, in the first step FLTR handles only a
reasonable number of direct transition values, computed
for a missing matrix entryaik (and also reciprocal and
symmetricalaki = 1/aik) based on existing entries in the
same matrix. For matrix of ordern, inner products of
existing entries isn−2, as also implied by formulas given
in (10).

The second, final step in applying FLTR is to compute
the missing entry from the computed transitive values.
There are several possible ways to do that. We propose to
geometrically average and round the result to the closest
numerical value from Saaty’s scale. If at least one
transition value is out of Saaty’s scale range{1-9}, which
may occur quite often, then the computed transition
values should be scaled to fall within range before
proceeding with geometric averaging and rounding. This
is methodologically correct because it preserves the
eliciting of judgments from the decision maker is virtually

done by fully respecting the scale during the complete
judgment process, without exemptions as implicitly
permitted in other two well known methods [2,10].

Experiments with different matrices indicate that
FLTR is superior to the general transition rule (GTR) in
both the quality of generating missing data, and
programming and computation requirements. Saaty’s
scale can be considered as a discrete set of 17 semantic
statements with associated numerical values as given in
Table 2. For simplicity, let the scale be represented as a
discrete setS with elements:s1 = 1, s2 = 2, ..., s9 = 9,
s10 = 1/2, s11 = 1/3, ..., s17 = 1/9. Let us call these
numerical values as ’scale points’, and the distance
between largest{9} and lowest value{1/9}, as the scale
rangeR = 9−1/9= 80/9≈ 8.89.

The statements from the semantic part of the Saaty’s
scale can be considered as equally distanced. In such a
discrete domain, it can be adopted analogously that their
numerical associates are also equally distanced; that is the
distance between pointss10 and s11 (1/2 and 1/3) is
considered the same as between pointss11 and s12,
regardless of their real numerical distances as it comes
from only numerical part of the Saaty’s scale. In this way
we create a base for unique treatment of values contained
in the comparison matrix, both those that exist and the
one which is missing.

Assume now that in given comparison matrixA of
size n, there is a missing valueaik. Consequently, the
element aki is also missing because matrixA is by
assumption reciprocal. Once one of those two missing
elements is derived, the other is simple to compute, e.g.
aki = 1/aik.

First order transition rule defines a set of inner products

X = {(ai ja jk)
l : i 6= j; j 6= k; i, j,k = 1,2, ...,n; l = 1,2, ...m}

(18)
A set X consists of exactlym = n − 2 different inner
products of existing elements. There are two possible
cases:

Case 1:

If all products inX set by an individual value fall within
the range {1/9-9} in Saaty’s scale, and this range
encapsulates the discrete points ofS, then the
approximation of missing elementaik is computed as a
geometric average

áik = [
m

∏
l=1

(ai ja jk)
l ]1/m (19)

This value falls into the range{1/9-9} and it only remains
to round the value to the nearest discrete scale point from
the setS. This point is then declared as FLTR generated
missing valueaik from the matrixA.
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Case 2:

If at least one of the inner products inX violates the range
{1/9, 9} in Saaty’s scale, all inner products have to be
additively normalized and then scaled to fall within the
scale. For a ’distance’R between the upper and lower
limit of the scale, normalization and scaling give

(ai ja jk)
l(s) = [(ai ja jk)

l/
m

∑
l=1

(ai ja jk)
l ] ·R, l = 1, ...,m.

(20)
Geometric averaging of scaled values

áik = [
m

∏
l=1

(ai ja jk)
l(s)]1/m (21)

produces value which falls within the rangeR. Simply
matching the nearest discrete value on the scale gives the
required missing elementaik.

5 Numerical examples

Two complete comparison matricesA1complete and
A2complete are taken from [23] as obtained from real
decision maker (DM), an expert in agricultural irrigation.
The decision maker used Saaty’s scale (Table1) to judge
five decision elements at a given level of the hierarchy by
comparing them in pairs versus two different decision
elements in the upper level (matrices (22) and (23)).

