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Abstract: The present work deals with the study of MagnetohydrodyngiviHD) boundary layer flow over a heated stretching sheet
with variable fluid viscosity. The fluid viscosity is assumidvary as a linear function of temperature in the presencendbrm
transverse magnetic field. The fluid is assumed to be elalifriconducting. Lie-group method is applied for determgmsymmetry
reductions for the MHD boundary-layer equations. Lie-grovethod starts out with a general infinitesimal group ofdfarmations
under which the given partial differential equations asaitant. The determining equations are a set of linear miffgal equations,
the solution of which gives the transformation functiontee infinitesimals of the dependent and independent vagahfeer the group
has been determined, a solution to the given partial diffeaeequations may be found from the invariant surface g@rdsuch that

its solution leads to similarity variables that reduce thienber of independent variables of the system. The effedi@tartmann
number M ), the viscosity parameterX) and the Prandtl numberRr ) on the horizontal and vertical velocities, temperatuiif@s,
wall heat transfer and the wall shear stress (skin frictibaye been studied and the results are plotted.
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1 Introduction problem. He presented a closed form exponential solution
for the planar viscous flow of linear stretching case.

Flow and heat transfer of an incompressible viscous fluid Moreover, the study of Magnetohydrodynamic
over a stretching sheet appear in several industriatMHD) flow of an electrically conducting fluid is of
processes such as the extrusion of polymers, the coolingynsiderable interest in modern metallurgical and
of metallic plates, the aerodynamic extrusion of plastic metal-working processes. There has been a great interest
sheets, etc. In the glass industry, blowing, floating orj, the study of magnetohydrodynamic flow and heat

spinning of fibers are processes, which involve the flowi ansfer in any medium due to the effect of magnetic field
due to a stretching surface][ The study of heat transfer 4, e boundary layer flow control and on the

and flow field is necessary for determining the quality of performance of many systems using electrically
the final products of such processes. conducting fluids, 4.
Sakiadis P] presented the pioneering work in this
field. He investigated the flow induced by a semi-infinite The problem of flow, heat and mass transfer over a
horizontally moving wall in an ambient fluid. stretching sheet in the presence of suction or blowing was
Crane B] studied the flow over a linearly stretching examined by Gupta and Guptg][ Dutta and Guptad]
sheet in an ambient fluid and gave a similarity solutionextended the pioneering works of Crar} fo explore
in closed analytical form for the steady two-dimensional various aspects of the flow and heat transfer occurring in
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an infinite domain of the fluid surrounding the stretching ¥
sheet. v —

The fluid viscosity was assumed uniform in the flow r
region in all the pervious mentioned works. Practically, " Velocity BL
the coefficient of viscosity decreases in case of liquids
whereas it increases in case of gases as the temperatu
increases.

Pop et al. 7] and Pantokratora$] studied the effect of Thermal B.L
variable viscosity on flow and heat transfer to a continuous
moving flat plate. In their work, they assumed that the fluid
viscosity varies as an inverse function of temperature.

Abel et al. P] studied the boundary layer flow and T=C%,7V=0,T=T, aay=0
heat transfer of a visco-elastic fluid immersed in a porous _ By
over a stretching sheet with variable fluid viscosity. The
fluid viscosity is assumed to vary as an inverse function of
temperature. A numerical shooting algorithm with
fourth-order Runge-Kutta integration scheme has been
used to solve the coupled nonlinear boundary value
problem.

wl

Fig. 1: Physical model and coordinate system.

. system of coordinate®@xy. The stretching surface has a
Mukhopadhyay et al.4] studied the MHD boundary nitorm temperaturd, and the free stream temperature is
layer flow over a heated stretching sheet with varlableToo with T, > T. The wall is stretched by applying two
viscosity. The fluid viscosity is assumed to vary as aequal and opposite forces along the axis, to keep the
linear function of temperature. The scaling group of origin fixed. A uniform magnetic field of étrengtBo is
transformations is applied to the governing equations.assumed to be imposed along the axis. The viscosity
The resulting system of non-linear ordinary differential of the fluid is assumed to be temperature-dependent.

