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Abstract: In membrane computing, spiking neural P systems (shortly called SN P systems) are a group of neural-like computing
models inspired from the way spiking neurons communication in form of spikes. In previous works, SN P systems working in a non-
deterministic manner have been used to solve numerical NP-complete problems, such as SAT, vertex cover, in feasible time. In these
works, the application of any rule should complete in exactly one time unit, andthe precise execution time of rules plays a crucial
role on solving the problems in polynomial (or even in linear) time. However, the restriction does not coincide with the biological fact,
since in biological systems, bio-chemical reactions may cost differentexecution time due to the external uncontrollable conditions. In
this paper, we consider timed and time-free SN P systems, where the precise execution time of the rules is removed. To investigate the
computational efficiency of time-free SN P systems, we solve Subset Sum problem by a family of uniform time-free SN P systems.

Keywords: membrane computing, spiking neural P system, Subset Sum problem, uniform solution, time-freeness.

1 Introduction

Spiking neural P systems(SN P systems, for short) are a
class of distributed and parallel computing models
inspired by spiking neurons, introduced in [5]. Please
refer to a respective chapter of the book [18] for some
details of SN P systems, to the membrane computing
website [9] for updated information.

With different biological facts, many variants of SN P
systems have been proposed, as well as their
computational properties have been heavily studied. SN P
systems were proved to be computationally complete, i.e.,
Turing universal, as number generators [5,11,12,13,14,
15], language generators [3,21], and function computing
devices[16]. SN P systems with cell division or budding
can generate new neurons during the computation, thus
provide a way to generate exponential working space in
polynomial or linear time. These systems were
successfully used to (theoretically) solve computationally
hard problems, particular inNP-hard problems, in a
feasible (polynomial or linear) time (see, e.g., [6,7,8,12]).

In the previous obtained SN P systems in [3,5,6,7,8,
12,16,20], a global clock is generally assumed marking

the time for the system. The systems work in a
synchronized manner in the global level (all neurons
apply their rules in a parallel manner), and for each
neuron, only one of the enabled rules can be used on the
tick of the clock. However, programming living things
cannot assume general restrictions on execution times.
Moreover different biological processes may cost
different time due to the external uncontrollable
conditions. Therefore, it seems crucial to investigate the
power of SN P systems without restrictions on execution
times of rules. Time-free cell-like P systems and SN P
systems with no restriction on the execution of the rules
are investigated in [1] and [10]. The idea of considering
solving computational hard problem by time-free P
systems was initialled by Matteo in [2], but no specific
time-free system constructed for solving a hard
computational problem was given in [2].

In this work, we deal with the computational
efficiency of time-free SN P systems by solving Subset
Sum problems, that is, the correctness of the solution does
not depend on the precise timing of the involved
processes. Moreover, the family of time-free SN P
systems are constructed in a uniform way.

∗ Corresponding author e-mail:luoliang610@163.com

c© 2014 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/080140


328 T. Song et al.: Solving Subset Sum Problems by Time-free Spiking Neural...

2 Solving Decision Problem by Time-free SN
P Systems

In this section, we start by recalling the definition of
timed spiking neural P systems [10], and then a particular
class of timed SN P systems investigated in this work,
called time-free SN P systems, is introduced. The
definition is complete, but familiarity with elemental
concepts of formal languages and the basic elements of
classic SN P systems (e.g. from [17]) is helpful.

A timed spiking neural P systemof degreem≥ 1 is a
construct of the form

Π = (O,σ1,σ2, . . . ,σm,syn, in,out,e), where

–O= {a} is alphabet of spike (a is calledspike);
–σ1,σ2, . . . ,σm areneuronswith anyσi = (ni ,Ri) (1≤
i ≤ m), where
(1)ni ≥ 0 is thenumber of spikesinitially contained in

neuronσi ;
(2)Ri is a finite set ofrules: E/ac → ap, whereE is a

regular expression overO, c≥ 1 andc≥ p≥ 0;
–syn⊆ {1,2, . . . ,m}×{1,2, . . . ,m} with (i, i) /∈ synis a
finite set ofsynapsesconnecting neurons;

–in,out∈ {1,2, . . . ,m} areinput andoutputneurons;
–e : R→N is a time mapping, whereR is the total set of
rules holdingR= R1∪R2 · · ·∪Rm.

