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Abstract: In this paper, we present a new hybrid swarm optimizationdiffierential evolution algorithm for solving constrainedd
engineering optimization problems. The proposed algarithcalled hybrid particle swarm optimization and diffefahevolution with
population size reduction (HPSODEPSR). The powerful patémce of any metaheuristics algorithm is measured by falubty to
balance between the exploration and exploitation prodasthe beginning of the search, the algorithm needs to ezploe search
space with a large number of solutions in the population tha&ing the search the need of the exploration process isesdwhile
the need of the exposition process increases. From this, peénpropose a population size reduction mechanism (PSRNDSRM,
the proposed algorithm starts with a large number of satstio the population and during the search the number of thas#ions
decreases after applying the greedy selection operatadiar o remove the worst solutions from the population. Alge propose
a new automatic termination criterion which is called a pesg vecto. V is a (1 x n) zero vector, wher@ equal to the number
of population partitions and contains of a number of subsgtsl to the number of population reduction steps (paniowhen the
population reduced, the corresponding subset value in Verted to one. The algorithm terminates the search whenladleds values
in the progress vector become ones. Moreover, we test thmged algorithm on eleven benchmark functions and five eeging
optimization problems. We compare our proposed algorithairest seven algorithms in order to investigate the gemperdrmance of
it. The numerical experiments show that the proposed dtguris a promising algorithm and can reach to the optimal ar optimal
solution faster than the other comparative algorithms.

Keywords: Particle swarm optimization, differential evolution, strained/engineering optimization problems, populatgire
reduction, global optimization

1 Introduction solution (Ibest) and the group’s best position ever found
(global best solution denoted by gbest).
In 1995, James Kennedy and Russell C. Eberhft [ In gbest, all particles share information with each

proposed the particle swarm optimization (PSO)Oother and move to global best position. However, gbest
algorithm for optimization problems. PSO is a has drawback, because it is easy to trapped in local
population-based search algorithm based on theéptima. In Ibest, a specific number of particles are
simulation of the social behavior of birds within a flock.  Neighbors to one particle, but it also has drawback, which
Due to its simplicity, easy implementation, and IS the slow of convergence. In order to overcome these
efficiency, PSO has attracted much attention by manydrawbacks, many researchers tried to improve the
researchers and been successfully applied in a variety df€formance of PSO by combining it with other
fields [3], [4], [23], [36], [37]. In the original version of algorithms, for example genetic algorithm (GA).
PSO, particles fly through the search space influenced by Robinson et al. 29] proposed two hybrid PSO and
two factors in order to find global optima: each GA algorithms for solving a particular electromagnetic
individual’s best position ever found (pbest) or local bestapplication of profiled corrugated horned antenna. The
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first algorithm is called GA-PSO, while the second unconstrained global optimization problems by
algorithm is called PSO-GA. In PSO-GA algorithm, PSO combining PSO algorithm with a GA mutation operator
generates an initial population for GA, while in GA-PSO only.

algorithm, the initial population is generated by using GA  Kim [18] proposed an improved GA, called GA-PSO
for PSO. The final results showed that the PSOGA hybridfor obtaining the local and global optima of Foxhole
algorithm outperforms the GA-PSO version as well asfunction by using PSO and the concept of Euclidean
simple PSO and GA versions. distance. In GA-PSO, the performance of GA was

Also, in [20Q], Krink and Lvbjerg hybridized PSO with improved by using PSO and Euclidean data distance on
the GA and Hill Climbing approaches and was applied formutation procedure of GA. In the PSO-GA, Yang et al.
solving unconstrained global optimization problems. The[35] proposed a hybrid evolutionary algorithm (HEA) for
authors showed that the proposed algorithm can be appliesolving 3 unconstrained as well as 3 constrained
to a different sub-population of individuals in which each optimization problems by dividing the evolution into two
individual is dynamically assigned according to some pre-stages. The first stage is similar to the standard PSO
designed rules. algorithm. The second stage is similar to GA where

Grimaldi et al. [LO] proposed a hybrid technique genetic operators of selection, reproduction, crossover,
combining GA and PSO called genetical swarm and mutation are exerted on particles at predetermined
optimization (GSO) for solving combinatorial probability. They used a single point crossover, Gaussian
optimization problems. They applied GSO algorithm for mutation and Roulette wheel for selection process.
solving an electromagnetic optimization problem. In In the last few years, many researchers have applied
GSO, the population is divided into two parts and is PSO to solve constrained optimization problems (COPs)
evolved with the GA and PSO algorithms at eachbecause of its success in solving unconstrained
iteration. The populations are then recombined in theoptimization problems. For example, Liang and
updated population, and divided again randomly into twoSuganthan 4] proposed a new dynamic multi-swarm
parts in the next iteration for another run of genetic or PSO with a novel constraint to solve COPs and Krohling
particle swarm operators. In GSO, a new parameter HGnd Coelho 21] proposed a co-evolutionary PSO based
(or Hybridization Constant) has been defined thaton Gaussian distribution for solving constrained
expresses the percentage of population that is evolvedptimization by generating the acceleration coefficients
with GA in every iteration. using Gaussian probability distribution.

Gandelli et al. 9] proposed several hybridization He and Wang 11] proposed another co-evolution
strategies (static, dynamic, alternate, self adaptive) etc PSO algorithm by coping it with both decision variables
for GSO algorithm and validated them with some and constraints. In this algorithm, the swarm is divided in
multimodal benchmark problems. two parts: searching good solutions and optimizing

There are some applications of GSO thgt [8] and  appropriate penalty factor, respectively. He and Wang
[9]. Juang L5] proposed another hybridization strategy of [12] proposed a hybrid PSO with feasibility-based rule
PSO and GA (HGAPSO) to neural/fuzzy network design,[5] by implementing the feasibility based rule to update
where the upper half of the best performing individuals in the personal best of each particle in the swarm and the
a population is regarded as elite solutions. Before usingapplied simulated annealing algorithm in order to avoid
GA operators, the algorithm was first enhanced by meangremature convergence.
of PSO, instead of being reproduced directly to the next Pulido and CoelloZ8] proposed a simple mechanism
generation. to handle constraints with PSO. In their proposed

In [30], Settles and Soule proposed a breeding swarnmechanism if the particles compared are infeasible, the
(BS) algorithm for solving four unconstrained best particle is the particle with the lower value in its
optimization problems with different dimensions by normalized violation of constraints.
hybrid GA and PSO. The BS algorithm combines the  Wang et al. 83 proposed a hybrid multi-swam
standard velocity and position update rules of PSOs withparticle swarm optimization (HMPSO) for solving
the GAs selection, crossover and mutation. constrained optimization problems by splitting the swarm