equations is solved numerically. Under the above assumptions, the resulting boundary-
Pantokratoras 1[0] critiqued the work of layer equations are given by:
Mukhopadhyay et al.4]. He concluded that, in the work '

of Mukhopadhyay et al.4], the calculation domain was Continuity Equation:
small and the temperature profiles are truncated. The du ov
results of his work are obtained with the direct numerical % ay (2.1)
solution of the boundary layer equations taking into .
account both viscosity and Prandtl number variationMomentum Equation:
across the boundary layer. The temperature profiles of his _ _ A — o
work are quite different from those of Mukhopadhyay et Ja_u_+\70_'i: l 0_u 0_1;0_Li+ H @ — GBozuj
al. [4]. ox 9y pdT dydy pady> p
This paper is concerned with the study of MHD . (2.2)
boundary layer flow over a heated stretching sheet with ~Energy Equation:
variable fluid viscosity using Lie-group method. T 9T 2T
Following Batchelor 11], the fluid viscosity is assumed U==+V=o=0—=, (2.3)
to vary as a linear function of temperature in the presence ox dy 9y
of uniform transverse magnetic field. The fluid is assumed  anq with the following boundary conditions,
to be electrically conducting. Lie-group theory is applied
to the equations of motion and energy for determining . o - _
symmetry  reductions of partial  differential () u= Cx, v=0, T=Tw aty=0, (2.4)

equations, 12-25]. The resulting system of non-linear (i) u—0, T—To as y— o,
differe_ntial equations is then solved numerically using whereuandyv, are the velocity components in theandy
shooting method coupled with Runge-Kutta scheme. Theyjrections, respectively; is the temperature and is the
obtained results are compared with those oftemperature dependent viscosity of the fluid. Moregper,
Mukhopadhyay et al4], Pantokratorasl0], Chiam [26], s the fluid densityg is the electrical conductivity of the
Carragher and Cran@T], Grubka and Bobbz2fg]. fluid, By is the strength of uniform magnetic field, is
the coefficient of the thermal diffusivitg; is a constant,
. . is a constanf]y, is the wall temperature ani, is the free
2 Mathematical Formulation of the Problem stream temperature.

) ] ] ) Follow Batchelor 1], the temperature dependent
Consider a steady, two-dimensional flow of a viscous a”%iscosity is assume to be in the form

incompressible electrically conducting fluid over a heated B
stretching sheet placed in the regipn- 0 of a Cartesian p=p*(a+b(Ty—T)), (2.5)
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whereu* is the reference viscosity, and are constants.
The variables in equations (2.1) -
dimensionless according to

(_CX /c_u_ ooV T To
_Ulay_ Vya _Ul’ _\/@7 _TW_TOQ’
(2.6)
whereU, is the characteristic velocity and= u*/p is the
kinematic viscosity.

Substitution from (2.5)-(2.6) into (2.1) - (2.3), gives

du ov
Ix ﬂ/ =0, (2.7)
du du T du %u
Uﬁ‘f'va—y _Aa_y0_y+(a+A(1 T))a—yz—M u,
(2.8)
oT oT 10°T
where,M? = pC , M is the Hartmann number (constant),

A= b(TW Tw) Is the viscosity parameter (constant) and

Pr_ is the Prandtl number.

(2.4) are

3.1 Lie Point Symmetries

Consider the one-paramete) Lie group of infinitesimal
transformations irfx,y; ¥, T) given by

X =X+e¢ (xy;W,T)+O(?),
Yy =y+el (xy,¥,T)+0(e?),
Y =Wien(xy,W,T)+0(g?),
T =T+eF(xy,W,T)+0(?),

(3.1)

where ‘€ " is a small parameter.
A system of partial differential equations (2.12)-(2.13)
is said to admit a symmetry generated by the vector field

7} 7}
¢—+Z—+ 0W+F0T’ (3.2)
if it is left invariant by the transformation
(XY, W, T) — (X5,y5 WP, T).

