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1 Introduction (V)(¥x € X) (0xx=0),

Aslam and Thaheen?] discussed the annihilators of a thenXis called aBCK-algebra Any BCK/BCl-algebraX
subset ofBCK-algebras, and Jun et ab][generalized it ~ satisfies the following axioms:
to BCl-algebras. Also the notion of an annihilator in -
BCK-algebras is studied in the papet$ [3], [6] and [7]. gg{gﬁ i ;()E(;((Sk ?x <X3’:> XxZ<yxZ Zxy < ZX)

In this manuscript we introduce the notion of the a3)(Vx’y’z€ X) ((x_*y)*z: (X;Z)*);) - '
relative annihilator of a subset with respect to a subset iria4)(Vx’y’ze X) (x2) % (y#2) < x*y)7
lower BCK-semilattices as an extension of annihilator, e -
and we obtain some results. We show that the relativavherex <y if and only if xxy = 0. A BCK-algebraX is
annihilator of an ideal with respect to an ideal in a lower called alower BCK-semilatticgsee B]) if X is a lower
BCK-semilattice is an ideal, and we discuss conditions forsemilattice with respect to tHgCK-order.
the relative annihilator of a subset with respect to a subset A subsetA of aBCK/BCl-algebraX is called arideal
to be an implicative (resp., positive implicative, of X (see B]) if it satisfies:
commutative) ideal.

0€A, 1)

(xeX)(WyeA)(xxye A = xeA). 2

2 Preliminaries . .
For any subseA of X, the ideal generated b4 is

BCK/BC|-a|gebraS form an important class of a|gebrasd6ﬁn8d to be the intersection of all ideals)bf:ontaining
for logic introduced by K. Iséki and was extensively A and itis denoted byA). If Ais finite, then we say that

investigated by several researchers. (A) isfinitely generated ideadf X (see B]). .
An algebra (X;x,0) of type (2,0) is called a A subsetA of aBCK-algebraX is called acommutative

BCl-algebraif it satisfies the following conditions: idealof X (see B]) if it satisfies (1) and

(N (vx,y,z€ X) (((xxy) * (x*2)) * (zxy) = 0), (vxy € X)(Vze A) ((xxy)xz€ A = xx (y*(yxX)) € A(3)
(N (vxy € X) ((x* (xxy)) xy=0), : y
(1) (VX € X) (x*Xx=0), A subsetA of a BCK-algebraX is called apositive
(IV) (¥x,y € X) (x+y=0, yxx=0 = x=Yy). implicative idealof X (see B]) if it satisfies () and

If a BCl-algebraX satisfies the following identity: (W y,ze X) (xxy)xze Alyxze A = xxze A). (4)

* Corresponding author e-mallordbar.amirh@gmail.com

(@© 2017 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.18576/msl/060206

150

N SS ¥

A subsetA of aBCK-algebraX is called arimplicative
ideal of X (see B]) if it satisfies () and

(Wx,y € X)(vVze A) ((x* (yxx))xze A = xeA). (5)

We refer the reader to the bookd,?P] for further
information regardin®dCK/BCl-algebras.

3 Relative annihilators

In what follows, letX be aBCK-algebra unless otherwise
specified. Fox,y € X, denote byx Ay the greatest lower
bound ofx andy. For any nonempty subsetsandB of X,
we denote

AAB:={aAblacAbeB}.
If A= {a}, then{a} ABis denoted by B.

Definition 1.For any nonempty subsets A and B of X, we

define a set

(A:aB):={xeX|xABCA} (6)

whenever x\ B exists for all xe X, and it is called the
relative annihilator of B with respect to A.

If 0 € A, then it is clear that @ (A :5 B). Obviously,
for any nonempty subse#s B andC of X, we have

CC(A:,B) =CABCA. 7

Given a loweiBCK-semilatticeX, note that ifA = {0}
in (6), then
({0} :4 B) = {xe X |xABC {0}}
={xeX|xAb=0, Vbe B}
= B*

(8)

which is the annihilator oB (see fl]). Hence the relative
annihilator ofB with respect tA is a generalization of the
annihilator ofB.

