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1 Introduction

Aslam and Thaheem [2] discussed the annihilators of a
subset ofBCK-algebras, and Jun et al. [5] generalized it
to BCI-algebras. Also the notion of an annihilator in
BCK-algebras is studied in the papers [1], [3], [6] and [7].

In this manuscript we introduce the notion of the
relative annihilator of a subset with respect to a subset in
lower BCK-semilattices as an extension of annihilator,
and we obtain some results. We show that the relative
annihilator of an ideal with respect to an ideal in a lower
BCK-semilattice is an ideal, and we discuss conditions for
the relative annihilator of a subset with respect to a subset
to be an implicative (resp., positive implicative,
commutative) ideal.

2 Preliminaries

BCK/BCI-algebras form an important class of algebras
for logic introduced by K. Iséki and was extensively
investigated by several researchers.

An algebra (X;∗,0) of type (2,0) is called a
BCI-algebraif it satisfies the following conditions:

(I)(∀x,y,z∈ X) (((x∗ y)∗ (x∗ z))∗ (z∗ y)= 0),
(II)(∀x,y∈ X) ((x∗ (x∗ y))∗ y= 0),

(III) (∀x∈ X) (x∗ x= 0),
(IV)(∀x,y∈ X) (x∗ y= 0, y∗ x= 0 ⇒ x= y).

If a BCI-algebraX satisfies the following identity:

(V)(∀x∈ X) (0∗ x= 0),

thenX is called aBCK-algebra. Any BCK/BCI-algebraX
satisfies the following axioms:

(a1)(∀x∈ X) (x∗0= x),
(a2)(∀x,y,z∈ X) (x≤ y ⇒ x∗ z≤ y∗ z, z∗ y≤ z∗ x),
(a3)(∀x,y,z∈ X) ((x∗ y)∗ z= (x∗ z)∗ y),
(a4)(∀x,y,z∈ X) ((x∗ z)∗ (y∗ z)≤ x∗ y)

wherex ≤ y if and only if x∗ y = 0. A BCK-algebraX is
called alower BCK-semilattice(see [8]) if X is a lower
semilattice with respect to theBCK-order.

A subsetA of aBCK/BCI-algebraX is called anideal
of X (see [8]) if it satisfies:

0∈ A, (1)

(∀x∈ X)(∀y∈ A) (x∗ y∈ A ⇒ x∈ A) . (2)

For any subsetA of X, the ideal generated byA is
defined to be the intersection of all ideals ofX containing
A, and it is denoted by〈A〉. If A is finite, then we say that
〈A〉 is finitely generated idealof X (see [8]).

A subsetA of aBCK-algebraX is called acommutative
idealof X (see [8]) if it satisfies (1) and

(∀x,y∈ X)(∀z∈ A)((x∗ y)∗ z∈ A ⇒ x∗ (y∗ (y∗ x))∈ A) .(3)

A subsetA of a BCK-algebraX is called apositive
implicative idealof X (see [8]) if it satisfies (1) and

(∀x,y,z∈ X)((x∗ y)∗ z∈ A, y∗ z∈ A ⇒ x∗ z∈ A) . (4)
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A subsetA of aBCK-algebraX is called animplicative
idealof X (see [8]) if it satisfies (1) and

(∀x,y∈ X)(∀z∈ A)((x∗ (y∗ x))∗ z∈ A ⇒ x∈ A) . (5)

We refer the reader to the books [4,?] for further
information regardingBCK/BCI-algebras.

3 Relative annihilators

In what follows, letX be aBCK-algebra unless otherwise
specified. Forx,y ∈ X, denote byx∧ y the greatest lower
bound ofx andy. For any nonempty subsetsA andB of X,
we denote

A∧B := {a∧b | a∈ A,b∈ B}.

If A= {a}, then{a}∧B is denoted bya∧B.