The solutions¥ = W(x,y) and T = T(x,y) , are
invariant under the symmetry (3.2) if
®’4J =X (LIJ - W(Xay)) =

Owhen¥ =¥ (xyy), (3.3)

The boundary conditions (2.4) will be considered asand

follows,

(i) u=x, v=0, T=1 aty=0,

(i) u—0, T—0 as y— co. (2.10)

Pr =X(T-T(xy)) =0wherm =T (X,y). (3.4)

Assume,

From the continuity equation (2.7), a stream function », _ Wy — By + AT Wy — (a+A(L—T)) Yyy+ M2 Y,

W(x,y) may exist as,

ow

V(X,Y) =30 (2.11)

U(X,y) = 0—5

which satisfies equation (2.7) identically.
Substituting from (2.11) into (2.8)-(2.9) yields

KWy — UKy + AT Hy— (@+AL-T)) Wyy+M?> ¥, =0,
(2.12)

and
1

where subscripts denote partial derivatives.
The boundary conditions (2.10) will be as follows,

(i) W=x Y%=0 T=1 aty=0,

(i) W —0, T—0 asy— oo. (2.14)

3 Solution of the Problem

Firstly, we derive the similarity solutions using Lie-gmu
method under which (2.12)-(2.13) and the boundaryDx=

(3.5)

1

A vector X given by (3.2), is said to be a Lie point
symmetry vector field for (2.12)-(2.13) if

xB (A

=0,j=12 3.7)

i) ‘Aj:o
where,

¢dx+zdy+n0W+F0T+n a%*” 049
x_0 J xy 0 yy_9o yy_0 0 vy y
+F T+F Yl Y+ YL il
(3.8)

is the third prolongation oX.

To calculate the prolongation of the given
transformation, we need to differentiate (3.1) with respec
to each of the variables, and . To do this, we introduce the
following total derivatives

Ox + W Oy + Ty 01 + WuxOyy, + Tux0r, +"H<y(9%+ ........ ,

conditions (2.14) are invariant, and then we use theseDy = 0+ ¥ dy + Tydr + Kydy, + Tyyor, + Kyl + ...

symmetries to determine the similarity variables.

(3.9)
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Table 1: Table of commutators of the basis operators. Table 2: Solution of the invariant surface conditions.
X, X, X3 Generator Characteristic Solution of the i.nlva.riam surface
X, 0 0 -X5 o= (CD‘F, [N ) conditions
X, 0 0 0 X Dy =Y-xV,. O =-T, W=xG(y).T=T()
X; X 0 0 X, Oy =—V,. Br=-T, Y o¥(x), T=T()
Xy Dy =1, ;=0 No solution
Dy =¥ -x V¥ -BY,. ¥=xL().T=T(o),
X +BX, ©; =—xT, —BT, m:y—]nxﬁ
X, +BX; Oy =V+p-x ¥, Op =T, W=xL,(y)-B. T=T(y)
Equation (3.7) gives the following system of linear | x,+px; Dy =p-F,. O =T, W =By +h(). T=T(x)
partial differential equations X%, 1 8%, By =F+3-x % 1Y, %a:uzw,::m
@7 =—xT, -2 T, n=y-Inx

AF Wyy — Hyn*+ (Hy+M?)nY + AWy FY + BV
(AT~ %Y — @+ AL-T)) n¥»Y=0,
(3.10)  has the component
and
1 Dy =Y —x Y, or =Ty (3.17)
“Tyn*+ Y + WF —WFY - —F¥=0. (3.11
yh X+ % Pr (311) Therefore, the general solutions of the invariant surface

The componentg®, ny, X, EY, 0%, n¥¥, EYY. n¥¥¥ can conditions (3.3)-(3.4) are

be determined from the following expressions W=xG(y) T=T(y) (3.18)
nS=Dsn — ¥Dsp — WDs{ ,FS = DsF — TxDs¢ — TyDs{. _ ) ) .
195 = Dg1? — WixD — WhyDl, FIS — DeF— TyxDh - ToyDsd Substitution from (3.18) into (2.12)-(2.13) yields
. (3.12) dG 2 &G dT d?G &G 2dG _
whereSandJ are standing fox,y. —GChg ATy ay — (a+A(1-T)) g o TM @y =0,
Substitution from (3.12) into (3.10)-(3.11) and (3.19)
solving the resulting determining equations in view of the and
invariance of the boundary conditions (2.14), yields d’T L pr G dT 0 (3.20)
a7 . .