In [14], Jian and Chen introduced a PSO hybrid with into several sub-swarms and each sub-swarm evolves
the GA recombination operator and dynamic linkageindependently. HMPSO uses the feasibility based rule to
discovery called PSO-RDL for solving 25 unconstrained compare particles in the swarm.
test problems with varying degrees of complexities. They  Inspired by the paper in3B], we propose a new
assumed that the relation between different dimensions isiybrid particle swarm optimization and deferential
dynamically changed along with the search process an@volution algorithm to solve COPs. The proposed
updated the linkage configuration according to the fithesslgorithm is called hybrid particle swarm optimization
feedback. and differential evolution with population size reduction

Mohammadi and Jazaeri2§] proposed a hybrid (HPSODEPSR).
algorithm for solving an IEEE 68 bus system in whichthe  In the proposed algorithm, the particle swarm
initial population for GA is generated by PSO. Esmin et optimization algorithm is used to explore the search space
al. [6] proposed a HPSOM algorithm for solving while the DE mutation is used to update the best personal
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particle at each iteration. Also, we propose a new?2.0.1 The Penalty function method

population size reduction mechanism to control the

number of the particles during the search process. In th@he penalty function method is used to transform the
beginning of the search, the algorithm needs to makeonstrained optimization problems to unconstrained
exploration process with large number of particles optimization problem by penalizing the constraints and
(solutions) then during the search, the need of theforming a new objective function as follows:

exploration is reduced and the need of the exploitation

increases which needs lower number of solutions. In order,,_, ] f(X) if x € feasible region 2

to monitor the search process and control the population (x) f(x) + penaltyx) x ¢ feasible region (2)
reduction process, we propose a progress vattahich

is a zero vector and each subset corresponds to populatidi¥here,
reduction stage (partition). When the algorithm reaches to {

0 if no constraintis violated

the stage of getting the desired value, then the value of thgenajty(x)= h
1 otherwise

corresponding subset converted from zero to one and the
population size is reduced by applying the greedy
selection operator. Furthermore, we test the proposeJ

algorithm on eleven benchmark functions and compare®

against seven algorithms. The experimental results sho/fasiPle points which satisfy all constraints and infeisib
that the proposed algorithm is a promising algorithm angPoints which violate at least one of the constraints. At the

can obtain the optimal or near optimal solution in f€asible points, the penalty function value is equal the
reasonable time. value of objective function, but at the infeasible points th
The rest of this paper is organized as follows. In Penalty function value is equal to a high value asap [n

Section2, we present the definition of the constrained tNiS Paper, a non stationary penalty function has been

optimization problem. We summarize the main conceptsused' which the values of the penalty function are

of the particle swarm optimization and the differential dynamically changed during the search process. A
evolution algorithm in Sectior3 and 4, respectively. In general f‘?rm_ of the penalty function is defined 84 as
Section 5, we describe the population size reduction the following:

mechanism. In Sectio, we highlight the proposed

here are two different types of points in the search space

algorithm and its main structure. In Secti@nwe report _ n
the experimental results and finally, the conclusion makesF 09 =T +h(kH(x), x€SCRY, ®)
up Sectiors. where f(x) is the objective functionh(k) is a non

stationary (dynamically modified) penalty functidk,is
the current iteration number aht{x) is a penalty factor.

2 Constrained optimization problems

The constrained optimization problems and constraint3 Particle swarm optimization
handling is one of the most challenging in many

applications. A general form of a constrained |y the following subsection, we will give the main

optimization is defined as follows: concepts and structure of the particle swarm optimization
algorithm.
Minimize f(X),X= (X1,X2, -+ ,%n)", 1 .
. 00, %= (g, %) W 31 Main concepts

Subject to
Gi(x) <0i=1,---,m Particle swarm optimization (PSO) is a population based
hj(x)=0,j=1,---,1 method that inspired from the behavior (information
X < % < X exchange) of the birds in a swarnif]. In PSO the

population is called a swarm and the individuals are
Where f(x) is the objective functionx is the vector o called particles. In the search space, each particle moves
variables,gi(x) < 0 are inequality constraint$;(x) =0 with a velocity. The particle adapt his velocity due to the
are equality constraintsg;,x, are variables bounds. Many information exchange between it and other neighbors. At
techniques were proposed in order to handle constraintsach iteration, the particle uses a memory in order to save
Michalewicz R7] grouped them into the following its best position and the overall best particles positions.
categories: penalty function technique; rejection of The best particle position is saved as a best local position,
infeasible solutions technique; repair algorithms which assigned to a neighborhood particles, while the
technique; specialized operators technique; and behaviayverall best particles position is saved as a best global
memory technique. position, which assigned to all particles in the swarm.

(@© 2016 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

434 NS 2 A. F. Ali, M. A. Tawhid: Hybrid PSO and DE for solving Engineeg...

Algorithm 1 Particle swarm optimization algorithm

3.2 Particle movement and velocity 1: Set the initial value of the swarm size SS, acceleration
constants; andcy.
Each particle is represented bypadimensional vectors, 2: Sett :=0. ® ®
3. Generate randog’ andv;”’ € [L,U] wherei =1,...,SS
Xi = (Xi1,%2,...,%D) €S 4) {SSis the population (swarm) size

The velocity of the initial population is generated
randomly and each particle has the following initial
velocity:

Vi

4: Evaluate the fithess functidr(xf”).
5. Setgbestt). {gbestis the best global solution in the swafm

6. Set pbesﬁt). {pbesi{t> is the best local solution in the

= (Vi1,Vi2,---,ViD)- (5) swarmy.
7: repeat

The best local and global positions are assigned, where thes, " — ) 1 ¢ i) x (pbesf” —x") + corip x (gbest—

best local position encounter by each particle is defined as

Pi

At each iteration, the particle adjust it's personal positi
according to the best local position (pbest) and the overal

|

xi<t)) {r1 andrz are random vectors [0, 1] }.