Definition 1.For any nonempty subsets A and B of X, we
define a set

(A :∧ B) := {x∈ X | x∧B⊆ A} (6)

whenever x∧B exists for all x∈ X, and it is called the
relative annihilator of B with respect to A.

If 0 ∈ A, then it is clear that 0∈ (A :∧ B). Obviously,
for any nonempty subsetsA, B andC of X, we have

C⊆ (A :∧ B) ⇒C∧B⊆ A. (7)

Given a lowerBCK-semilatticeX, note that ifA= {0}
in (6), then

({0} :∧ B) = {x∈ X | x∧B⊆ {0}}

= {x∈ X | x∧b= 0, ∀b∈ B}

= B∗

(8)

which is the annihilator ofB (see [4]). Hence the relative
annihilator ofB with respect toA is a generalization of the
annihilator ofB.

Proposition 1.For any nonempty subsets A, B and C of a
lower BCK-semilattice X, we have

(i)If A is an ideal of X, then A⊆ (A :∧ B) and B⊆ (A :∧
(A :∧ B)).

(ii) If B1 ⊆ B2 in X, then(A :∧ B2)⊆ (A :∧ B1) and

(A :∧ (B1∪B2)) = (A :∧ B1)∩ (A :∧ B2).

(iii) ((A :∧ B) :∧ C) = (A :∧ B∧C) = ((A :∧ C) :∧ B).

(iv)

(

∩
λ∈Λ

Aλ :∧ B

)

= ∩
λ∈Λ

(Aλ :∧ B) for any family{Aλ |

λ ∈ Λ} of subsets of X.
(v)If A is an ideal of X such that A⊆B, then(A :∧ B)∩B=

A.
(vi)If A is an ideal of X, then(A :∧ (A :∧ B))∩(A :∧ B) =A.

(vii) If A is an ideal of X, then(A :∧ X) = A and(A :∧ A) =
X.

(viii) If A is an ideal of X, then(A :∧ B) = (A :∧ (A :∧ (A :∧
B))).

(ix)If A is an ideal of X, then(A :∧ B) = X ⇔ B⊆ A.

Proof.(i) Let x∈ A. Note thatx∧b≤ x for all b∈ B. Since
A is an ideal, it follows thatx∧b ∈ A for all b ∈ B, that
is, x∧B⊆ A. Thusx∈ (A :∧ B), and soA⊆ (A :∧ B). Let
x ∈ B andy ∈ (A :∧ B). Theny∧b∈ A for every element
b∈ B. Sincex∈ B, it follows thatx∧y∈ A. Thusx∈ (A :∧
(A :∧ B)), and thereforeB⊆ (A :∧ (A :∧ B)).

(ii) Let x ∈ (A :∧ B2). Thenx∧B1 ⊆ x∧B2 ⊆ A, and
so x ∈ (A :∧ B1). Therefore(A :∧ B2) ⊆ (A :∧ B1). Since
B1 ⊆ B1∪B2, we have

(A :∧ (B1∪B2))⊆ (A :∧ B1) and
(A :∧ (B1∪B2))⊆ (A :∧ B2).

Thus

(A :∧ (B1∪B2))⊆ (A :∧ B1)∩ (A :∧ B2).

Now suppose thatx∈ (A :∧ B1)∩ (A :∧ B2). Thenx∧B1 ⊆
A andx∧B2 ⊆ A. If y ∈ B1 ∪B2, theny ∈ B1 or y ∈ B2.
Hencex∧y∈ A, and sox∈ (A :∧ (B1∪B2)), that is,(A :∧
B1)∩ (A :∧ B2)⊆ (A :∧ (B1∪B2)).

(iii) For anyx∈ X, we have

x∈ ((A :∧ B) :∧ C)⇔ x∧C⊆ (A :∧ B)

⇔ (∀c∈C)(x∧c∈ (A :∧ B))

⇔ (∀c∈C)((x∧c)∧B⊆ A)

⇔ (∀c∈C)(∀b∈ B)((x∧c)∧b∈ A)

⇔ (∀c∈C)(∀b∈ B)(x∧ (c∧b) ∈ A)

⇔ (∀c∈C)(∀b∈ B)(x∧ (b∧c) ∈ A)

⇔ x∧ (B∧C)⊆ A

⇔ x∈ (A :∧ B∧C).

