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Abstract: The effects of Newtonian and Yukawa gravitational potentials are studied on the circular restricted three-body system under

the assumption that infinitesimal body varies its mass according to Jeans law. The equations of motion are determined under these

perturbations. The numerical studies are conducted where locations of equilibrium points, regions of motion, trajectories with Poincaré

surfaces of section and the basins of attraction have been investigated by well known software Mathematica. Moreover, the stability of

the locations of equilibrium points are determined and it was found that all these points are unstable.
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1 Introduction

The classical circular restricted three-body problem is the
most intriguing problem in celestial mechanics and
dynamic astronomy. The restricted three-body problem
describes the movement of a third body in the combined
gravity field of two primary bodies with an infinitesimal
mass (serving as the particle testing), according to [1].
Several practical applications exist in this subject ranging
from theory of molecular physics, chaos, planetary
physics and galactic dynamics.

In the last decade, the classical three-body problem
has changed considerably to explain the motion existence
of mass-free measuring particles in the solar system,
considering more dynamic parameters. Particularly,
several additional forces have increased the effective
potential of the classical restricted three-body problem .

In the conventional version of the restricted three
body problem, the two primaries are spherical and
homogeneous. However, some celestial bodies (e.g.
Saturn and Jupiter) in our solar system also have an oblate
shape. The parameter of oblateness has been added to
achieve a more accurate definition of the motion of the
test particle. Numerous articles, such as: [2], [3], [4], [5],

[6], [7], [8], [9], have explored the effect of oblateness on
the character of motion.

The restricted three-body problem explains how the
two finite masses (i.e. primaries) move in circular orbits
around their center of mass due to their reciprocal
attraction and infinitesimal mass body that does not affect
the motion of primaries. It was first conceived because of
the nearly circular orbits of the planets around the sun, the
tiny masses of the asteroids as well as planetary satellites
relative to the masses of those planets were considered.
The restricted problem is also addressed in other
configurations as three-body problem (with special
configurations as copenhagen problem, Robe’s problem),
four-body problem, five-body problem and six-body
problem by many researchers, including [10], [11], [12],
[13], [14], [15] etc. The infinitesimal body has been seen
to experience a position of rest at a certain point in the
motion plane at some particular points in case of zero
velocity and zero acceleration. These points are known as
balance points (stationary points) and are five in classical
case. Three of these points are called hill balance points
because they lie on the x-axis and on the line that
connects the primaries. These three points are referenced
respectively by L1,L2 and L3. The hillside balance points
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were usually unstable. The other two points are called
triangular points of balance since they form a triangular
equilateral arrangement with the primaries and are
marked by L4 and L5. For values of the mass parameter µ
below the critical value of Routh, triangular balancing
points are stable. Over the years, periodic orbits around
the balance points were studied both on the plane and
perpendicular to the plane of motion. The same problem
including oblateness of the primaries, radiation pressure
effect, albedo effect, heterogeneous shapes, viscous force,
charged body, finite straight segments, perturbations in
Coriolis and centrifugal forces etc. are studied by [16],
[17], [18], [19], [20], [21], [22], [23], [24], [25] etc.

Many researchers have investigated the variables mass
of the test particle in the restricted three-body problem.
[26] studied the two body problem with a variable mass
when investigating the growth of double star. [27] worked
on the mechanics of bodies with a variable mass. The
effect of perturbations on the locations and stability of
triangular equilibrium points in the restricted three-body
problem with variable mass were investigated by [28],
under the assumption that the third infinitesimal mass is
variable and primaries are spherical with constant masses.
They explored the problem by means of the Jeans law and
space-time transformation, connecting it with the
Meshcherskii transformations. The stability of libration
points and the effect of perturbations on nonlinear
stability of triangular points in the restricted three-body
problem with variable mass were investigated by [29].
Furthermore, [30] examined the stability of the triangular
equilibrium points using space-time transformation of
Meshcherskii in the restricted three-body system where
the third infinitesimal body with variable mass and two
luminous primaries with constant masses exist. The
problem of the motion of a star inside a layered
inhomogeneous rotating elliptical galaxy with a variable
mass was studied by [31] that found seven libration points
of the autonomized equations located (except for one)
outside the gravitating galaxy. He discussed the stability
of these points using the Lyapunov Characteristic Number
(LCN), and found that negative exponent solutions
remained stable. [32] considered an analytical study of
the dynamics of the third body in the restricted three-body
problem with a variable mass, and derived the equation of
motion when the loss of mass is non-isotropic. He studied
the locations of the out-of-plane equilibrium for a non
isotropic variation of the mass and proved the forbidden
motions and the regions of possibility in restricted body
problem.
This paper is organized, as follows: Section 2 presents the
formation of the problem and equations of motion.
Numerical explorations which contain the investigation of
equilibrium points, regions of motion, Poincaré surfaces
of section with trajectories allocation and basins of
attraction are addressed in section 3. Stability of the
equilibrium points are performed in Section 4.
Conclusion is presented in Section 5.