D) XI +v(t+l) i =1,...,SS {Update particles
positiong.

iL :  Evaluate the fitness functldr@xtH)) i=1...,SS

= (pi1, Pi2,---,Pp) €S. 6) o

(global) best position (gbest) among particles in its 11 if f(4""Y) < f(pbesf) then

neighborhood as fellow. 12: pbesf ™ = x"Y,
13: else
O Y TN 7 14 pbesift+1 pbesf’.
15: dif
16: |f xf“ < f(gbest!) then
Vi(t+1) - Vi(t) T Cifig X (pbegft) _ Xi(t)) 17 gbesft+l) — Xi(tH)-
+Cariz x (gbest-x). g) 18 else
2fi2 * (9 %) ® 19: gbestt+l) = gbestt).

where c¢;,c, are two acceleration constants called 20: endif
cognitive and social parameters,ro are random vector 21:  Sett =t + 1. {Iteration counter increasing
c [0, 1]_ 22: until Termination criteria are satisfied.

3.

23: Produce the best particle.

3 Particle swarm optimization algorithm
4 Differential evolution algorithm

We can summarize the main steps of the PSO algorithm as

follows. Differential evolution algorithm (DE) was proposed by
Stron and Price in 1993[]. In DE, the initial population
—Step 1.The algorithm starts with the initial values of consists of number of individuals, which is called a
swarm size P, acceleration constantandc,. population sizeP. Each individual in the population size
—Step 2. The initial position and velocity of each s a vector consists dd dimensional variables and can be
solution (particle) in the population (swarm) are defined as follows:
randomly generated as id)(and 6).
—Step 3.Each solution in the population is evaluated by t) i
calculating its corresponding fitness valtie ). X ={§1%2---%p} i=12..P 9)
—Step 4.The'best personal ;olutiqnbestand the best where t is a generation numberD is a problem
global solutiorgbestare assigned. . dimensional number and is a population size. DE
—Step_ 5.The follqwmg steps are repeated until the employs mutation and crossover operators in order to
termination criterion is sat|§f|ed . generate a trail vectors, then the selection operatoisstart
Step 5.1.At each iteratiort, the position of each 1, geject the individuals in new generatianl. We
particlex is justified in ), while the velocity of each present in details the overall process as follows:
part|clev{ is justified in @). '
Step 5.2. Each solution in the population is
evaluatedf(x;) and the new best personal solution .
pbestand b(es)t global solutiogbestare assigned. 4.1 Mutation operator
Step 5.3:Th_e operation Is repeated until the Each vectok; in the population size creates a trail mutant
termination criteria are satisfied. vectorv: as follows
—Step 6.Produce the best found solution so far. !
v = v XY =12 P (10)
(© 2016 NSP
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Algorithm 2 Differential evolution algorithm
DE applies different strategies to generate a mutant vector: Set the generation counter= 0.
as follows: 2: Set the initial value oF andCR
3: Generate randomly an initial populatiBo .
4: Evaluate the fitness function of all individualsfo .
DE/rand/1: v" =X + F - (X1, + Xr,) (11) 5 repeat
6
7
8

Sett =t + 1. {Generation counter increasing-.
fori=0;i <P;i++do

DE/besy/1: Vi(t) = ngst—i— F - (Xrp +Xr,) (12) Select random indexeas, o, ra, wherery # rp # r3 #
i
. 1) _ (1) (t)
9: Vi =X +F x (X —x! ) {Mutation operator }.
DE/currenttobestl: vi(t> = xft) +F - (Xpest— Xi) 10: j= ranré(l D) v
+F - (Xry — Xr,) (13) 11: for (k=0;k < D;k++) do
12: if (rand(0,1) < CRork = j then
13: ul) =Y {Crossover operator}
Lt t k k
DE/besy/2: Vi( = Xégzsﬁ' F(Xrp = Xry) 14: elsel<t |<t
+F - (Xrg —Xry) (14) 15 U =
16: end if
© © 17: end for
DE/rand/2: v\" = X} +F - (Xr, — Xr3) 18 if (F(u) < f(xV)) then
+F - (Xry — Xrg) (15 10 Y =y (Greedy selection.
. I
where the indexesy, d = 1,2,...,5 represent the random ¢ Sxe +1) _(®
I

and mutually different integers generated within the range,,. end if
[1,P] and and also different from indéxF is a mutation 3. gnd for

scale factor within the rangl@, 2]. xggst is the best vector  24: until Termination criteria are satisfied.

in the population in the current generation

4.2 Crossover operator 4.4 Differential evolution algorithm

In this subsection, we highlight the main steps of the DE

A crossover operator starts after mutation in order to ; . . . .
b algorithm which are depicted in Algorithéh

generate a trail vector according to target vectoand

mutant vectow; as follows: —Step 1.The algorithm starts by setting the initial values

of the iteration parametérmutation scale factdf and

, S crossover factolines(1,2)
T < = - o
Uij = {V“J’ i randFO, D)< CRor | = jrand, (16) —Step 2.The initial population is generated and each
Xj, otherwise. solution in the population is evaluated by calculating

) its fitness functionLines(3,4)

where CR is a crossover control parameter or factor _gtep 3.The algorithm starts its main loop by selecting

within the range[0,1] and presents the probability of three different solutions;; from the population, where

creating parameters for a trial vector from the mutant r1 =, rain order to apply mutation operator at each

vector. Indexj;ang is @ randomly chosen integer within solution in the population as il {) and @5).

the range1, P]. —Step 4.The trail solutions are randomly generated

after applying the crossover operator by comparing
each variable in the trail solution (after applying

4.3 Selection operator mutation operator) and its corresponding variable in
the original solution, then the new solution is
generated with new variables if its fithess function is
better than the corresponding variables in the original
solution.Lines (11-17)

—Step 5.The trail solutions that generated from the
crossover operator are accepted to participate in the
next iteration if their fitness function are better than
the original solutions in the population, this kind of

The DE algorithm applies greedy selection. The selection
operator selects between the trails and targets vectors.
The selected individual (solution) is the best vector with
the better fitness value. We present the description of the
selection operator as follows.

® (t) (t) selection is called greedy selectidines (18-22)
xi(”l) = {ui UL .) = fix7), a7) —Step 6. The overall process is repeated until the
Xi,  otherwise. termination criteria are satisfietine (24).
(@© 2016 NSP
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5 Population size reduction mechanism

The proposed population size reduction mechanism
(PSRM) helps the proposed algorithm to accelerate the

search and explore the search space. In the first stage,

iterations of the algorithm with large number of solutions
in the population will be reduced during the search since
the need of the exploration process is decreased while the
need of exploitation process is increased.The PSRM

—Step 3.The fitness function of each solution in the
population is calculated and the best overall solution
value is assigned tgbest Lines (4,5).

—Step 4. The popred variable is calculated and
determined the number of the worst solutions which
are removed from the population as soon as the subset
with zero value in the progress vector converted to
one.Line 6

depends on the following two techniques

—balancing between the exploration and exploitation

during the search process
—Apply automatic termination criterion by using a
zero’'s vectorV to monitor the progress of the

algorithm and terminate the search when all subset in

V Convert from zero’s to one’s.