A1complete =




1 1/4 1/5 1/3 1/2
4 1 1/3 1/2 1/3
5 3 1 2 3
3 2 1/2 1 3
2 3 1/3 1/3 1


 (22)

A2complete =




1 4 2 4 5
1/4 1 1 2 4
1/2 1 1 3 3
1/4 1/2 1/3 1 5
1/5 1/4 1/3 1/5 1


 (23)

EV prioritization produced priority vectors presented
in Table 2 along with computed consistency measures
according to Eqs. (9-13).

Table 2: The AHP results (complete matrices)
Priority vector Consistency measures

Matrix w1 w2 w3 w4 w5 CR ED MV

A1complete 0.063 0.128 0.387 0.257 0.165 0.091 3.580 0.00
A2complete 0.435 0.178 0.212 0.122 0.052 0.075 4.938 1.00∗

∗Violation of 0.5 is recorded at elements a23 and a32 in matrix A2

Assume now that the DM, by chance or intentionally,
missed comparing some elements in matricesA1complete
andA2complete; that is, let the two missing judgments be

a24 anda15, respectively. By assumption, their reciprocals
are also missing symmetrically with respect to main
diagonal in both matrices,A1missing (24) and A2missing
(25). Missing entries have to be computed preserving that
consistency measuresCR, ED and MV are forced to be
minimal.

A1missing =




1 1/4 1/5 1/3 1/2
4 1 1/3 −−∗ 1/3
5 3 1 2 3
3 −−∗ 1/2 1 3
2 3 1/3 1/3 1


 (24)

A2missing =




1 4 2 4 −−∗

1/4 1 1 2 4
1/2 1 1 3 3
1/4 1/2 1/3 1 5
−−∗ 1/4 1/3 1/5 1


 (25)

Reproducing missing judgments by the Harker’s
method

Application of the Harker’s method gives priority vectors
and consistency valuesCR, ED and MV as shown in
Table3. Based on computed weights, the missing entries
in two matrices are simple to obtain via formula
ai j = wi/w j, and correspondinglya ji = w j/wi, (matrices
A1Harker andA2Harker). Notice that reproduced values do
not match Saaty’s scale by not precisely corresponding to
any linguistic term related to judging mutual importance
of two given (compared) elements. Moreover, the
computed valuea15 = 11.5 in (27) is out of scale, the
remedy to which is to seta15 = 9 to match end point of
the scale which says that element 1 is absolutely
dominant to element 5; however, this shift does not come
from the Harker’s method in any sense, and is therefore
unjustified.

Notice that consistency measures for matrixA2Harker
in Table 3 are better than corresponding values given in
Table2 for original (full) matrix. This result is expected
because Harker’s method is constructed to produce it.
However, as said before, it is not justified in a semantic
sense. For the sake of completeness, in case of matrixA1
Harker’s method almost exactly reproduced original entry
a24, and in turn it’s reciprocala42 (Cf. matrices (26) and
(22)).

Table 3: The AHP results (Harker’s method)
Priority vector Consistency measures

Matrix w1 w2 w3 w4 w5 CR ED MV

A1Harker 0.063 0.128 0.387 0.257 0.165 0.091 3.580 0.00
A2Harker 0.474 0.168 0.205 0.112 0.041 0.052 3.530 1.00∗

∗Violation of 0.5 is recorded at elements a23 and a32 in matrix A2
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A1Harker =




1 1/4 1/5 1/3 1/2
4 1 1/3 0.50∗ 1/3
5 3 1 2 3
3 2.01∗ 1/2 1 3
2 3 1/3 1/3 1


 (26)

A2Harker =




1 4 2 4 11.5∗

1/4 1 1 2 4
1/2 1 1 3 3
1/4 1/2 1/3 1 5

0.09∗ 1/4 1/3 1/5 1


 (27)

Reproducing missing judgments by the van Uden’s
method

The Van Uden’s method produces priority vectors and
consistency values for matricesA1 and A2 similar to
those produced by the Harker’s method, Table4. Unlike
the Harker’s method, computing the missing entries is
direct. Missing values, as well as their reciprocals, are
presented in (28) and (29). Notice that, again, all
reproduced values do not match Saaty’s scale. In matrix
A2vUden computed valuea15 = 12.4 is out of scale, even
further than in previous case.