A rule E/ac → ap with p ≥ 1 is called extended
spiking rule; a ruleE/ac → ap with p= 0 is written in the
form E/ac → λ and is called aforgetting rule. The rule of
the typeE/ac → a andac → λ is said to be thestandard
spiking and forgetting rule. IfL(E) = {ac}, then the rules
are written in the simplified formsac → ap andac → λ

The time mappinge : R1 ∪R2 · · · ∪Rm → N specifies
the execution time of every rule in the system. We
suppose to have an external clock marks time-units of
equal length, starting from time 0. In each time unit, a
finite number of spikes and a finite number of rules are
present in each neuron. The applicability of a rule is
determined by checking the total number of spikes
contained in the neuron against a regular set associated
with the rule. Specifically, the spiking rules are applied as
follows. If the neuronσi contains exactlyk spikes, and
ak ∈ L(E),k ≥ c, then the ruler : E/ac → ap is enabled
and can be applied. This means consuming (removing)c
spikes (thus onlyk− c spikes remain in neuronσi); the
neuron is fired, and it producesp spikes aftere(r) time
units (that is, when the execution of spiking rule
terminates). During the execution of the rule, the neuron
is in the closed status. If the rule is used at stept and
e(r) = 0, then the neuron is open at stept; if e(r) = 1,
then the neuron is closed at stept, and open in the next
step, etc. If the rule is used at stept ande(r) ≥ 1, then at
stepst, t +1, t +2, . . . , t +e(r)−1 the neuron is closed, so
that it cannot receive new spikes (if a neuron has a
synapse to a closed neuron and tries to send a spike along
it, then that particular spike is lost) from its neighboring
neurons. At the stept + e(r), the neuron becomes open

again, so that it can receive spikes (which can be used
starting with the stept + e(r) + 1, when the neuron can
again apply rules). Once emitted from neuronσi , the p
spikes reach immediately all neuronsσ j such that
(i, j) ∈ synand which are open, that is, thep spikes are
replicated and each target neuron receivesp spikes; as
stated above, spikes sent to a closed neuron are “lost”,
that is, they are removed from the system. In the case of
the output neuron,p spikes are also sent to the
environment. Of course, if neuronσi has no synapse
leaving from it, then the produced spikes are lost.

If a neuron contains exactlyc spikes, then the
forgetting ruleac → λ is enabled to use. By using the
forgetting rule, c ≥ 1 spikes are removed out of the
neuron, thus be removed out of the system. Note that the
application of a rule is controlled by the total number of
spikes contained in the neuron.

In each time unit, if neuronσi has applicable rules,
then one of the enabled rules must be used on the tick of
the clock, all neurons working in parallel. When a rule
from Ri is started to apply in a neuron, then other rules
from the neuron can not be applied before the execution
completes. It is possible that two spiking rules
E1/ac1 → ap1 and E2/ac2 → ap2 may have
L(E1) ∩ L(E2) 6= /0, in this case, at some moment the
number of enabled rules might be more than one; only
one of them is chosen in a non-deterministic way to use.
In any neuron, its rules are used in the sequential manner
(at most one in each step), but for different neurons, they
work in parallel with each other.

The “state” (also calledconfiguration) of the system
at any moment is described by the number of spikes in
neuron at that moment and theopen-close statusof the
neuron, that is, the number of steps to count down until it
becomes open again. One can definetransitionsamong
configurations by using the rules in the neurons. Any
sequence of transitions starting from the initial
configuration, halting or not, is called acomputation. The
result of a computationis defined as the total number of
spikes sent into the environment by the output neuron,
when the system halts.

The systems can work in a so called “input-output”
mode to solve decision problems. An instance of a
decision problems can be encoded in form of spike train
and introduced in the system through the input neuron(s),
and then by performing the computation of the system, a
number of spikes are emitted to the environment when the
system halts. By reading a instance of the problem into
the system, we can obtain the solution of problem,yesor
no, by analyzing the number of spikes emitted to the
environment when the computation halts. If the
correctness of the solution has no relationship with the
time mappinge associated with the system, then the
solution is called time-free. In order to formally define the
time-free solution to decision problems by using timed
SN P systems, we recall the some notions used in SN P
systems to solve decision problems.
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A decision problemX is a pair(IX,ΘX) whereIX is a
set of instances ofX, andΘX is a predicate overIX. Let
X = (IX,ΘX) be a decision problem, if the answer ofX
is positive, then it is represented asΘX(u) = 1; otherwise
ΘX(u) = 0, andΠ = Πu,u∈ IX be a (countable) family of
SN P systems.

–The family of systemsΠ is sound, if for any u ∈ IX,
there exists a computation ofΠu, by which we have
ΘX(u) = 1.