2 Model formation and equations of motion

Let m1, m2 and m be three masses which form the
restricted three-body problem under the assumption that
the first two bodies known as primaries are moving in
circular orbits around their common center of mass which
is taken as origin and imposing the Newtonian as well as
Yukawa potential. The third infinitesimal body which is
varying its mass according to Jeans law and moving under
the gravitational influences of the primaries but not
affecting them. Let xy be the synodic coordinate system
where the line joining to the primaries is taken as x−axis
and line perpendicular to the x−axis and passing through
the origin O, is known as y−axis. Let ρ1 and ρ2 be the
distances of the primaries from the infinitesimal body. For
the non-dimensional units let the distance between
primaries, the sum of the masses of the primaries and the
unit of time chosen as G be unity. Hence let m1 = µ ,
m2 = 1− µ and mean motion be unity. The equations of
motion of infinitesimal body with constant mass can be
written as [33]:

d2 x

d t2
− 2

d y

d t
=

∂ Ω

∂ x
,

d2 y

d t2
+ 2

d x

d t
=

∂ Ω

∂ y
,

(1)

where

Ω =
1

2
(x2 + y2)+

1

k

(

µ

ρ1

q1 +
1− µ

ρ2

q2

)

,

with

k = 1+α(1+λ )e−λ ,

qi = 1+α e−λ ρi , (i = 1,2)

ρ1 =
√

(x+ µ − 1)2 + y2,

ρ2 =
√

(x+ µ)2 + y2,

and α as well as λ are the constant parameters due to
Yukawa potential.

If the mass of infinitesimal body varies with time, the
equations of motion can be written as [32];

ṁ

m
(ẋ− y)+ (ẍ− 2ẏ) = Ωx,

ṁ

m
(ẏ+ x)+ (ÿ+ 2ẋ) = Ωy,

(2)

where dot (.) denotes the differentiation w. r. to time t.
We will simplify Eq. (2) using Jeans law [26] and
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Meshcherskii space time transformations [34] i.e.

m = m0 e−β1 t ,

dt = dτ

(x,y) = β
−1/2

2 (ξ ,η)

(ẋ, ẏ) = β
−1/2

2

(

(ξ̇ , η̇)+
β1

2
(ξ ,η)

)

,

(ẍ, ÿ) = β
−1/2

2

(

(ξ̈ , η̈)+ β1 (ξ̇ , η̇) +
β 2

1

4
(ξ ,η)

)

.

(3)

where β1 is constant, β2 =
m

m0

and m0 is the initial

mass.
Then equations of motion will be

ξ̈ − 2 η̇ = Uξ ,

η̈ + 2 ξ̇ = Uη ,

(4)

where

U =

(

1

2
+

β 2
1

8

)

(ξ 2 +η2)+
β

3/2

2

k

(

µ

r1
p1 +

1− µ

r2
p2

)

,

pi = 1+α e−λ β
−1/2
2 ri , i = 1,2,

r1 =

√

(ξ − (1− µ)β
1/2

2 )2 +η2,

r2 =

√

(ξ + µ β
1/2
2 )2 +η2.

The equations of motion (4) admits as

ξ̇ 2 + η̇2 = 2U −C− 2

∫ t

t0

∂U

∂ t
dt, (5)

where left hand side of Eq. (5) represents the velocity of
the infinitesimal body and C is the quasi-Jacobian constant
for the system.

3 Numerical Expolarations

In this part of the paper, we numerically investigate the
locations of equilibrium points, regions of possible
motions , trajectories allocations, Poincaré surfaces of
sections and basins of attractions in various subsections
3.1, 3.2, 3.3, 3.4 and 3.5 respectively using well known
software Mathematica.

3.1 Locations of equilibrium points

We will show the locations of equilibrium points
graphically by solving Eq. (4) under assumptions that all

the derivatives with respect to time t must be zero. Hence

Uξ = 0,

Uη = 0.
(6)

We solved Eq. (6) for two cases and found five
equilibrium points (L1, L2, L3, L4 and L5) out of which
three are collinear (L1, L2 and L3)and two are
non-collinear (L4 and L5), like classical case of circular
restricted three-body problem (Figures 1a & 1b). We and
Kokubun revealed that Yukawa parameters (α & λ ) have
very small effect which can not be shown in figures so we
have given it in Table-1.