Proposition 1 For any nonempty subsets A, B and C of a

lower BCK-semilattice X, we have

(i)If Ais an ideal of X, then A (A:5 B) and BC (A:x
(A1 B)).
(i)If By C Byin X, then(A:\ By) C (A:x Bg) and

(AZ/\ (BlU Bz)) = (AZ/\ Bl)ﬂ (AZ/\ Bz).
(ii)) (A:AB):AnC) = (A:A BAC) = ((A:n C):x B).
(iv) ()\Q/\A)‘ A B) = /\Q/\(A’\ :a B) for any family {A, |

A € A} of subsets of X.
(V)If Aisanideal of X such that & B, then(A:, B)NB=
A.

(viii) If A'is an ideal of X, therfA:\ B) = (A:n (Ain (Ain
B))).
(ix)If Ais anideal of X, therfA:, B)=X < BCA.

Proof(i) Let x € A. Note thatxAb < xfor all b € B. Since
Ais an ideal, it follows thak A b € A for all b € B, that
is,XxABC A. Thusx e (A:, B), and scAC (A:, B). Let
x € Bandy € (A:x B). ThenyAb € Afor every element
b € B. Sincex € B, it follows thatxAy € A. Thusx € (A:,
(A:x B)), and therefor® C (A:4 (A:x B)).

(i) Let x € (A:x Bp). ThenxABy C xABy C A, and
sox € (A:x Bg). Therefore(A:x Bp) C (A:p Bg). Since
B1 C B;UBy, we have

(A:p (B1UBp)) € (A:xBy) and
(A:p (B1UBg)) C (A:x By).

Thus

(A:n (B1UBR)) C(A:nB1)N(A:A By).

Now suppose thate (A:) B1) N(A:x By). ThenxAB; C
AandxAB; CA. If ye BiUBy, theny € B; ory € Bs.
HencexAy e A, and sax € (A:x (B1UBy)), thatis,(A:x
B1)N(A:xrB2) C (A:n (BLUBy)).

(iii) For any x € X, we have

€ ((A:xaB):AnC)=XxXACC (A4 B)

< (VceC)(xAce (A:nB))

< (VeeC)((XxAC)ABCA)
& (VeeC)(VbeB)((xAc)AbeA)
< (VeeC)(VbeB) (xA(cAb) € A)
< (VeeC)(VbeB) (xA(bAc) € A)
< XA (BAC)CA
< xe (A:ABAC).

Hence((A:y B) A C) =
(A:/\ B/\C) -

(A:n BAC). Similarly,
((A:A C):a B).
(iv) For anyx € X, we have

€ ( N Ay :AB) SXABC N A
AN AEN

Vb € B) (x/\be N AA>
AeA

(
(VbeB)(VA € A)(xAbe Ay)
(VA eA)(XABCA))
< (VA eN)(xe (A :aB))
@xeAQA(AA ‘A B).

=
=
=

Thereforel N A, ia B) = N (A, :AB).
AEN AEN

(v) Let A be an ideal andB a subset ofX such that
A C B. By using the part (i) we know thak C (A :, B),
and soA C (A:, B)nB. Now letx € (A:x B)NB. Then

(vi)If Ais anideal of X, thetfA:, (A:n B))N(A:A B) =A.

(vi)If Alis an ideal of X, therfA:\ X) = Aand(A:, A) =
X.
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x € Bandxe (A:, B), and thusxAb € Afor all b € B. In[1, Proposition 3.5(iv)], Abujabal et al. discussed the
Sincex € B, it follows thatx = xAx € Awhich means that  following result.
(A:p B)NBC A Therefore(A:p B)NB=A. Let A andB be ideals of a commutatiMBCK-algebra
(vi) The result (i) implies thaA C (A:x B) andA C X.If ACB, then(A:, B)nB=A.
(A:n (A:AB)). ThusAC (A:x (A:n B))N (A B). Now But, in the above Result, the conditioB is an ideal of
let X" is redundant. In fact, we have the following corollary
of Propositioni(v).

xe (A:n (A:AB))N (AL B).