–The family of systemsΠ is complete, if for any u∈ IX
such thatΘX(u) = 1, then we get the positive answer
of the instance from every computation ofΠu.

–The family of systemsΠ is polynomially boundedif
there exists a polynomial functionp(n) such that, for
eachu∈ IX, all computations inΠu must halt in at most
p(|u|) steps.

In timed SN P systems, the execution time of rules is
determined by the time mappinge (that is the execution
time of rules can be any number), so it is possible that
there exits a rule with exponential execution time. In this
case, the notion of polynomial bounded cannot be
obtained any more. We consider here another way to
define the computation time in timed SN P systems,
which is called therule starting steps(RS-steps for
short). In the computation of the timed SN P systems,
only the steps when at least one rule is started to apply are
counted. Those steps, in which no rule is started to be
executed, are omitted. We can easily expanded the
notions sound, complete and polynomial bounded to
timed sound, timed complete and timed polynomial
bounded, respectively. The notions are given as follows.

Let Πe = Πu(e),u ∈ IX be a (countable) family of
timed SN P systems.

–The family of systemsΠe is said to betimed sound, if
for a given time-mappinge, the familyΠe=Πu(e),u∈
IX is sound.

–The family of systemsΠe is said to be timed
complete, if for a given time-mappinge, the family
Πe = Πu(e),u∈ IX is complete.

–The family of systemsΠ is timed polynomially
boundedif for a given time-mappinge, there exists a
polynomial functionp(n) such that all computations
in any systemΠu(e) must halt in, at most,p(|u|)
RS-steps.

For any time mappinge, if the family Πe are timed
sound, timed complete and timed polynomially bounded,
then the family of systemsΠe are said to be time-free
sound, time-free complete and time-free polynomially
bounded.

3 A Time-free Uniform Solution to Subset
Sum Problem

Subset Sum problem is known NP-complete problem [4],
which can be formally defined as follows.

Problem. NAME: SUBSET SUM.

–INSTANCE: a finite V = {v1,v2, . . . ,vn} with
vi ∈ N, i = 1,2, . . . ,n, and a positive integer numberS.

–QUESTION: is there a sub setB of V (B ⊆ V) such
that∑b∈B = S?

Theorem 1.Subset Sum problem can be solved by timed
SN P systems in a time-free uniform manner.

For a given time mappinge, we construct a family of
timed SN P systemsΠn,n ∈ N to solve Subset Sum
problems. The systems, shown in Figure1, are
constructed in a uniform way. The input neurons
σci,3, i = 1,2, . . . ,n (having a synapse pointing to itself)
can read spikes from the environment, and the function of
the output neuronσout is to emit spikes to the
environment. In the initial configuration, all the neurons
contain no spike inside, except that neuronsσci andσci,2
(i = 1,2, . . . ,n) contain 3 spikes and 5 spikes,
respectively. For any instance of Subset Sum problem
(V = {v1,v2, . . . ,vn},S), cod(vi) = 5vi spikes are
introduced in each input neuronσci,3, i = 1,2, . . . ,n at the
beginning of the computation.

In the first step, with 3 spikes inside, neuron
σi , i = 1,2, . . . ,n can fire for the two rulesa3 → a2 and
a3 → a3 are both enabled, but only one of them will be
non-deterministically used at that moment. This
corresponds to the cases that whether the numbervi is
selected in the subsetB or not. In neuronσi , there are
following two cases.
Proof. –If neuronσi uses the rulea3 → a2, then after

certain steps (depending on the execution time of the
rule determined by the givene) it emits 2 spikes to
neurons σci,1 and σci,2, respectively. Neuronσci,1

removes the 2 spikes by the forgetting rulea2 → λ
and keeps inactive, while neuronσci,2 can fire by the
rule a7/a6 → a3, sending 3 spikes to neuronσci,3. By
receiving 3 spikes from neuronσci,2, neuronσci,3 gets
5vi + 3 spikes and the rulea8(a5)+/a8 → a6 is
enabled. In some steps, it sends 6 spikes to neurons
σci,3 andσout. Neuronσci,3 contains 7 spikes and will
fire again at some step. From that moment on, this
process can repeat forvi − 1 times, totally sending
6(vi − 1) spikes to neuronsσci,4 and σout. Note that
both of the two neurons cannot fire with 6k,k ∈ N

spikes. When neuronσci,3 has exactly 5 spikes, after
receiving 3 spikes from neuronσci,2, rule a8 → a4 is
enabled. Some steps later, it sends 4 spikes to neurons
σci,3, σci,4, andσout. With 6(vi −1)+4 spikes, neuron
σci,4 can fire, sending 2 spikes to neuronsσout andσd.
In this case, totally 6vi spikes are emitted to neuron
σout (where the first 6(vi −1) spikes are fromσci,3 and
the last 6 spikes are sent by neuronsσci,3 and σci,4,
which emit 4 and 2 spikes, respectively) and 2 spikes
are sent to neuronσd.