The main steps of the proposed PSRM mechanism are

presented in Algorithn3 and Figurel.

Algorithm 3 Population size reduction mechanism

1: Setthe values gbartno, popsize

: Set the reduction count#r:= 0.

. Set the initial value of reduction vectdf, whereV =
zerd 1, partno).

. Evaluate all individuals in the populatidhand assign the
global best solutioGbestin the population.

. SetPRP= gbest

: Setpopred= popsizé¢part,o

. SetRF = (Gbest— optsol)/ partno.

: for (i=1;i < partyo;i ++) do

SetPRP=PRP-RF

10:  Setlist(i) = PRP

11: end for

12: repeat

13:  SetkK =1

14:  if (Gbest< List(K)) then

15: Evaluate and sort the populatiBn

16: Remove the worstpopred solutions from the
population

17: Setpopsize= popsize- popred{Greedy selectior}

18: Update the populatioR

19: Setv(1L,K)=1

20: SetK =K +1

21: endif

22: until popsize< popred

We can describe the main steps in Algoriti8nas
follows.

—Step 1. The PSRM algorithm starts by setting the
values of part,,, popsize and reduction counteK.
Lines(1,2)

—Step 5.The reduction scale is assigned by using a
reduction factoRF, which is calculated by dividing
the subtracting of the initialGbest value from the
optimal solution (given with each tested function) by
the number of partition numbepart,o. Line 7.

—Step 6. After assigning the scale of reduction, the
population reduction point$®RP are assigned and
saved in a list in order to know at which function
value the algorithm has to reduce the number of the
population and update the subset in the progress
vector from zero to ondines (8-11)

—Step 7.The algorithm starts to monitor the progress
of the search, checks thlgbestwith the currentPRP
in the list, and applies the greedy selection on the
population in order to remove the worst solutions
from the population. The progress vector monitors the
search progress and terminates the search when its all
subsets values converted from zeros to ones and the
population is updatedLines (12-22)

In Figurel, we give an example whepart,o = 5 to
explain the PSRM algorithm. There are 5 stages in order
to reduce the population sifrom Py to P, whereP; is
the full population size anB is the minimum population
size after removing all worst solutions. As shown in
Figure 1, the progress vector is initialized with zeros
subsets and each subset value convert to one when the
population size reduced. The overall process is repeated
until all the progress vector subsets converted to ones,
then the algorithm is terminated and search is stopped.
Finally, the algorithm produces the best solution "Best”.

6 The proposed HPSODEPSR algorithm

In this section, we present in details the main steps of the
proposed HPSODEPSR algorithm as shown in Algorithm
4 and the Flowchart in Figure. Before we give a
description of the main steps of the proposed algorithm,
we highlight on how the proposed algorithm can handle
the constraints when the variables violate the constraints

6.1 Constraints handling

—Step 2.The PSRM algorithm uses a special zero vector

with size(1, partyo), called progress vectdt, in order

to monitor the progress of the search and terminate thé!
search as soon as all subsets converted from zeros i the variable value X i

ones.Line 3.

All particles positions and velocities in the populatioe ar
pdated when we use the PSO algorithm. At each patrticle
U violates the boundary
constraints the violated variable value reflected back from

(@© 2016 NSP
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Fig. 1: Population size reduction mechanism

the violated boundary as follova§].

t1) {o 504, +Lis i X,
N i
05(x‘( )+UJ, if xtm)
where L,U are the lower and upper bound for each
function.

At each iteration, the best personal partigdestare
saved in a list, then the DE mutation operator starts to
update these particles in order to improve their positions
(values) by generating a trail solutio e If the
variable in eachpbest particle (solution) violates the
boundary constraints, then the violated variable value
reflected back from the violated boundary as follo®3] [

<Lj7

(
% > Uj,

(18)

L it (r<05)n <z‘( ) <L)
Ui if (r<05)A ( Uj),

(t) _ i (i)~

4 2Lj—-2;; if (r>05)A(F ) Lj), (19)
ZUj—Zt(i’j) if (r>05A ( Uj),

wherer is a uniform distributed random number and
reio,1].

6.2 The proposed HPSODEPSR algorithm

In the following subsection, we describe the proposed
algorithm in more details as follows.

—Step 1.HPSODEPSR algorithm starts with the initial
values of the acceleration constactg®ndc,, mutation
scale factof, partitions numbepomo, and the initial
value of the iteration countérLines (1,2)

—Step 2. The initial position and velocity for each
solution (particle) in the population (swarm) is
generated randomly as id)(and 6). Lines (3,4)

—Step 3.Each solution in the population is evaluated by
calculating its corresponding fithess valfig ). Line
5

—Step 4.The best personal solutiggbestand the best
global solutiongbestare assigned.ines (6,7)

—Step 5.The following steps are repeated until the
termination criterion satisfied

Step 5.1.At each iteratiort, the position of each

particlex(t 2 isjustified as inT), while the velocity of

each par'ucle/ Vis justified as in ). Lines (10,11)

Step 5.2.At each variable in SO|utIOin(t+1), if

the variable violate the constraints, then the violated
variables are reflected back as Ir8). Line 12

Step 5.3.The DE mutation is applied on each best
personal solutiorpbestin the population and the trail
solutions are generateldines (13, 14)

Step 5.4.The new trail solution is assigned to the
personal best solatiopbestif its value is better than
the currenfpbest Lines (15-19)

—Step 6.The variables on eacpbestin the personal
best solution list are reflected back as i9)(if their
values violate the constraintsne 20

—Step 7. The population size reduction mechanism
PSRM as shown in Algorithr is applied in order to
reduce the population size when the proposed
algorithm produce progress during the searcine
22

—Step 8.f all subsets in the progress vecibconverted
to ones instead of zeros, the algorithm terminates the
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Algorithm 4 Hybrid particle swarm optimization and
deferential evolution with population size reduction
algorithm

1. Set the values of the acceleration constamtsand cp,
amplification factof and partitions numbepo pho.

2: Sett :=0.

3: Generate the initial population (swarrm)andxft) particles
(solutions).

4: Generate (randomly) the velociqf}) of each patrticle in the
population, whereg,v; € [L,U] andi =1,...,P. {P is the
population (swarm) siZe

5: Evaluate the fitness functidr(xi(t)).

6: Setgbesft). {gbestis the best global solution in the swafm

7. Set pbesift). {pbesift) is the best local solution in the

swarm.