Thenxe (A:x (A:x B)) andx e (A:, B). Sincex e (A:,
(A:x B)), we havexAy e Aforally e (A:, B). Also since
x € (A:x B), we getx = XA x € Awhich shows that

Corollary 2.Let A be an ideal of a commutative
BCK-algebra X. For any subset B of X, if @B then
(A:xB)NB=A.

In Propositionl(i), if Ais not an ideal oiX then the
inclusionA C (A:, B) is not true in general as seen in the

Therefore(A:, (A:x B))N(A:\ B) = A following example.

(vii) By using part (i), we haveA C (A:y X). NOW  gyample 1Consider a  lower BCK-semilattice

suppose thay € (A:) X). ThenyAx e Aforall xe X, x _ 10 1 2 3,4} with the following Cayley table.
and soy = yAYy € A. ThereforeA = (A:x X). Obviously
|

(A A) =X,

(viii) Suppose thak € (A:, B) andy € (A:\ (A:r B)).
ThenyAze Afor every element e (A:, B). Sincex €
(A: B), itfollows thatx Ay € Aand so thake (A:p (A
(A:p B))). Therefore,

(A:/\ (A:/\ B))Q(A:/\ B) CA

A WNPEFEO|*
A WNEFE OO
ArWRFRLROQOR
A wWOOON
AONREFPOW
OWrRr OO~

(A:/\ B) - (A:/\ (A:/\ (A:/\ B)))
ForA={0,2} andB={0,1,2}, we havgA:, B) ={0,3}
Conversely, lek € (A:x (A:n (A:x B))) andb€B.  andA ¢ (A:, B). Note thatA is not an ideal oK.
Using (i) we haveB C (A:x (A:x B)), and sob € (A5
(A:x B)). Sincex e (A:x (A:n (A:x B))), it follows that In Propositionl(i), the equalityA = (A:, B) does not
xAb e A, thatis,x € (A:, B). Thereforg(A:, (A:\ (A:p hold in general as seen in the following example.
B))) C (A, B). . .
(ix) Suppose thatA :, B) = X. Let b be an arbitrary Exalmple gletx ={0,1,2,3,4} be a set with the following
element oB. Then clearlyp € (A:, B),andsdb=bAbe Cayley table.
A. ThereforeB C A.
Conversely, suppose thBtC A. Letx € X andb € B.
ThenxAb <b, and thusxAbe BC A thatisx e (A:, B).
ThusX C (A:x B), and soX = (A:, B).

A WNPEPOQO *
A WNEF OO
AP WFRLROQRF
A WOOQON
AONPEFPO W
OQWOOQO P~

In [1, Propositions 3.7 and 3.8], Abujabal et al.
discussed the following results.
If AandB are ideals of a commutati&CK-algebraX,  Then X is a lower BCK-semilattice. For an ideal

then A=1{0,1,2} of X, if we takeB = {3}, then

(A:nC)N(B:AC) = (ANB:A C) (A:nB) = {xe X |xABC A} = {0,1,2,4} £A.
for every subset of X.
If Ais an ideal of a commutatilBCK-algebraX, then

(A:/\ BUC):(A/\ B)ﬂ(A/\C) . . . B
Proposition 2Let X be a lower BCK-semilattice. If A is

for every subsetB andC of X. an ideal of X, then A= (A:, B) for some singleton subset
We have more general form than two results above ag of (A, B)

a corollary of (ii) and (iv) in Propositiof.

We now provide a condition for the equalidy= (A
B) to be hold.