The consistency measures for matrixA2vUden in Table
4 are better than corresponding values given in Table2.
This result is also expected but, from the same
argumentation as before, not justified in a semantic sense.
In the case of matrixA1, van Uden’s method reproduced
an acceptable value for original entrya24 and its
reciprocala42 (Cf. matrices (28) and (22)).

Table 4: The AHP results (Van Uden’s method)
Priority vector Consistency measures

Matrix w1 w2 w3 w4 w5 CR ED MV

A1vUden 0.063 0.126 0.387 0.260 0.163 0.090 3.592 0.00
A2vUden 0.474 0.168 0.205 0.112 0.041 0.052 3.589 1.00∗

∗Violation of 0.5 is recorded at elements a23 and a32 in matrix A2

A1vUden =




1 1/4 1/5 1/3 1/2
4 1 1/3 0.46∗ 1/3
5 3 1 2 3
3 2.16∗ 1/2 1 3
2 3 1/3 1/3 1


 (28)

A2vUden =




1 4 2 4 12.4∗

1/4 1 1 2 4
1/2 1 1 3 3
1/4 1/2 1/3 1 5

0.08∗ 1/4 1/3 1/5 1


 (29)

Reproducing missing judgments by the FLTR
method

Following the first-level transitive rule approach, the
missing judgments are computed as follows:

Matrix A1: missing element is a24

a24
1 = a21 ·a14 = 4· (1/3) = 4/3

a24
2 = a23 ·a34 = (1/3) ·2= 2/3

a24
3 = a25 ·a54 = (1/3) · (1/3) = 1/9

Because all inner products are within the range{1/9-9} in
Saaty’s scale, Case 1 applies and Eq.19gives

´a24 =
3
√

a24
1a24

2a24
3 ≈ 0.462.

The missing entry (judgment) isa24 = 1/2 because it is
the closest value in the scaleS. Symmetric entry is
a42 = 2.

Matrix A2: missing element is a15

a15
1 = a12 ·a25 = 4·4= 16

a15
2 = a13 ·a35 = 2·3= 6

a15
3 = a14 ·a45 = 4·5= 20

Because two of the computed values violate the range
{1/9, 9} in Saaty’s scale, Case 2 applies and all values
have to be additively normalized and scaled to fall within
the scale range. Application of Eq. (20) gives

a15
1(n) = 16/42= 0.38, a15

1(s) = 0.38· (80/9) = 3.38

a15
2(n) = 6/42= 0.38, a15

2(s) = 0.14· (80/9) = 1.24

a15
3(n) = 20/42= 0.48, a15

3(s) = 0.48· (80/9) = 4.27

Therefore, the missing entry (judgment) isa15 = 3.
Symmetric entry isa51 = 1/3.

With these two values inserted into the matrices in (30)
and (31), it is possible to perform EV prioritization for
both matrices and to derive the final weights of all
compared elements. Table5 contains the computed
weights, and consistency measuresCR, ED and MV . In
case of matrixA2f ltr, valuea15 = 3, as generated by the
FLTR method, belongs to the Saaty’s scale with
associated semantic value ’decision element 1 is
moderately more important than decision element 5;’
recall that the original (true) value isa15 = 5 which
corresponds to the judgment: ’decision element 1 is
strongly more important than decision element 5.’
These two statements do not differ significantly and the
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computed priority vector with the FLTR method has an
absolute value closer to the original priority vector than
the vectors obtained by other two methods (0.046 vs.
0.077, in favor of FLTR). On the other side, in case of
FLTR method, the consistency measuresCR andED are
slightly worse than those obtained by Harker’s and van
Uden’s method. Even so, they are methodologically
justified while Harker’s and van Uden’s are not because
generated values do not belong to the scale which is
already used for the remaining part of matrixA2.

In the case of matrixA1, the FLTR method exactly
reproduced original valuea24 and it’s reciprocal. Notice
that base assumption in applying FLTR method is that the
final (generated missing) values must belong to the used
scale (in this case Saaty’s scale).