Hence((A :∧ B) :∧ C) = (A :∧ B∧C). Similarly,

(A :∧ B∧C) = ((A :∧ C) :∧ B).

(iv) For anyx∈ X, we have

x∈

(

∩
λ∈Λ

Aλ :∧ B

)

⇔ x∧B⊆ ∩
λ∈Λ

Aλ

⇔ (∀b∈ B)

(

x∧b∈ ∩
λ∈Λ

Aλ

)

⇔ (∀b∈ B)(∀λ ∈ Λ)(x∧b∈ Aλ )

⇔ (∀λ ∈ Λ)(x∧B⊆ Aλ )

⇔ (∀λ ∈ Λ)(x∈ (Aλ :∧ B))

⇔ x∈ ∩
λ∈Λ

(Aλ :∧ B).

Therefore

(

∩
λ∈Λ

Aλ :∧ B

)

= ∩
λ∈Λ

(Aλ :∧ B).

(v) Let A be an ideal andB a subset ofX such that
A ⊆ B. By using the part (i) we know thatA ⊆ (A :∧ B),
and soA ⊆ (A :∧ B)∩B. Now let x ∈ (A :∧ B)∩B. Then
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x ∈ B andx ∈ (A :∧ B), and thusx∧b ∈ A for all b ∈ B.
Sincex∈ B, it follows thatx= x∧x∈ A which means that
(A :∧ B)∩B⊆ A. Therefore,(A :∧ B)∩B= A.

(vi) The result (i) implies thatA ⊆ (A :∧ B) andA ⊆
(A :∧ (A :∧ B)). ThusA⊆ (A :∧ (A :∧ B))∩ (A :∧ B). Now
let

x∈ (A :∧ (A :∧ B))∩ (A :∧ B).

Thenx∈ (A :∧ (A :∧ B)) andx∈ (A :∧ B). Sincex∈ (A :∧
(A :∧ B)), we havex∧y∈A for all y∈ (A :∧ B). Also since
x∈ (A :∧ B), we getx= x∧x∈ A which shows that

(A :∧ (A :∧ B))∩ (A :∧ B)⊆ A.

Therefore,(A :∧ (A :∧ B))∩ (A :∧ B) = A.
(vii) By using part (i), we haveA ⊆ (A :∧ X). Now

suppose thaty ∈ (A :∧ X). Theny∧ x ∈ A for all x ∈ X,
and soy = y∧ y ∈ A. ThereforeA = (A :∧ X). Obviously
(A :∧ A) = X.

(viii) Suppose thatx∈ (A :∧ B) andy∈ (A :∧ (A :∧ B)).
Theny∧ z∈ A for every elementz∈ (A :∧ B). Sincex ∈
(A :∧ B), it follows thatx∧y∈ A and so thatx∈ (A :∧ (A :∧
(A :∧ B))). Therefore,

(A :∧ B)⊆ (A :∧ (A :∧ (A :∧ B))).

Conversely, letx ∈ (A :∧ (A :∧ (A :∧ B))) andb ∈ B.
Using (i) we haveB ⊆ (A :∧ (A :∧ B)), and sob ∈ (A :∧
(A :∧ B)). Sincex∈ (A :∧ (A :∧ (A :∧ B))), it follows that
x∧b∈ A, that is,x∈ (A :∧ B). Therefore(A :∧ (A :∧ (A :∧
B)))⊆ (A :∧ B).

(ix) Suppose that(A :∧ B) = X. Let b be an arbitrary
element ofB. Then clearlyb∈ (A :∧ B), and sob= b∧b∈
A. ThereforeB⊆ A.