p=Cx  =C n=C¥+C, F=0 (313 The boundary conditions (2.14) will be

So, the nonlinear equations (2.12)-(2.13) have the
three-parameter Lie group of point symmetries generated .. dG

by (|)d—y:1, G=0, T=1 asy=0,
.. dG
d ) ) ) (||)d——>0 T—0 asy—oo. (3.21)
Xi=X—+Y—, Xo=—, and Xg=——. (3.14)
“ox T aw ay oV For Xy, the characteristic (3.16) has the component
The one-parameter group generateddyyconsists of by = —Y, Or =T, (3.22)

scaling, wherea¥, and X3 consists of translation. The

commutator table of the symmetries is given in Tablel, Therefore, the general solutions of the invariant surface
where the entry in théth row andjth column is defined  conditions (3.3)-(3.4) art = W(x) andT = T(x), which

as X, Xj] = X Xj — X;X. contradict the boundary conditions.

The finite transformations corresponding to the  ForXs, the characteristic (3.16) has the component
symmetriesXy, X, andX3 are respectively

®y =1, ¢ =0. (3.23)
Xi: x =€ y =y W=€ly T =T, Therefore, no solution invariant und¥s.
Xo: X=X Yy =y+&, W=, T =T, For X; + BXo, the characteristic (3.16) has the
X3: X=X y'=y, W =Wteg, Tr=T, component
(3.15)
whereegs, & andes are group parameters. Oy =Y -—xHU-BY, & =-x-LTy. (3.24)
Table 2 shows the solution of the invariant surface
conditions (3.3)-(3.4). Therefore, the general solutions of the invariant surface
For X, , the characteristic, conditions (3.3)-(3.4) ar&/ = x Ly(w) and T = T(w),
where w = y — Inx® is the similarity variable. These
D= (g, 1), (3.16)  solutions contradict the boundary conditions.
(@© 2015 NSP
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Table 3: Values of the wall heat transfér-T'(0)) for different values oM and Pr aiA = 0.0

-T'(0)
M Pr
0.40 0.60 1.00 10.0 20.0
0.0 0.2992074 0.4059944 0.5819919 2.3080132 3.3539139
1.0 0.2546717 0.3409365 0.5017490 2.2175688 3.2640175

For X; + BXs, the characteristic (3.16) has the 4 Resultsand Discussion
component

4.1 Horizontal Velocity

Py =W+B-—x¥,  Pr=-xT (3.25)

] ) ) 4.1.1 The Effect of the Hartmann Numbér
Therefore, the general solutions of the invariant surface

conditions (3.3)-(3.4) are Figure 2 illustrates the behaviour of the horizontal
velocity u/x for Pr= 0.1 and Pr= 1.0 with A= 0, over a
range of the Hartmann numblgtr. As seen, the horizontal
velocity increases by decreasiMy i.e. the transport rate
Substitution from (3.26) into (2.12)-(2.13) yields the increases, which indicate that the transverse magnetic
same ordinary differential equations (3.19)-(3.20) with field is opposite to the transport phenomena. That is
the same boundary conditions (3.21). So, the solutiondecause, variation of the Hartmann number leads to the
invariant under bottX; andX; + 3Xs are the same. variation of the Lorentz force due to the transverse
For X, + BXs, , the characteristic (3.16) has the magnetic field and accordingly, the Lorentz force
component produces more resistance to transport phenomefa, |
Our profiles are agreed very well with those of
Mukhopadhyay et al. [4] and Pantokratorasg][ As seen
from Figure 2b, the calculation domain is higher than that

Op=B- %, Or=-T,
Therefore, the general solutions of the invariant surfaceOf Figure 2a, that is because the value of the Prandd

conditions (3.3)-(3.4) ar&’ — By +h(x) andT = T(x),  "Umberisincreases.
which contradicts the boundary conditions.

For X1+ A X2+ 0X3, , the characteristic (3.16) has the
component

(3.26)

Y=xLy)=B, T=T(y).