Figure (1a) represents the locations of equilibrium
points in two colors. Magenta color locations show
without effect of mass variation (Outer locations). Orange
color locations show with the effect of mass variation
(Inner locations). We observed from this figure (1a) that
as we consider the effect of variation of mass, the location
of equilibrium points move towards origin.

Figure (1b) shows that as the value of the mass
variation parameter β2 (= 0.4 (green), 0.8 (blue) & 1.2
(red)), the locations of equilibrium points move away
from the origin.

3.2 Regions of possible motion

Following the procedure given by [35], we will
investigate the regions of possible and forbidden motions
under the effect of Yukawa parameters (α & λ ) as well as
mass variation parameters (β1 & β2) as presented in
figure 2. First, we will evaluate the value of Jacobian
constant (C) corresponding to each equilibrium points,
then we will draw the regions of motion corresponding to
each equilibrium points. Figure 2(a) corresponds to
equilibrium point L1 where we observed that the third
body can move everywhere except near equilibrium
points L4 & L5. Figure 2(b) corresponds to equilibrium
point L2, where we observed that the third body can move
only near equilibrium point L2. Figure 2(c) corresponds to
equilibrium point L3, where we observed that the third
body can not move near equilibrium points L1, L4 & L5

and other places can move freely. Figure 2(d) corresponds
to equilibrium point L4 or L5, where we observed that the
third body can move freely everywhere.

3.3 Trajectories allocations

Trajectories allocations depend on the potential of the
system so if we change the potential, the motion of the
third body will be changed. We have already mentioned
in subsection 3.1 that inclusion of Yukawa term has very
low effect on the properties of the motion but the
inclusion of mass variation has much effect on the
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Table 1: Coordinates of equilibrium points for various values of parameters used.

Table-1

Cases Parameter α Locations of equilibrium points

β1 = 0, β2 = 1 0.34 (-1.0041683, 0), (0.8480637, 0), (1.1467899, 0)

λ = 0.1, µ = 0.01 (0.4763108, ± 0.8765036)

0.1 (-1.0041672, 0), (0.8480733, 0), (1.1467739,0)

(0.4763014, ± 0.8764161)

−0.1 (-1.0041658, 0), (0.8480852, 0), (1.1467541, 0)

(0.4762537, ± 0.8762073)

−0.25 (-1.0041643, 0), (0.8480984, 0), (1.1467324,0)

(0.4761158, ± 0.8760816)

β1 = 0.2, β2 = 0.4 0.34 (-0.6330027, 0), (0.5358793, 0), (0.7243348, 0)

λ = 0.1, µ = 0.01 (0.2976472, ± 0.5481581)

0.1 (-0.6330009, 0), (0.5358851, 0), (0.7243243, 0)

(0.2976301, ± 0.5481408)

−0.1 (-0.6329988, 0), (0.5358923, 0), (0.7243113, 0)

(0.2976256, ± 0.5481374)

−0.25 (-0.6329964, 0), (0.5359002, 0), (0.7242970,0)

(0.2976109, ± 0.5481208)

L1 L2 L3

L4

L5

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

ξ

η

(a) Magenta color (Outer) (β1 = 0 & β2 = 1) and Orange

color(Inner) (β1 = 0.2 & β2 = 0.4) locations without and with

effect of mass variation respectively

L1 L2 L3

L4

L5

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

ξ

η

(b) For different values of variation parameter

β2 = 0.4(green),0.8(blue)&1.2(red)

Fig. 1: Locations of equilibrium points at α = 0.1, λ = 0.1, β1 = 0.2 and µ = 0.01.

properties of motion. Thus, the motion of the third body
can be drawn graphically where we can see the exact
location of the path for different values of mass variation
parameters (β1 & β2) given in figure 3 (β2 = 0.4 (3a), β2 =
0.8 (3b) & β2 = 1.2 (3c)). From these figures we observed
that as the value of β2 increases, the number of
trajectories increases with the same interval of time.
Hence, the mass variation parameter has great impact on
the properties of the motion of the third body.