. ProofLetx e (A:x B) and takeB = {x}. Thenx=XxAXx €
Corollary 1.For any subsets A, B and C of a commutative A and thugA:, B) C A. SinceA C (A:, B) by Proposition
BCK-algebra X, we have 1(i), we haveA = (A1, B). B

(A:nC)N(B:A C) = (ANB:A C) Question IFor any nonempty subsét of a lower BCK-

and semilatticeX, does the following condition hods?
(A:ABUC)=(A:AnB)N(A:AC). (WX yeX)(x<y = xXAACYyAA). 9)
(@© 2017 NSP
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The answer to the question above is not valid in generaFor subsetA = {0,2,4} andB = {0,3} of X, we have

as seen in the following example. (A:x B) ={0,2,4}, which is not an ideal oX.
Example onsider a  lower BCK-semilattice For a nonempty subs@& of a lower BCK-semilattice
X =1{0,1,2,3,4} with the following Cayley table X, consider the following condition:
[0 1 2 3 4 ¥x,y € X)(vb € B) (XA b) * (yAb) < (x+y) Ab). (10
— (vxy € X)( ) (xAb)* (yAb) < (xxy) Ab). (10)
111 0 0 0 O We provide conditions for the relative annihilator of a
212 1 0 1 0 set with respect to a set to be an ideal.
3/3 3 3 00
414 4 4 3 0 Theorem 2Let B be a nonempty subset of a lower BCK-
semilattice X in which the conditiof10) is valid. If A is
ForA= {2,4}, we have an ideal of X, then the relative annihilatgA :, B) of B
IAA=1A{2,4) = {1} and 20 A= 21 {2,4} = {2}. with respect to A is an ideal of X.
Note that 1< 2, but INAZ 2 A A, ProofAssume thaA is an ideal ofX. Since 0\B= {0} C
N A, we have 0= (A:, B). Letx,y € X be such thakxy ¢
If we strength conditions, then we have (A:pB)andy e (A:x B). Then(xxy) ABC AandyAB C

. . . I A, that is, Abe AandyAb e Aforall b e B. Since
Proposition 3If A is an ideal of a lower BCK-semilattice Ais an Iidé);ikg%( it follows f>r/om (10) that !

X, then the conditiof9) holds.
(XAb)x (yAb) e A
ProofLet x,y € X be such thak <y. Suppose that €
XA A. Then there exists an elememt A such thaz=  and thaxAb € Afor all b € B, that is,x AB C A. Hence
xAa. SincexAa < aandAis anideal ofX, it follows that X € (A:x B) and(A:, B) is an ideal oiX.

z=XxAaec A The conditiorx <y inducesx = xAY, and ) ) ]
so Since every commutativBCK-algebraX is a lower

z=xAa= (XAy)Aa=yA(XAa) € YAA. BCK-semilattice and satisfies the conditidi0), we have

. ) the following corollary.
This shows thax AAC yAAforall x,y € X with x <.

, , . Corollary 5([ 1]). Let B be a nonempty subset of a
Corollary 3.If ‘A is an ideal of a commutative commutative BCK-algebra X. If A is an ideal of X, then
BCK-algebra X, then the conditid®) holds. the relative annihilator(A :, B) of B with respect to A is

Theorem 1For any nonempty subset A and an ideal B of 2" ideal of X.
a lower BCK-semilattice X, the relative annihilator of B The converse of Theorefis not true in general, that

with respect to A is a subalgebra of X. is, for any subsetB of a lower BCK-semilattice X

ProofLet x,y € (A, B). ThenxAB C A andyAB C A. satisfying the condition1(0), there exists a subsétof X
Since x*y’ < x we get (x*y)A BC xABCA by such that the relative annihilatqA :5 B) of B with
Proposition3. Thereforexxy € (A :, B), which shows respect toA is an ideal ofX, butAis not an ideal oK.

that the relative annihilator oB with respect toA is a

Example SConsider a lower BCK-semilattice
subalgebra oK.