(3.27)

4.1.2 The Effect of the Viscosity Parameter

Figure 3 illustrates the behaviour of the horizontal
velocityu/x for Pr= 0.1 and Pr= 1.0 with M = 0, over a
range of the viscosity parameteh. As seen, the
horizontal velocity increases by increasidg That is
%ecause, with increasing, the fluid viscosity decreases
resulting in increment of the velocity boundary layer
thickness. Unfortunately, in the work of Mukhopadhyay
et al. 4] and Pantokratorad ], the profiles are reversed,
i.e. the horizontal velocity decreases Asincreases,
which is wrong.

Py =WY+Oo-xWU—-AH, Or = —xXTx—ATy.

(3.28)
Therefore, the general solutions of the invariant surfac
conditions (3.3)-(3.4) ar#’ + 6 = x Ly(mm) andT =T (m),
where m = y — Inx is the similarity variable. These
solutions contradict the boundary conditions.

3.2 Numerical Solution

_ , _ 4.2 Vertical Velocity
The system of non-linear differential equations

(3.19)-(3.20) with the boundary conditions (3.21) is 4.2 1 The Effect of the Hartmann Numbr
solved numerically using the shooting method, coupled
with Runge-Kutta scheme. We taka = 1, in all
calculations.

From (2.11) and (3.18), we get

Figure 4 illustrates the behaviour of the vertical velogity
for Pr=0.1 and Pr= 1.0 with A= 0, over a range of the
Hartmann numbeM. As seen, the absolute value of the
vertical velocity increases by decreasiMgas mentioned
before. These profiles were not present in both works of
Mukhopadhyay et al 4] and Pantokratorad.

u déG
X d_y’ v=—G(y), T=T(y). (3.29)

(@© 2015 NSP
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0.0
0.0 2.0 4.0 6.0 x 16.0
A ¥
(a) )]

Fig. 2: Horizontal velocity profiles over arange BfwithA=0at: (a) P=0.1 (b) Pr=1.0.

0.1
l‘n“
w\ DS;I_
‘\\\\ n‘ﬁ-l‘
\ Y i
0.1+t RN P A
TN gl .\‘u.
. '\‘ o0 0 4“0 G0 0
n/x AN )
SRR,
0.1r IR
0.1 : : .0 = : :
24 2.6 2.8 0.0 4.0 8.0 12.0 16.0
Y ¥
(@ (b

Fig. 3: Horizontal velocity profiles over a range Afwith M =0 at: (a) P=0.1 (b) Pr=1.0.

4.0 . 0 0. . 8.0 12.0 16.0
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Fig. 4: Vertical velocity profiles over arange M withA=0at: (a) P=0.1 (b) Pr=1.0.
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0.0

0.4}

-0.8

0.0 2.0

Fig. 5: Vertical velocity profiles over a range 8fwithM =0at: (a) P=0.1 (b) Pr=1.0.

4.2.2 The Effect of the Viscosity Paramefter that reported by Mukhopadhyay et al.4],[ but
unfortunately in their work, the profiles are reversed; see

Figure 5 illustrates the behaviour of the vertical velocity Figure 2 in their work. The same mistake appeared in the

v for Pr= 0.1 and Pr= 1.0 with M = 0, over a range of work of Pantokratorasl0]; see Figure 3 in his work.

the viscosity parametek, As seen, the absolute value of

the vertical velocity increases by increasiigAlso, these

profiles were not present in both works of Mukhopadhyay4.3.3 The Effect of the Prandtl Number Pr

et al. 4] and Pantokratoras [10].
Figure 8 illustrates the variation of the temperature
profilesT for M = 0 andM = 1 with A = 0, over a range

4.3 The Temperature Profiles of Prandtl number Pr. It is noticed that, as Pr decreases,
the thickness of the thermal boundary layer becomes
4.3.1 The Effect of the Hartmann Numbr greater than the thickness of the velocity boundary layer