3.4 Poincaré surfaces of section

To reveal the dynamical properties of the path either
chaos or regular, we have to draw the Poincaré surfaces of

section. Thus, we must draw the graph between ξ and ξ̇
when η = 0 whenever the orbit intersects the plane at
η̇ ≥ 0. We have drawn the Poncaré surfaces of section for
three values of β2 (= 0.4 (fig. 4a), 0.8 (fig. 4b) & 1.2 (fig.
4c)). These figures show no chaos and as the value of β2
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(a) Corresponding to the equilibrium point Ł1

L1 L2 L3

L4

L5

-1.0 -0.5 0.0 0.5 1.0
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0.0

0.5

1.0

ξ
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(c) Corresponding to the equilibrium point Ł3

L1 L2 L3
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-1.0 -0.5 0.0 0.5 1.0

-1.0
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0.0

0.5
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(b) Corresponding to the equilibrium point Ł2

L1 L2 L3

L4

L5

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

ξ

η

(d) Corresponding to the equilibrium point Ł4 & Ł5

Fig. 2: Regions of possible motion at α = 0.1, λ = 0.1, β1 = 0.2, β2 = 0.4 and µ = 0.01.

increases, the path of the motion becomes more regular or
prominent.

3.5 Basins of Attraction

The qualitative behaviour of the dynamical system can
also be studied by the basins of attraction. To study this
we will use well known N-R iterative method. By this

iterative method, we have illustrated the attracting domain
in ξ −η-plane. The algorithm of this problem is given as:

ξn+1 = ξn −

(

UξUηη −UηUξ η

Uξ ξUηη −Uξ ηUηξ

)

(ξn,ηn)

, (7)

ηn+1 = ηn −

(

UηUξ ξ −UξUηξ

Uξ ξUηη −Uξ ηUηξ

)

(ξn,ηn)

, (8)

where ξn,ηn are the values of ξ and η coordinates of the

nth step of iterative process. The point (ξ , η) will be a
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-0.4 -0.2 0.0 0.2 0.4

-0.4

-0.2

0.0

0.2

0.4

ξ

η

(a) Trajectories at β2 = 0.4

-0.4 -0.2 0.0 0.2 0.4

-0.4

-0.2

0.0

0.2

0.4

ξ

η

(b) Trajectories at β2 = 0.8

-0.4 -0.2 0.0 0.2 0.4

-0.4

-0.2

0.0

0.2

0.4

ξ

η

(c) Trajectories at β2 = 1.2

Fig. 3: Trajectories allocations for the different values of mass variation parameter β2.

-0.4 -0.2 0.0 0.2

-3

-2

-1

0

1

2

3

ξ

dξ

dt

(a) For β2 = 0.4

-0.4-0.3-0.2-0.1 0.0 0.1 0.2 0.3

-10

-5

0

5

10

ξ

dξ

dt

(b) For β2 = 0.8

-0.4-0.3-0.2-0.1 0.0 0.1 0.2 0.3
-20

-10

0

10

20

ξ

dξ

dt

(c) For β2 = 1.2

Fig. 4: Poincaré surfaces of section for the three different values of mass variation parameter

member of the attracting domain, if the initial point
converges rapidly to one of the equilibrium points. This
process stops when the successive approximation
converges to an equilibrium point. We also declare that
the basins of attracting domain is unrelated to the
classical basins of attracting domain in dissipative system.
We used a color code for the classification of different
equilibrium points on the ξ −η-plane.
We have performed the basins of attracting domain for the
parameter α = 0.1, λ = 0.1, β1 = 0.2, β2 = 0.4 &
µ = 0.01 in ξ −η-plane and given in figure 5. From this
figure, we observed that there are five attracting points
L1,2,3,4,5 out of which L1,2,3 corresponds to the cyan color
regions, L4 corresponds to the blue color region and L5

corresponds to the green color region. All these regions
extended to infinity. Orange dots denote the locations of
the attracting points.

Fig. 5: Basins of attracting domain in ξ −η-plane
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4 Linear Stability

In this section, we explore the linear stability of
equilibrium points for the infinitesimal variable mass
body in the neighbourhood of (ξ0 + ξ1, η0 + η1) under
the effect of the Newtonian and Yukawa forces of the
primaries. Where (ξ1, η1) are small displacements from
the equilibrium point (ξ0, η0).

The system (4) can be written in the form as:

ξ̇1 = ξ2,

η̇1 = η2,

ξ̇2 = 2η2 + (Uξ ξ )
0 ξ1 + (Uξ η)

0 η1,

η̇2 = −2ξ2 + (Uη ξ )
0 ξ1 + (Uη η)

0 η1,

(9)

where the superscript 0 denotes the value of the
second derivative of U at the corresponding equilibrium
point (ξ0, η0).
When β1 = 0, then the above system (9) will reduce to the
classical case i.e. the mass of the infinitesimal body will
be assumed to be constant. However, when β1 6= 0, we
can not examine the stability by ordinary method because
the distances of the equilibrium point to the primaries
vary with time. Therefore we will use
Meshcherskii-space-time inverse transformations as:

ξ3 = β
−1/2

2 ξ1, η3 = β
−1/2

2 η1,

ξ4 = β
−1/2
2 ξ2, η4 = β

−1/2
2 η2.