8: repeat

9: for (i=0;i <P;i++) do

10: Vi(t+1> = Vi<t) + C1rip X (pbesift) — Xim) + Cplip X
(gbest— xi(t)). {r1,ro are random vectors [0, 1]}.

11 xi(Hl) = xim +vi<t+l), i=1,...,P. {Update particles
positiong.

12: Check variables violation as shown in Equati@én

13: Apply a DE mutation operator dhbesﬁ”l) for each
particlexf”l) on the population.

14: Set the trail vectouf”l) equal to the DE mutation
output

15: if u"™ < pbesf ™ then

16: SethesIEtH) = ui(Hl)

17: else

18: Sethesﬁ”l) = pbesﬁt“)

19: end if

20: Check the variable violation on each variable on the
pbesﬁ”l) asin (L9).

21: end for

22:  Apply the population size reduction mechanism as shown

in Algorithm 3.
23:  Set =t+1. {lteration counter increasirfg
24: until Termination criteria are satisfied.
25: Produce the best particle.

search and the best solution is presented. Otherwise th

of the comparative algorithms are taken from their

original papers. In the following subsections, the

parameter setting of the proposed algorithm in more
details and the properties of the applied test functions
have been reported. Also, the performance analysis of the
proposed algorithm is presented with the comparative
results against the other algorithms.

7.1 Parameter setting

The parameters of the HPSODEPSR algorithm have been
summarized with their assigned values in Tahle

Table 1: Parameter setting.

Parameters  Definitions Values
P population size 60
Partno partition numbers 4
PRS population reduction scale P/partho
C1 acceleration constant for

cognition part 0.5
C2 acceleration constant for social part 15
F amplification factor 0.7
o) equality constraint constant 0.00001
maX, maximum iteration number 3000

—Population sizeP. The experimental tests show that
the best population size ¥ = 60¢ Note that
increasing this number, it will increase the evaluation
function values without any improvement in the
obtained results.

—Partitions number Part,o.Part,o is the maximum
number of partitions that the proposed algorithm
applied on the population. The experimental results
show that the best number of the applied partitions is
4. The general performance of the proposed algorithm
with different population partitioning number is
reported in Tabl&.

—Population reduction scale PRS The proposed

e algorithm applies the greedy selection where the

algorithm terminates the search when it reaches to the  WOrst solutions in the population are discarded while

standard termination criterion which is the maximum
number of iterations.

7 Numerical experiments

In order to investigate the efficiency of the HPSODEPSR,
we present the general performance of it by applying
HPSODEPSR on 5 engineering optimization problems

the best solutions will be remained to the next
iterations. The population reduction scaleRS
controls the number of the of discarded solutions
while it is equal to the number of the population
size/the number of partitions.

—Acceleration constantc; and c,. The parameters;
andc, are acceleration constants, they are a weighting
stochastic acceleration, which pull each particle
towards personal best and global best positions. We
set the values af; andc; to 0.5 and 1.5, respectively.

and 11 benchmark functions. The results of the proposed —Mutation scale factor F is an mutation factor in the
algorithm have been compared against 7 algorithms. mutation operator of the deferential evolution

HPSODEPSR was programmed by MATLAB, the results

algorithm.
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Set the initial values of the PSO
and DE parameters

v

[ Set the initial counter t =0

v

[ Generate an initial population

ptt randomly

Apply PSO algorithm on plt

y

e ™

Set the global best (gbest) and
personal best (Pbest) of M

!

Set a Pbest list LP™

&

Apply DE algorithm on LP

(t)

R

[t

Evaluate the population P

Population

reduction criteria

Set t=t+1 J
satisfied?

Termination

Reduce the population size

criteria satisfied?

[ Present the best solution

Fig. 2: HPSODEPSR flowchart
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—Equality constraint constant & All equality
constraints have been converted into inequality by
using the degree of violatiod = 0.0001. o 5

—Maximum iteration number max,. HPSOAC Maximize §(x)= (Z”) 'l_lXi
terminates the search by applying two termination . =
criteria. The first one is when the population vector Subject to
converted from zeros to ones while the second
termination criterion is the maximum number of

Test problem 3 This problem is defined by

iterations reaches to 3000.

7.2 Test constrained optimization problems

h(x) = iixiz— 1=0

wheren=10and 0< x; <10wheni=1,...,n.
The global maximum ig (x*) = 1.

Test problem 4. This problem is defined by

HPSODEPSR algorithm has been tested on 11lMinimize ﬁ(x):5.358543<§+0.835689k1x5

constrained optimization functions. These functions are

listed as the following.
Test problem 1 This problem is defined by

4 4 13
Minimize f(x) = Silei — 5;1)(1.2 _ izgxi

Subject to

(%)
(%)
03(X) = 2%+ 2X3 + X711+ X12— 10< 0
04(X) = —8x1+%10<0
O5(X) = —8%+x11<0
O(X) = —8x3+%12<0
07(X) = —2X4 — X5+ %10 < 0
O8(X) = —2X6 — X7+ %11 <0
Jo(X) = —2Xg —X9+X12< 0

where 0< x <1 wheni =1,...,9, 0< x < 100 when
i=10,11,12 and 0< x13 < 1.

The global minimum is
x*=1(1,1,1,1,1,1,1,11 3,3,3,1) wheref(x*) = —15.

Test problem 2 This problem is defined by

Maximize §(x

)= ‘ 313 c08' (%) — 2L, cOg (%) ‘

\/ 2L ix?
Subject to

n
01(x) =0.75—[]x <0
I
n
0XxX)=3Y x—-75n<0
2

wheren=20and 0< x; <10whnei =1,...,n.

+37.29323%; — 40792141
Subject to
01(X) = 85.3344074+ 0.005685% x5
+0.000626Z1x4 4 0.00220533%5
<92
g2(x) = —85.3344074 0.0056858,xs
—0.000626Z1X4 + 0.00220533%s
<0
=80.512494-0.007131%x5
+0.002995%;x, + 0.00218133
—-110<0
ga(X) = —80.51249—-0.007131%yx5
—0.002995%;x; — 0.00218133
+90<0
= 9.300961+ 0.00470263%5
+0.001254%;x3 + 0.001908%3%4
—-25<0
gs(X) = —9.300961— 0.00470263x5
—0.001254%;x3 — 0.001908%3X4
+20<0

g3(x)

5(x)

where 78< x; < 102, 33< xp < 45 and 27< x; < 45
wheni = 3,4,5.
The global minimum igf (x*) = —30665539.