according to the well known relatiodl ~ (Pr)~%/2,
Figure 6 illustrates the variation of the temperaturewheredr is the thickness of the thermal boundary layer
profiles T for Pr= 0.1 with A= 0 , over a range of the andd is the thickness of the velocity boundary layer. So,
Hartmann numbeM. We notice that, the temperature the thickness of the thermal bOUndary |ayer increases as
increases adl increases and therefore the thinning of the Pr decreases and hence, the temperafiurereases with
thermal boundary layer. Our results are in completethe decrease of Pr
agreement with that reported by Mukhopadhyay et4). [
but in their work, the calculation domain is small which
causes the temperature profiles appear truncated. Thié.4 Wall Heat Transfer
disadvantage was critiqued by Pantokratoradl].[
Unfortunately, in the work of Pantokratorad(], the = When the Prandtl number increases, the thickness of
profiles are reversed, i.e. the temperature increasés as thermal boundary layer becomes thinner and this causes
decreases, which is wrong. an increase in the gradient of the temperature. Therefore,
the wall heat transfef—T’(0)) increases as Pr increases.
For different values of the Hartmann numbkt and
4.3.2 The Effect of the Viscosity Paramefer Prandtl number Pr a& = 0.0 , values of the wall heat
transfer are computed, Table 3. Also, for fixed value of Pr
Figure 7 illustrates the variation of the temperature, the wall heat transfer—T’(0)) decreases as the
profilesT for Pr= 1.0 with M = 0, over a range of the Hartmann numbeM increases as mentioned before. The
viscosity parameteh. As seen, the temperature decreasesvalue of (—T’(0)) is positive which is consistent with the
as A increases. That is because, the increase of théact that the heat flows from the surface to the fluid as
viscosity parameteA causes decrease of the thermallong asTy > T in the absence of viscous dissipation.
boundary layer thickness which results in decrease of the The computed values ¢f-T’(0)) are compared with
temperature. Our results are in complete agreement witlthose obtained by Chian2§], Carragher and Cran&T],

(@© 2015 NSP
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1.0

0.8

0.6
T
04

0.2

0.0 4.0 8.0 12.0 16.0

Fig. 6: Temperature profiles over a rangeNdfwith Pr= 1.0 andA=0

Table 4: Comparison between the values(efT’(0)) atA = 0.0 andM = 0 for different values of Pr

-T'(0)
Pr Chiam Carragher and Grubka and Pantokratoras Present
[26] Crane [27] Bobba [28] [10] work
0.023 0.022489 0.0240 0.0225438
0.100 0.091292 0.0925 0.0924952
0.700 0.46 0.4543 0.4539453
1.000 0.581977 0.5820 0.5819919
10.00 2.3080 2.3080 2.3080132

Table5: Values of the dimensionless wall shear sti@4§0) for differentM andA at Pr= 1.0

G
M A
0.0 0.3 0.5
0.0 -0.9999893 -1.0290572 -1.0483274
1.0 -1.4142136 -1.4455980 -1.4670111
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Fig. 8 Temperature profiles over arange of Prwith-0at: (a)M=0 (b)M=1
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Table 6: Comparison between the values@f(0) at A= 0.0 andM = O for different values of Pr.

G"(0)
Pr Carragher and Grubka and Pantokratoras Present
Crane [27] Bobba [28] [10] work
0.023 -1.0050 -0.9999893
0.100 -1.0050 -0.9999893
0.700 -1.0 -1.0050 -0.9999893
1.000 -1.0050 -0.9999893
10.00 -1.0 -1.0050 -0.9999893

Grubka and Bobba2g and Pantokratoraslp]. The  Acknowledgements

results are in very good agreement, Table 4.
The authors would like to express their sincere thank the
reviewers for suggesting certain changes in the original
manuscript, for their valuable comments which improved

4.5 Wall Shear Stress the paper and for their great interest in that work.

The dimensionless wall shear str&&50) (skin friction)  References

is computed for different values of the Hartmann number

and the viscosity parametérat Pr= 1.0. As seen from [1]1S.R. Pop, T. Grosan, |. Pop, Radiation Effects on the
Table 5, the absolute value of the dimensionless wall Flow near the Stagnation Point of a Stretching Sheet,
shear stres$G”(0)| increases a#\ increases which is TECHNISCHE MECHANIK, Band 25, Heft 2 (2004) 100-
consistent with the fact that, there is progressive thignin 106.

of the boundary layer with increasing. . Also, the [2] B.C. Sakiadis, Boundary layer behaviour on continuous
absolute value of the dimensionless wall shear stress solid surfaces, Il. The boundary layer on a continuous flat
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