Conversely, suppose thatB⊆ A. Let x∈ X andb∈ B.
Thenx∧b≤ b, and thusx∧b∈B⊆A, that is,x∈ (A :∧ B).
ThusX ⊆ (A :∧ B), and soX = (A :∧ B).

In [1, Propositions 3.7 and 3.8], Abujabal et al.
discussed the following results.

If A andB are ideals of a commutativeBCK-algebraX,
then

(A :∧ C)∩ (B :∧ C) = (A∩B :∧ C)

for every subsetC of X.
If A is an ideal of a commutativeBCK-algebraX, then

(A :∧ B∪C) = (A :∧ B)∩ (A :∧ C)

for every subsetsB andC of X.
We have more general form than two results above as

a corollary of (ii) and (iv) in Proposition1.

Corollary 1.For any subsets A, B and C of a commutative
BCK-algebra X, we have

(A :∧ C)∩ (B :∧ C) = (A∩B :∧ C)

and

(A :∧ B∪C) = (A :∧ B)∩ (A :∧ C).

In [1, Proposition 3.5(iv)], Abujabal et al. discussed the
following result.

Let A andB be ideals of a commutativeBCK-algebra
X. If A⊆ B, then(A :∧ B)∩B= A.

But, in the above Result, the condition “B is an ideal of
X” is redundant. In fact, we have the following corollary
of Proposition1(v).

Corollary 2.Let A be an ideal of a commutative
BCK-algebra X. For any subset B of X, if A⊆ B then
(A :∧ B)∩B= A.

In Proposition1(i), if A is not an ideal ofX then the
inclusionA⊆ (A :∧ B) is not true in general as seen in the
following example.

Example 1.Consider a lower BCK-semilattice
X = {0,1,2,3,4} with the following Cayley table.

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 1 0
2 2 1 0 2 1
3 3 3 3 0 3
4 4 4 4 4 0

ForA= {0,2} andB= {0,1,2}, we have(A :∧ B) = {0,3}
andA* (A :∧ B). Note thatA is not an ideal ofX.

In Proposition1(i), the equalityA= (A :∧ B) does not
hold in general as seen in the following example.

Example 2.let X = {0,1,2,3,4} be a set with the following
Cayley table.

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 1 0
2 2 1 0 2 0
3 3 3 3 0 3
4 4 4 4 4 0

Then X is a lower BCK-semilattice. For an ideal
A= {0,1,2} of X, if we takeB= {3}, then

(A :∧ B) = {x∈ X | x∧B⊆ A}= {0,1,2,4} 6= A.

We now provide a condition for the equalityA= (A :∧
B) to be hold.

Proposition 2.Let X be a lower BCK-semilattice. If A is
an ideal of X, then A= (A :∧ B) for some singleton subset
B of (A :∧ B).

Proof.Let x∈ (A :∧ B) and takeB= {x}. Thenx= x∧x∈
A, and thus(A :∧ B)⊆A. SinceA⊆ (A :∧ B) by Proposition
1(i), we haveA= (A :∧ B).

Question 1.For any nonempty subsetA of a lowerBCK-
semilatticeX, does the following condition hods?

(∀x,y∈ X)(x≤ y ⇒ x∧A⊆ y∧A) . (9)
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The answer to the question above is not valid in general
as seen in the following example.

Example 3.Consider a lower BCK-semilattice
X = {0,1,2,3,4} with the following Cayley table

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 0 0
2 2 1 0 1 0
3 3 3 3 0 0
4 4 4 4 3 0

ForA= {2,4}, we have

1∧A= 1∧{2,4}= {1} and 2∧A= 2∧{2,4}= {2}.

Note that 1≤ 2, but 1∧A* 2∧A.

If we strength conditions, then we have

Proposition 3.If A is an ideal of a lower BCK-semilattice
X, then the condition(9) holds.