Test problem 6. This problem is defined by

Minimize §(X) = (x1 — 10)%+ (xo — 20)°

Subject to
g1(X) = —(x¢ —5)2— (x2—5)2+100< 0
92(X) = (x¢ — 6)%+ (x2—5)2—82.81<0

The global maximum is unknown; the best reportedwhere 13< x; < 100 and 0< x; < 100. The global

solution isf (x*) = 0.803619

minimum is f (x*) = —696181388.
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Test problem 7. This problem is defined by
Minimize f(X) = X¢ 4 X3+ Xyx2 — 14x1 — 16x2
+ (X3 — 10)? 4+ 4(x4 — 5)% + (x5 — 3)?
+2(X6 — 1)? +5x5 4 7(xg — 11)?
+2(xg — 10)2+ (X0 — 7)2+ 45.

Subject to
01(X) = —105+4x; 4 5% — 3x7+ 9% < 0
gz(X) = 10X — 8% — 17x7+2Xg < 0
03(X) = —8x1 4+ 2X2+ 5xg — 2x30—12< 0
9a(x) = 3(x1 — 2)2+4(x2 — 3)>+ 24

—7x4—120<0
O5(X) = 5x2 + 8%+ (X3 — 6)2 — 2x4 —40< 0
Js(X) = X6 4 2(xp — 2)2 — 2x1%0 + 14xs
—6Xs <0
g7(X) = 0.5(x1 — 8)% + 2(x2 — 4)? + 3¢
—X—30<0
gs(X) = —3%1 46X+ 12(xg — 8)2 — Tx30< 0

where—10<x < 10where =1,2,...,10.
The global minimum igf (x*) = 24.3062091.

Test problem 8 This problem is defined by

Minimize §(x) = si@(i;))(;)—skizi?nxz)
1

Subject to
01(X) =X —%+1<0
92(X) = 1—x1+ (% —4)?<0

where—10< x; < 10 and 0< x, < 10.
The global minimumf (x*) = 0.095825.

Test problem 9. This problem is defined by
Minimize  §(X) = (X1 — 10)?>+5(xp — 12)2
X3+ 3(x4— 112+ 10E + 72,
+X5 — 4xgx7 — 10x — 8%7
Subject to
01(X) = —127+ 2 + 33 + X3
+4x5+5x5 < 0
02(X) = —282+ 7x1+ 3x2 + 10x3

+X4—x<0

93(X) = —196+ 23x; + X3+ 6X3
—8x7 <0

9a(X) = 4x2x5 — 3xqXo + 2%3
+5x5 — 11x7 < 0

where—10<x; <10fori=1,2,...,7.
The global minimumf (x*) = 680.6300573.

Test problem 1Q This problem is defined by

Minimize  fip(X) = X1+ X2+ X3
Subject to

gda(X) = —xyXg +8333325%, + 100x;
—83333333< 0
O5(X) = —XoX7+ 12506 + XoXq — 1250¢4 < 0
Os(X) = —X3xg+ 12500004+ X3x5 — 2500 < 0
where —100 < x; < 10,000 and 1000< x < 10,000

wheni =2.3,...,8.
The global minimumf (x*) = 7049248021.

Test problem 11 This problem is defined by

Minimize  fi1(X) = X + (xo — 1)?

Subject to
h(x)= x2—x2=0

Where—-1<x; <land-1<x, <1.
The global minimumf (x*) = 0.75.

Test problem 12 This problem is defined by

_ 100- (4~ 52— (-5~ (x3-5)2

Minimize  f(X) 100

Subject to
90 = (xa—p)®+(x2 — )%+ (xg—w)*>—0.0625< 0

where 0< x < 10 when i = 1,23 and
p,gw=12...=12...,9.
The global minimumf (x*) = 1.

7.3 The general performance of the proposed
HPSODEPSR algorithm with constrained
optimization problems

The general performance of the proposed HPSOAC
algorithm has been investigated by testing it on 11 test
benchmark functions which are reported in TaBleThe
best, average (mean), worst, standard deviation (SD) of
the function values and the average of function evaluation
values (FFEs) are reported over 100 runs. The general
performance of the proposed algorithm with 6 benchmark
function (randomly picked) are shown in FiguB by
plotting the values of function values versus the number
of iterations. The results in Tabl@, show that the
proposed algorithm can obtain the optimal or near optimal
solution within small number of function evaluations
values when compared with other algorithms as shown in
the next subsection. Figur88 shows the general
performance of HPSODEPSR algorithm for functidas
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Table 2: The general performance of the proposed HPSODEPSR algowith constrained optimization problems

Function Best Mean Worst SD FFEs
f1 -15 -15 -15 9%5% Y 35,040
fa -0.80361598 -0.8036149 -0.788415456 .23 2 90,195
fa -1.0050 -1.0050100 -0.9999109 43e° 90,285
fa -30665.5387 -30665.5387 -30665.53887 .142°1? 12,180
fe -6961.81388 -6961.81388 -6961.81386 .31&° 91,635
f7 24.3062091 24.3062109 24.30620111 .15 90,495
fg -0.095825041  -0.095825037  -0.095825041 .32&8 1540

fo 680.6300574 680.6300574 680.63005739 .758°° 57,660
f10 7049.248146 7049.248021 7049.248221 .83 8 90,195
f11 0.749999 0.749999 0.749999 18e”7 16,440
f12 1 1 1 0.00 3180

fa, f4, fs, f11, f12. We can conclude from Figure that deviation are reported over 100 runs. Increasing the
the function values of the proposed HPSODEPSR rapidlynumber of partitions more than 4 means the number of
decrease as the number of iterations increases and ththe applied solution in the exploitation process are small
hybridization between the particle swarm optimization and not enough to focus the search around the promising
algorithm and the deferential evolution mutation operatorsolutions. On the other side, decreasing the number of the
with the population size reduction mechanism canpartitions numbers means reducing the number of the
accelerate the search and helps the algorithm to obtain theolution in early stage of the algorithm which effect on
optimal or near optimal solution in reasonable time. the exploration process that needs big number of
solutions in the first stages of the algorithm. The best
value is reported witlbold facetext. The results in Table