(10)

Using the transformations given in Eq. (10), the system (9)
can be written as follows:

˙⊔
= M

⊔

, (11)

where

˙⊔
=















ξ̇3

η̇3

ξ̇4

η̇4















,
⊔

=













ξ3

η3

ξ4

η4













(12)

and

M =























1

2
β1 0 1 0

0
1

2
β1 0 1

(Uξ ξ )
0 (Uξ η)

0 1

2
β1 2

(Uη ξ )
0 (Uη η)

0 −2
1

2
β1























(13)

The characteristic equation for the matrix M is

λ 4 +α3 λ 3 +α2 λ 2 +α1 λ +α0 = 0, (14)

where

α3 = −2β1,

α2 = 4 −
(

Uξ ξ

)0
− (Uη η)

0 +
3

2
β 2

1 ,

α1 = β1

(

(

Uξ ξ

)0
+ (Uη η)

0 − 4 −
1

2
β 2

1

)

,

α0 = β 4
1 +

(

Uξ ξ

)0
(Uη η)

0 −
(

(

Uξ η

)0
)2

−
1

4
β 2

1

(

(

Uξ ξ

)0
+ (Uη η )

0
− 4

)

.

(15)

Equation (14) numerically solved for the different
values of parameters and evaluated the characteristic roots
for all equilibrium points which are given in Table 2. It
shows that all the equilibrium points are unstable because
at-least one characteristic root is either positive real
number or positive real part of the complex characteristic
root. While in the classical case collinear equilibrium
points are always unstable and triangular equilibrium
points are stable [1]. Therefore, the parameters used
change the stability of equilibrium points to instability.

5 Conclusion

Dynamical evolution of the infinitesimal variable mass
has been investigated under the effect of Newtonian and
Yukawa potentials. Our equations of motions are different
from [33] because of the variable mass effects with
variation parameters β1 and β2. We have determined the
Jacobian quasi-integral by which we have studied the
regions of possible motion and Poincaré surfaces of
section to follow the procedure given by [35]. Numerical
works have been done by the system of equations of
motion and shown graphically. The locations of
equilibrium points have been shown. Five equilibrium
points like the classical restricted three-body problem
have been found. Also we have indicated that Yukawa
parameters α and λ have very little effect on the model
but variation parameters have great effect on the location
of equilibrium points ( for more details, see subsection
3.1, Table-1 and Figure-1). The regions of possible
motion have been studied in subsection 3.2 and given in
figure 2 where shaded regions are prohibited regions and
third body can move freely in white regions. The
trajectory allocations showed the actual path of the third
body with the particular interval of time (Figure-3). It was
found that as the value of variation parameter β2

increased, the number of trajectories increased in the
same interval of time. These trajectories are not periodic.
Figure 4 shows the Poincaré surfaces of sections at three
different values of the variation parameter β2, where we
found the discrete type of paths which show the weak
chaos. We also observed from here that as the value of β2
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Table 2: Nature of equilibrium points.

Table-2

Cases Equilibrium points Characteristic Roots Nature

β1 = 0, β2 = 1 (-1.0041672, 0) ±0.1615761 Unstable

α = 0.1,λ = 0.1 ±1.0082119 i

µ = 0.01 (0.8480733, 0) ±2.9043323 Unstable

±2.3168114 i

(1.1467739, 0) ±2.1799466 Unstable

±1.8749959 i

(0.4763014, ± 0.8764161) ±0.3034840 i Stable

±0.9562026 i

β1 = 0.2, β2 = 0.4 (-0.6330009, 0) ±0.0658829 Unstable

α = 0.1,λ = 0.1 0.1000000±0.9938685 i

µ = 0.01 (0.5358851, 0) ±2.7876196 Unstable

0.0999999±2.3027300 i

(0.7243243, 0) ±2.3175822 Unstable

0.1000000±1.8925532 i

(0.2976301, ± 0.5481408) 0.0999999±0.9677089 i Unstable

0.1000000±0.1258743 i

increases, the weak chaos changes to the weakest chaos.
The next figure 5 shows the basins of attraction, where the
equilibrium points act as attractors. It was found that all
the attractors extended to infinity. Finally in section 4, we
have investigated the linear stability of the equilibrium
points and observed that all the equilibrium points were
unstable. However, in the classical case, the collinear
equilibrium points were unstable while the triangular
equilibrium points are stable [1]. Both the cases are
presented in Table 2 which shows that variation of mass
effect has tremendous effect on this model.
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