Table 5: The AHP results (FLTR method)
Priority vector Consistency measures

Matrix w1 w2 w3 w4 w5 CR ED MV

A1f ltr 0.063 0.128 0.383 0.257 0.165 0.091 3.580 0.00
A2f ltr 0.413 0.183 0.214 0.128 0.062 0.112 5.407 1.00∗
∗Violation of 0.5 is recorded at elements a23 and a32 in matrix A2

A1f ltr =




1 1/4 1/5 1/3 1/2
4 1 1/3 1/2∗ 1/3
5 3 1 2 3
3 2∗ 1/2 1 3
2 3 1/3 1/3 1


 (30)

A2f ltr =




1 4 2 4 3∗

1/4 1 1 2 4
1/2 1 1 3 3
1/4 1/2 1/3 1 5
1/3∗ 1/4 1/3 1/5 1


 (31)

Notice that in matrixA1complete (22) the DM provided the
same judgmenta24 = 1/2 as the one generated by the
FLTR. The judgmenta15 = 5, provided by the DM in
matrix A2complete (23), is slightly different from the one
generated by the FLTR (a15 = 3).

For the sake of completeness, the decision maker has
been asked to reconsider both matrices but with emptied
positions a24(a42) and a15(a51). He spent some time
reconsidering the whole problem and his previous
judgments. Interesting to note, he exactly repeated the
original judgments as given in (22) and (23).

It should be noted that an opposite situation could
occur if the decision maker makes inconsistent judgments
instead of obviously correct ones. More sensitivity
analysis could possibly be necessary for such cases. In
this particular case the decision maker was not asked to
change his judgments in any way, and this sensitivity
option will remain for future research.

Although the applied FLTR computation is just a
mathematical procedure a posteriori, or a deductive
operation independent of any further re-thinking about the

problem or logical assessment of the judgment already
made by the DM, the same claim is valid for other known
methods for filling-in empty matrices. There are no
foreseen better solutions in this regard.

6 Conclusions

In real-life decision making, it may occur that for various
reasons the DM is unable or unwilling to judge all criteria
vs. goal, or all alternatives vs. all criteria. This situation is
known as decision making with incomplete information.
In this paper, we discuss the problem within the AHP
framework and propose a method to fill in the gaps in the
pair-wise comparison matrices generated through
elicitation of the DM’s semantic judgments. A method for
generating a numerical equivalent to the missing semantic
judgment is named FLTR, after so-called first level
transition rule; that is, proposed method exploits
information from positions in a comparison matrix,
neighbor to a position where the judgment is missing.
Differently from some other known methods, FLTR
assumes that generation of the missing judgment is
achieved in a way that preserves the final result’s
belonging to the same scale which is used by the decision
maker for eliciting his/her other judgments during
standard AHP application. Therefore, FLTR involves
geometric averaging and scaling of inner products that
realize the transition rule, and the final matching of
computed numerical to the scale used for all other
pair-wise comparisons of decision elements in a
hierarchy.

The proposed method can generate only one missing
judgment in any local matrix and in turn enables
prioritization for a given matrix, as well as the final AHP
synthesis. FLTR method is applicable for any ratio scale
and is independent of the prioritization method used. In
later case the only restriction could be an issue of
measuring consistency which is a problem by itself and is
out of scope in this paper. Worthy to mention is that there
are controversies among researchers about an issue of
consistency; it could be a reason why a relatively ’small
portion’ of published papers related to AHP deal with
consistency, both at individual and group level. In this
work we also intentionally did not insist on consistency
measures; some are just presented for comparison
reasons.

Two tolerantly consistent matrices are used as a proof
for concept examples, and FLTR is applied together with
two other well-known methods. For comparison purposes
common metrics in measuring consistency are used. The
compared methods do not outperform the others and
results are considered as competitive. However, our
argument is that the offered FLTR approach is more
coherent because generated missing data in comparison
matrices can always have associated exact semantic
statements, unlike in the other methods used for
comparison. The obtained results we consider as
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promising, with anticipated positive outcomes in future
research in solving group decision-making problems with
incomplete information, e.g. cross-generation of missing
data in matrices taken from different decision makers.
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