7.4 The efficiency of the population size 3 show that the best partition size is equal to 4.
reduction mechanism

The idea of the population size reduction mechanism Was7'5 HPSODEPSR and other algorithms

inspired from the cooling schedule and temperature
reduction value in the simulated annealing (SA) algorithm
[19]. In SA algorithm, there is a direct relation between
the quality of the generated trail solutions and the spee
of the cooling schedule. If the temperature is slowly
decreased, better solutions are obtained, but hig
computation time is obtained, on the other side, a fast —PSO-DE [22]. An algorithm that integrates particle
decrement rule causes increasing the probability of being swarm optimization (PSO) with differential evolution
trapped in a local minimum. The HPSODEPSR starts the  (DE) to solve constrained numerical and engineering
search with the whole population size in order to make a  optimization problems. DE is incorporated into
wide exploration which needs big number of solutionsto  update the previous best positions of particles to force
search in the search space. During the search, the PSO jump out of stagnation, because of its strong
exploration process decreases and the exploitation searching ability. The hybrid algorithm speeds up the
process increases by focus the search around the convergence and improves the algorithm’s
promising solutions and the needs of the big number of performance.

solutions decreases. The balancing between the —CRGA [1].Changing Range-based GA (CRGA): This
exploration and exploitation process is very importantand  algorithm adaptively shifts and shrinks the size of the
depends on the number of applied solutions in the search space of the feasible region by employing
population. The experimental results show that the best feasible and infeasible solutions in the population to
number of applied partitions is 4, which means there are 4  reach the global optimum.

stages (calling) for applying population size reduction —SAPF[32]. Self-Adaptive Penalty Function (SAPF) is
mechanism to reduce the population size as shown in an algorithm for solving constrained optimization
Table 3. In Table 3, the mean (average) and standard  problems using genetic algorithms. In SAPF, a new

In order to investigate the performance of the proposed
HPSODEPSR algorithm, we compare it with seven
é)enchmark algorithms. Before discussing the comparison
results of all algorithms, we present a brief description
Ig:\bout the comparative seven algorithms as the following.
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Fig. 3: The general performance of the proposed HPSODEPSR algowith constrained optimization problems.

fithess value, called distance value, in the normalized distribution to generate the accelerating coefficients of
fithess-constraint violation space, and two penalty PSO.

values are applied to infeasible individuals so that the —-SMES [25]. This algorithm uses a simple diversity
algorithm would be able to identify the best infeasible =~ mechanism based on allowing infeasible solutions to
individuals in the current population. remain in the population instead of using a penalty
—CDE [13. A differential evolution algorithm based function. It uses a simple diversity mechanism based
on a co-evolution mechanism, is proposed to solve the on allowing infeasible solutions to remain in the
constrained problems. First, a special penalty function  population. This technique helps the algorithm to find
is designed to handle the constraints. Second, a the global optimum despite reaching reasonably fast
co-evolution model is presented and differential  the feasible region of the search space.

evolution (DE) is employed to perform evolutionary

search in spaces of both solutions and penalty factors. )
—CULDE [2]. A cultural algorithm with a differential ~ 7-5-1 Comparison between PSO-DE,CRGA,SAPF,CDE,

evolution population is proposed in this paper. This CULDE, CPSO-GD,SMES and HPSODEPSR

cultural algorithm uses different knowledge sources Oh order to verify the efficiency of the HPSODEPSR
mfluence the variation operator of the differential algorithm, we compare it against seven algorithms. The
?;/olunonfalg(t)_nthm, |n|orq[.er to reduc_e tge tnumbbetr .Of best, mean, worst computational cost (number of function
clonrﬁzsétiti\lljen(r:elggltseva uations required 1o obtan o\ 51yations FFEs) are reported over 100 runs in Tdble
. The proposed algorithm requires from 1540 to 91,635
_CPSO'GP [21). .An a'go”thm . bgsed ON EEEs to obtain the reported results in Tablas shown in
Co-evolytlonary parltlcle.z swarm optimization to solve Table 2, while the other reported results for the PSO-DE
constrained optimization problems formulated asrequire' from 10,600 to 140,100 FFEs, 500,00 FFEs by
min-max problems. In standard particle swarm g\pe a10qrithm, 248,000 FFES by CDE, 100,100 FFES
optimization (PSO), a uniform probability distribution by CULDE and 240,000 FFEs by SMES algorithm. We
Is used to generate random numbers for thecan conclude from the results in Tablg that the

acceleractilngIcoef[frl]ments of the Io((;:al anq glObalg"JPteHPSODEPSR can obtain the optimal or near optimal
proposed. aigorithm, USes a aussian  probabllilys tion faster than the other algorithms.
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Table 3: The efficiency of the population size reduction mechanism