Proof.Let x,y ∈ X be such thatx ≤ y. Suppose thatz ∈
x∧A. Then there exists an elementa ∈ A such thatz=
x∧a. Sincex∧a≤ a andA is an ideal ofX, it follows that
z= x∧a∈ A. The conditionx ≤ y inducesx= x∧ y, and
so

z= x∧a= (x∧y)∧a= y∧ (x∧a) ∈ y∧A.

This shows thatx∧A⊆ y∧A for all x,y∈ X with x≤ y.

Corollary 3.If A is an ideal of a commutative
BCK-algebra X, then the condition(9) holds.

Theorem 1.For any nonempty subset A and an ideal B of
a lower BCK-semilattice X, the relative annihilator of B
with respect to A is a subalgebra of X.

Proof.Let x,y ∈ (A :∧ B). Thenx∧B ⊆ A andy∧B ⊆ A.
Since x ∗ y ≤ x, we get (x ∗ y) ∧ B ⊆ x ∧ B ⊆ A by
Proposition3. Thereforex ∗ y ∈ (A :∧ B), which shows
that the relative annihilator ofB with respect toA is a
subalgebra ofX.

Corollary 4.For any nonempty subset A and an ideal B of
a commutative BCK-algebra X, the relative annihilator of
B with respect to A is a subalgebra of X.

The following example shows that there exist
nonempty subsetsA and B of X such that the relative
annihilator ofB with respect toA is not an ideal ofX.

Example 4.Consider a lower BCK-semilattice
X = {0,1,2,3,4} with the following Cayley table.

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 0 1
2 2 1 0 0 2
3 3 1 1 0 3
4 4 4 4 4 0

For subsetsA = {0,2,4} and B = {0,3} of X, we have
(A :∧ B) = {0,2,4}, which is not an ideal ofX.

For a nonempty subsetB of a lowerBCK-semilattice
X, consider the following condition:

(∀x,y∈ X)(∀b∈ B)((x∧b)∗ (y∧b)≤ (x∗ y)∧b). (10)

We provide conditions for the relative annihilator of a
set with respect to a set to be an ideal.

Theorem 2.Let B be a nonempty subset of a lower BCK-
semilattice X in which the condition(10) is valid. If A is
an ideal of X, then the relative annihilator(A :∧ B) of B
with respect to A is an ideal of X.

Proof.Assume thatA is an ideal ofX. Since 0∧B= {0} ⊆
A, we have 0∈ (A :∧ B). Let x,y ∈ X be such thatx∗ y∈
(A :∧ B) andy∈ (A :∧ B). Then(x∗y)∧B⊆ A andy∧B⊆
A, that is,(x∗ y)∧b∈ A andy∧b∈ A for all b∈ B. Since
A is an ideal ofX, it follows from (10) that

(x∧b)∗ (y∧b)∈ A

and thatx∧b ∈ A for all b ∈ B, that is,x∧B ⊆ A. Hence
x∈ (A :∧ B) and(A :∧ B) is an ideal ofX.

Since every commutativeBCK-algebraX is a lower
BCK-semilattice and satisfies the condition (10), we have
the following corollary.

Corollary 5([ 1]). Let B be a nonempty subset of a
commutative BCK-algebra X. If A is an ideal of X, then
the relative annihilator(A :∧ B) of B with respect to A is
an ideal of X.

The converse of Theorem2 is not true in general, that
is, for any subsetB of a lower BCK-semilattice X
satisfying the condition (10), there exists a subsetA of X
such that the relative annihilator(A :∧ B) of B with
respect toA is an ideal ofX, butA is not an ideal ofX.

Example 5.Consider a lower BCK-semilattice
X = {0,1,2,3} with the following Cayley table.

∗ 0 1 2 3
0 0 0 0 0
1 1 0 1 0
2 2 2 0 0
3 3 2 1 0

Then a subsetB = {2} of X satisfies the condition (10).
Let A= {0,1,3} be a subset ofX. Then(A :∧ B) = {0,1}
which is an ideal ofX. But A is not an ideal ofX.