X =1{0,1,2,3} with the following Cayley table.
Corollary 4.For any nonempty subset A and an ideal B of
a commutative BCK-algebra X, the relative annihilator of |

B with respect to A is a subalgebra of X.

The following example shows that there exist
nonempty subsetd and B of X such that the relative
annihilator ofB with respect toA is not an ideal oK.

WN P Ol *
WNEF OO
NN OO
R ORFRON
OO OO Ww

Then a subseB = {2} of X satisfies the conditionl().
Example LConsider a  lower BCK-semilattice LetA={0,1,3} be asubsetaoX. Then(A:\ B)={0,1}

X =1{0,1,2,3,4} with the following Cayley table. which is an ideal oX. ButAis not an ideal oK.
*|0 1 2 3 4 Lemma 1([8]). Let A and B be ideals of X such that®A
00 0 0O O O B. If A is a positive implicative (resp., commutative and
111 0 0 0 1 implicative) ideal of X, then so is B.
212 1 0 0 2
3/!3 1.1 0 3 Using Propositionl, Theorem2 and Lemmal, we
414 4 4 4 0 have the following theorem.
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Theorem 3For a nonempty subset B of a lower and
BCK-semilattice X satisfying the conditi¢h0), if A is a yAbeA (12)
positive implicative (resp., commutative and implicative

ideal of X, then so is the relative annihilatoh:, B) of B for all b € B. SincexAb < b andB is an ideal ofX, we
with respect to A. havex A b € B. It follows from (12) that

The converse of Theoreis not true in general, that YA (XAb) € A. (13)
is, for any subsetB of a lower BCK-semilattice X
satisfying the condition1(0), there exists a subsétof X ~ Note that(x A b) = (XA b) xy) is a lower bound of and
such that the relative annihilatqiA :, B) of B with ~ XAb. Thus
respect toA is a positive implicative (resp., commutative
and implicative) ideal ofX, but A is not a positive
implicative (resp., commutative and implicative) ideal of 5,4 5o

X. (XAb) % ((XAb)*y) € A. (14)

Example §1) Let X = {0,1,2,3,4} be a set with the SjncexAb < b, we have
following Cayley table. N

(XADB) x (xAD)xy) <yA (XAb),

(XAb)xy<bxy<b

and sincex A b < x, we get

(XAb)xy < xxy.

A WN PP Ol *
A WNEF OO
A WNOOF
ANOOON
~AOOOOW
O WNOO M

Hence(XxAb)xy < (xxy) Ab € A by (11), and so(xA
. i . b) xy € A. SinceA is an ideal ofX, it follows from (14)
ThenX is a lowerBCK-semilattice. Note thad = {0,1}is 1oty A b e A and so thak A B C A thatis,x e (A, B).

an ideal which is not positive implicative, and the set andTherefore the relative annihilatéh : » B) of B with respect
the setB = {4} satisfies the conditiorL(). Then to Ais an ideal oiX. Oh:1B) P

(A:nB) = {xeX[xABC A} ={0,1,2,3} Corollary 6.1f A and B are ideals of a commutative BCK-
algebra X, then the relative annihilatdA :, B) of B with

and it is a positive implicative ideal of. respect to A is an ideal of X.

(2) Consider a loweBCK-algebraX = {0,1,2,3,4}
with the following Cayley table.

Using Propositionl, Theorem4 and Lemmal, we
have the following theorem.

Theorem5For ideals A and B of a lower
BCK-semilattice X, if A is positive implicative (resp.,
commutative and implicative), then the relative
annihilator (A :, B) of B with respect to A is a positive
implicative (resp., commutative and implicative) ideal of
Then the setA = {0,3} is an ideal which is neither X:

commutative nor implicative, and the &t {4} satisfies
the condition £0). Then

A WNPEPQO *
A WNEF OO
A WNOQOIF
A WOOQON
AONPEFLO W
OQWNEFQO P~

The converse of Theoreis not true in general, that
is, for idealsA andB of a lowerBCK-semilatticeX such
(A:nB)={xe X |xABCA}={0,1,2,3} that the relative annihilatqA : , B) of B with respect tA
is a positive implicative (resp., commutative and
and it is both a commutative ideal and an implicative idealimplicative) ideal ofX, A may not be positive implicative
of X. (resp., commutative and implicative).