–If neuronσi uses the rulea3 → a3, then some steps
later it sends 3 spikes to each of neuronsσci,1 andσci,2.
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Fig. 1: The timed SN P systemΠn solving Subset Sum problem in a uniform manner

At that time, neuronσci,2 gets 8 spikes and cannot fire
for no rule is enabled. Having 3 spikes, neuronσci,1

fires by the rulea3 → a2, sending 2 spikes to neuron
σd at certain step. In this case, no spike is emitted to
neuronσout from the neuronσci,3.
Note that before neuronσd is activated, the number of

spikes in neuronσout is always even (it can only receive
even number of spikes in any step), so neuronσout cannot
fire until neuronσd fires. When neuronσd collects 2n
spikes (it indicates that all the neuronsσi and
σci, j , i = 1,2, . . . ,n, j = 1,2,3,4 have finished their
spiking), it becomes activated and sends one spike to
neuronσout. By receiving the spike, the number of spikes
in neuronσout becomes 6n+ 1. It can fire one step later
by using the rulea(a)6/a6 → a and begin to send spikes
to the environment. When the system halts, we can obtain
the answeryes or no to the instance of Subset Sum
problem: the answer is positive (yes) if exactly S spikes
are in the environment; otherwise, the answer is negative
(no).

We can easily check that systemΠn contains 5n+ 2
neurons, and any neuron has at most two
spiking/forgetting rules. So, for any systemΠn,n ∈ N,
there is a deterministic Turing machine constructing it in
polynomial time. If the instance of Subset Sum problem
has a positive answer, then we can get the positive answer
from a computation ofΠn. Dually, if we get the positive
answer from a computation of systemΠn, then the
instance has a positive answer. Therefore, the system is
sound and completeness.

In the following, we will check the RS-steps of the
computations in systemΠn. It is possible that then
modules ofΠn (modulei consists of neuronsσi ,σi,1,σi,2,
σi,3,σi,4, i = 1,2, . . . ,n) work sequentially, which is the
worst case of consuming computation times. According
to the description above, in each modulei of Π , all the
neurons fire in a sequential way. Neuronσi only fires
once, that is, one RS-step costs in neuronσi . If neuronσi
uses the rulea3 → a3, modulei finishes its work in two
RS-steps. If neuronσi uses the rulea3 → a2, then neuron
σci,2 will fire vi − 1 times, neuronσci3

will fire vi times
and neuronσci,4 will fire once. So, modulei costs at most
1+(vi − 1)+ vi + 1 = 2vi + 1 RS-steps. In the first step,
all the neuronsσi start by using one of their two rules,
their spiking costs one RS-step. Hence, then modules
cost at most∑n

i=12vi + 1 RS-steps . After all then
modules finish working, neuronσd fires once, and neuron
σout maximally fires∑n

i=1vi times. The systemΠn will
halt in at most ∑n

i=13vi + 2 RS-steps, which is a
polynomial time.

It is easy to obtain that the time mappinge has no
influence on the result of systemΠn, that is, for any time
mappinge, the SN P systemΠn will get the same answer
to the same instance of Subset Sum problem. Thus, the
family Πn is time-free sound and time-free complete
(with respect to each instance ofXn). For any time
mappinge, the family of systemsΠn can halt in at most
polynomial RS-steps, hence the systems are time-free
polynomially bounded.
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Therefore, the SN P systemΠn is a time-free uniform
solution to the Subset Sum problem.⊓⊔

4 Conclusion

In this work, inspired by the fact that different biological
biochemistry processes cost different time to complete,
we consider timed SN P systems as well as time-free SN
P systems, where the execution time of the rules can be
different . It is investigated the efficiency of time-free SN
P systems. Specifically, a time-free solution of Subset
Sum problem is achieved by using a family of uniform
time-free SN P systems. It needs to note that in the
computation, the notion of rule starting steps (RS-steps)
are defined as the computation steps, which can avoid the
inherently exponential execution time of the rules in such
systems.
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