Lemma 1([8]). Let A and B be ideals of X such that A⊆
B. If A is a positive implicative (resp., commutative and
implicative) ideal of X, then so is B.

Using Proposition1, Theorem2 and Lemma1, we
have the following theorem.

c© 2017 NSP
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Theorem 3.For a nonempty subset B of a lower
BCK-semilattice X satisfying the condition(10), if A is a
positive implicative (resp., commutative and implicative)
ideal of X, then so is the relative annihilator(A :∧ B) of B
with respect to A.

The converse of Theorem3 is not true in general, that
is, for any subsetB of a lower BCK-semilattice X
satisfying the condition (10), there exists a subsetA of X
such that the relative annihilator(A :∧ B) of B with
respect toA is a positive implicative (resp., commutative
and implicative) ideal ofX, but A is not a positive
implicative (resp., commutative and implicative) ideal of
X.

Example 6.(1) Let X = {0,1,2,3,4} be a set with the
following Cayley table.

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 0 0
2 2 2 0 0 2
3 3 3 2 0 3
4 4 4 4 4 0

ThenX is a lowerBCK-semilattice. Note thatA= {0,1} is
an ideal which is not positive implicative, and the set and
the setB= {4} satisfies the condition (10). Then

(A :∧ B) = {x∈ X | x∧B⊆ A}= {0,1,2,3}

and it is a positive implicative ideal ofX.
(2) Consider a lowerBCK-algebraX = {0,1,2,3,4}

with the following Cayley table.

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 1 1
2 2 2 0 2 2
3 3 3 3 0 3
4 4 4 4 4 0

Then the setA = {0,3} is an ideal which is neither
commutative nor implicative, and the setB= {4} satisfies
the condition (10). Then

(A :∧ B) = {x∈ X | x∧B⊆ A}= {0,1,2,3}

and it is both a commutative ideal and an implicative ideal
of X.

Theorem 4.If A and B are ideals of a lower
BCK-semilattice X, then the relative annihilator(A :∧ B)
of B with respect to A is an ideal of X.

Proof.Obviously, 0∈ (A :∧ B). Let x,y ∈ X be such that
x∗ y∈ (A :∧ B) andy∈ (A :∧ B). Then(x∗ y)∧B⊆ A and
y∧B⊆ A, that is,

(x∗ y)∧b∈ A (11)

and
y∧b∈ A (12)

for all b ∈ B. Sincex∧b ≤ b andB is an ideal ofX, we
havex∧b∈ B. It follows from (12) that

y∧ (x∧b) ∈ A. (13)

Note that(x∧b) ∗ ((x∧b) ∗ y) is a lower bound ofy and
x∧b. Thus

(x∧b)∗ ((x∧b)∗ y)≤ y∧ (x∧b),

and so
(x∧b)∗ ((x∧b)∗ y)∈ A. (14)

Sincex∧b≤ b, we have

(x∧b)∗ y≤ b∗ y≤ b

and sincex∧b≤ x, we get

(x∧b)∗ y≤ x∗ y.

Hence(x∧ b) ∗ y ≤ (x∗ y)∧ b ∈ A by (11), and so(x∧
b) ∗ y ∈ A. SinceA is an ideal ofX, it follows from (14)
thatx∧b ∈ A and so thatx∧B ⊆ A, that is,x ∈ (A :∧ B).
Therefore the relative annihilator(A :∧ B) of B with respect
to A is an ideal ofX.

Corollary 6.If A and B are ideals of a commutative BCK-
algebra X, then the relative annihilator(A :∧ B) of B with
respect to A is an ideal of X.

Using Proposition1, Theorem4 and Lemma1, we
have the following theorem.