Theorem4lf A and B are ideals of a lower Example71) Let X = {0,1,2,3,4} be a set with the
BCK-semilattice X, then the relative annihilatok:, B) following Cayley table.
of B with respect to A is an ideal of X.

*«|0 1 2 3 4
ProofObviously, Oc (A:, B). Let x,y € X be such that 0/0 0 0 O O
xxy € (A:x B)andy € (A:x B). Then(xxy) ABC Aand 11 0 0 1 1
yABCA thatis, 212 1 0 2 2
3/3 3 3 0 3
(xxy)AbeA (11) 414 4 4 4 0
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ThenX is a lower BCK-semilattice. Note th&t= {0,3}
andB = {0,4} are ideals ofX in which A is not positive
implicative. Then

(A:2B)={xe X |XxABCA}={0,1,2,3}

and it is a positive implicative ideal of.
(2 Consider a lower BCK-semilattice
X =1{0,1,2,3,4} with the following Cayley table.

A WNE O *
A WNPEFL OO
A WNOQO|IF
A WORFRLQON
A ONOOW
OQWOoOrohk

Note thatA = {0,1} andB = {0,1,3} are ideals oiX in
which A is neither commutative nor implicative. Then

(A:nB)={xeX|xABCA} ={0,1,2,4}

and it is both a commutative ideal and an implicative ideal
of X.

WN - QO *
WN - OO
wWN OO
WOoOOoOoON
ONPF O W

ThenX is a lower BCK-semilattice. Les={0,1,3},B; =
{0,1} andB, = {0,1,2}. Then

(A:rBy) ={xeX|xABy C A} ={0,1,3},
and soB; C (A:x Bp), butBiNBy = {0, 1} #+ {0}

4 Conclusions and future works

As we mentioned in the abstract, in this article the notions
of a relative annihilator is introduced as a generalization
of annihilators and then their properties are investigated
We obtain some related results and conditions for a relative
annihilator to be an implicative (resp., positive implieat
commutative) ideal are discussed.

Now there are some ideas and questions:
(i) How we can define some other types of relative
annihilators, e.g. S-relative annihilator, I-relative
annihilator, Pl-relative annihilator and so on.

The following example shows that there exist subsetg(ii) Can we obtain some relationship between different

AandB of X such thaB ¢ (A:, B).

Example 8Consider 8CK-algebraX = {0,1,2,3,4} with
the following Cayley table.

o A WNREROQ *
A WNRF OO
ADNNOOIF
AP ORFRLQON
A OOOQOW
QOQWNRF O N

For subseté\ = {0,2} andB = {0, 1,2,3} of X, we have

(A:n B)={0,2,4},
and thu8 ¢ (A:, B).

Theorem 6lf B; and B are ideals of a lower
BCK-semilattice X such that 181 B, = {0}, then
B; C (A:, By) for any subset A of X with € A.

ProoflLet B; andB; be ideals of a loweBCK-semilattice
X such thaB; N B, = {0}. For anyb; € B; andb; € By, we
haveb; Aby < by and sdb; Ab, € B, sinceBs is an ideal of
X. Similarly we geto; Ab, € B;. Thusby Aby, € BiNBy =
{0}, and sdb; A by, =0 € A It follows thatb; € (A: Bp).
ThereforeB; C (A:x By).

The following example shows that the converse of
Theoren® is not true in general.

Example 9.et X = {0,1,2, 3} be a set with the following
Cayley table.

types of relative annihilator.

(i) Can we generalized these ideas to hyper BCK
(K)-algebra.

We will try to work on these ideas and give the results in
the forthcoming papers.
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