Theorem 5.For ideals A and B of a lower
BCK-semilattice X, if A is positive implicative (resp.,
commutative and implicative), then the relative
annihilator (A :∧ B) of B with respect to A is a positive
implicative (resp., commutative and implicative) ideal of
X.

The converse of Theorem5 is not true in general, that
is, for idealsA andB of a lowerBCK-semilatticeX such
that the relative annihilator(A :∧ B) of B with respect toA
is a positive implicative (resp., commutative and
implicative) ideal ofX, A may not be positive implicative
(resp., commutative and implicative).

Example 7.(1) Let X = {0,1,2,3,4} be a set with the
following Cayley table.

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 0 1 1
2 2 1 0 2 2
3 3 3 3 0 3
4 4 4 4 4 0
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ThenX is a lower BCK-semilattice. Note thatA= {0,3}
andB = {0,4} are ideals ofX in which A is not positive
implicative. Then

(A :∧ B) = {x∈ X | x∧B⊆ A}= {0,1,2,3}

and it is a positive implicative ideal ofX.
(2) Consider a lower BCK-semilattice

X = {0,1,2,3,4} with the following Cayley table.

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 1
2 2 2 0 2 0
3 3 3 3 0 3
4 4 4 4 4 0

Note thatA = {0,1} andB = {0,1,3} are ideals ofX in
whichA is neither commutative nor implicative. Then

(A :∧ B) = {x∈ X | x∧B⊆ A}= {0,1,2,4}

and it is both a commutative ideal and an implicative ideal
of X.

The following example shows that there exist subsets
A andB of X such thatB* (A :∧ B).

Example 8.Consider aBCK-algebraX = {0,1,2,3,4}with
the following Cayley table.

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 1
2 2 2 0 0 2
3 3 2 1 0 3
4 4 4 4 4 0

For subsetsA= {0,2} andB= {0,1,2,3} of X, we have

(A :∧ B) = {0,2,4},

and thusB* (A :∧ B).

Theorem 6.If B1 and B2 are ideals of a lower
BCK-semilattice X such that B1 ∩ B2 = {0}, then
B1 ⊆ (A :∧ B2) for any subset A of X with0∈ A.

Proof.Let B1 andB2 be ideals of a lowerBCK-semilattice
X such thatB1∩B2 = {0}. For anyb1 ∈B1 andb2 ∈B2, we
haveb1∧b2 ≤ b2 and sob1∧b2 ∈B2 sinceB2 is an ideal of
X. Similarly we getb1∧b2 ∈B1. Thusb1∧b2 ∈B1∩B2 =
{0}, and sob1∧b2 = 0∈ A. It follows thatb1 ∈ (A :∧ B2).
ThereforeB1 ⊆ (A :∧ B2).

The following example shows that the converse of
Theorem6 is not true in general.

Example 9.Let X = {0,1,2,3} be a set with the following
Cayley table.

∗ 0 1 2 3
0 0 0 0 0
1 1 0 0 1
2 2 2 0 2
3 3 3 3 0

ThenX is a lower BCK-semilattice. LetA= {0,1,3}, B1 =
{0,1} andB2 = {0,1,2}. Then

(A :∧ B2) = {x∈ X | x∧B2 ⊆ A}= {0,1,3},

and soB1 ⊆ (A :∧ B2), butB1∩B2 = {0,1} 6= {0}.

4 Conclusions and future works

As we mentioned in the abstract, in this article the notions
of a relative annihilator is introduced as a generalization
of annihilators and then their properties are investigated.
We obtain some related results and conditions for a relative
annihilator to be an implicative (resp., positive implicative,
commutative) ideal are discussed.

Now there are some ideas and questions:
(i) How we can define some other types of relative
annihilators, e.g. S-relative annihilator, I-relative
annihilator, PI-relative annihilator and so on.
(ii) Can we obtain some relationship between different
types of relative annihilator.
(iii) Can we generalized these ideas to hyper BCK
(K)-algebra.
We will try to work on these ideas and give the results in
the forthcoming papers.
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