Part,, = 2 Part,, = 3 Part,, = 4 Part,, =5
f Mean Std. Mean Std. Mean Std. Mean Std.
f -14.79999145 0.6 -14.9999999 BDie® 15 9.5% 9 15 72e 9
f, -0.802721064  Ze 3 -0.80353757 Qe -0.8036149  1.23¢2 -0.790663954  T2e?
f3 -0.962237027  ®6e 2 -0.992436478  2Ale? -1.0050100  3.41e° -0.863857 e?
f -30665.53867 0.00 -30665.53867  2A3e° -30665.5387  2.14e712 -30665.5386  2A5e°
fo -6961.813872 D3 ® -6961.813874 2 ® -6961.81388  1.31e° -6961.81372 e
f; 24.30620907  96e 10 24.30620907 Dee S 243062109  1.1e® 24.30622538  H6e®
fg -0.095820081  23e° -0.095824866 2% ° -0.095825037 1.32¢8 -0.09582068  Bde®
fo 680.6300574  de® 680.6300574 B3 680.6300574 2.75¢7° 680.6300574  22¢°
fio 7049.248025  ®2° 7049.248021 Be 7049.248021  2.4e°® 7049.335286  l5e2
f11 0.749928102 &3 0.749999 Hle S 0.749999 3157 0.749999 085
f12 0.9999992081  31e™? 0.99999911  B69%© 1 0.00 0.99999907  Hle”’
Table 4: Comparison results of HPSOAC and other PSO-based algarithnproblemsf; — f12
Function PSO-DE CRGA SAPF CDE CULDE CPSO-GD  SMES HPSODEPSR
. Best -15.000000  -14.9977 -15.000 -15.0000 -15.000000 0-15.  -15.000 -15
Mean  -15.000000 -14.9850 -14.552 -15.0000 -14.999996  99%74. -15.000 -15
Worst  -15.000000  -14.9467 -13.097 -15.0000 -14.999993 .99 -15.000 -15
fp Best -0.8036145  -0.802959 -0.803202 -0.794669 -0.803619 A N -0.803601 -0.80361598
Mean -0.756678 -0.764494  -0.755798  -0.785480  -0.724886 NA -0.785238  -0.8036149
Worst  -0.6367995  -0.722109 -0.745712 -0.779837  -0.590908NA -0.751322 -0.788415456
fa Best -1.0050100  -0.9997 -1.000 NA -0.995413 NA -1.000 A000
Mean  -1.0050100  -0.9972 -0.964 NA -0.788635 NA -1.000 E: {00l
Worst  -1.0050100  -0.9931 -0.887 NA -0.639920 NA -1.000 909109
fa Best -30665.539  -30665.520  -30665.401  -30665.539  -36865. NA -30665.539  -30665.5387
Mean -30665.539 -30664.398 -30665.922 -30665.536 -36885. NA -30665.539  -30665.5387
Worst  -30665.539  -30660.313  -30656.471  -30665.509 -3B385 NA -6952.482 -30665.53887
fo Best -6961.8139  -6956.251 -6961.046 -6961.814  -6961.8139A -6961.284 -6961.81388
Mean -6961.8139  -6740.288 -6953.061 -6960.603 -6961.8139A -6961.284 -6961.81388
Worst  -6961.8139  -6077.123 -6943.304  -6901.285  -696D813NA -6952.482 -6961.81386
f; Best 24306210  25.746 27.328 NA 24306210  25.709 24.475 3082091
Mean  24.306210  25.746 27.328 NA 24306210  25.709 24.475 3082109
Worst  24.30622 27.381 33.095 NA 24.3062 27.166 24.843 BRQR0L1
fg Best -0.095826 -0.095825 -0.095825 NA -0.095825 NA -0.0958 -0.095825041
Mean  -0.0958259  -0.095819 -0.095635 NA -0.095825 NA 8295  -0.095825037
Worst  -0.0958259  -0.095808 -0.092697 NA -0.095825 NA 5815 -0.095825041
fo Best 680.63006  680.726 680.773 680.771 680.63006  680.678 80.6& 680.6300574
Mean  680.63006  681.347 681.246 681.503 680.63006  680.7816:80.643 680.6300574
Worst  680.6301 682.965 682.081 685.144 680.6301 681.371 0.768 680.63005739
f10 Best 7049.2480  7114.743 7069.981 NA 7049.2481  7055.6 9031.  7049.248146
Mean  7049.2480  8785.149 7238.964 NA 7049.2483  8464.2 0253. 7049.248021
Worst ~ 7049.2482  10826.09 7489.406 NA 7049.2485 11,458 3688  7049.248221
f11 Best 0.749999 0.75 0.749 NA 0.749900 NA 0.75 0.749999
Mean  0.749999 0.752 0.751 NA 0.757995 NA 0.75 0.749999
Worst  0.750001 0.757 0.757 NA 0.796455 NA 0.75 0.749999
f1o Best 1.000000 -1.000000 -1.000000  -1.000000  -1.000000 NA 1.000 1
Mean  -1.000000 -1.000000 -0.99994 -1.000000 -1.000000 NA 1.000 1
Worst ~ -1.000000  -1.000000 -0.999548 -1.000000 -1.000000 A N -1.000 1
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7.6 Engineering optimization problems

In order to investigate the general performance of
HPSODEPSR on real world engineering optimization
problems, five well studied engineering design examples
have been selected and solved by the proposed algorithm.
HPSODEPSR has been applied with the engineering
optimization problems with the same parameter settings
which applied with the other 11 test problems. In the
following subsections, we highlight the five engineering
optimization problems.

7.6.1 Welded beam design problem

The aim of a welded beam design problem is to minimize

the cost of the welded beam structure which consists of a

beamA and the required weld to hold it to membBr , L
subject to constraints on shear strassbeam bending
stressd, buckling load on the baP., beam end deflection " L

0. The four design variables(x;),l(x2),t(x3) andb(xa) R R
are shown in Figuré. ——. S

Minimize  f(x) = 1.10472x, + 0.0481ax4(14.0+ X2
Subject to
01(X) = T(X) — Tmax< 0
O2(X) = 0(X) — Omax< 0 Fig. 5: Pressure vessel design problem
g3(X) =x1—x <0
94(X) = 0.10472¢ + 0.0481Msx4(14.0 + Xp)
-05<0 There are four design variables as shown in Fidrés
g5(x) = 0.125—x; <0 (x1, thickness of the shell)l, (x2, thickness of the head),
g6(X) = 3(X) — Fmax < 0 R (X3, inner radius) and. (x4, length of the cylindrical

section of the vessel without the head). and Ty, are
integer multiples of 0.0625iNR and L are continuous
variables.

97(X) =P- PC(X) <0
where the other parameters are defined as the following.

f(X) = 0.6224x3%4 + 1.778133 + 3.166 3¢ %,

2T'1"%o p
— AYA 7\2 e
T(x) = \/((T) H g T = N +19.84x3x3
Subject to
MR X2 xi+x3\2 X3
T — 5 M:P(L+§)7 R= ( 2 ) +ZZ 01(X) = —x1 +0.01933
= ) <
Y00 X% X1+ X3 2 6PL gg(X) Xzz-o 00954(33_ 0
I= 205|572 , o(x) = o 3(X) = —108xq — 4/370S + 1296000< 0
3 Qa(X) = X4 — 240< 0
4pL3 4.013,/EGXx8/36 3 [E
5(x) = L P = (1= S where 1< x; <99, 1< X <99, 10< x3 < 200 and 10<
Exax; L 2LV 4G X4 < 200.

whereP = 6000Ib,L = 14, dnax= 0.25in,E = 30,106 psi,
G =12,106 psi,Tmax= 13,600psi,0max= 30,000 psi and

0.1< x < 10.0 wheni = 1,2, 3,4.

7.6.2 Pressure vessel design problem

7.6.3 Speed reducer design problem

The objective of a speed reducer problem is to minimize a
gear box volume and weight subject to several constrains
as shown in Figuré. There are seven design variables

In this problem, a cylindrical vessel is capped at bothx; — X7, which describe as follow; is a width of the gear
ends by hemispherical heads and the objective is tdace (cm),x, teeth module (cm)xz number of pinion
minimize the total cost of material, forming and welding. teeth,x, shaft 1 length between bearings (cixy,shaft 2
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" | /j D
1 o

Fig. 7: Tension compression spring problem

7.6.4 Three-bar truss design problem

The objective of this application is to minimize the
Fig. 6: Speed reducer design problem weight f(x) of three bar truss subject to some constrains
as follows.

f(x) = (2vV2x1+x2) x |

length between bearing (cnys diameter of shaft 1 (cm) Subject to
andx; diameter of shaft 2 (cm). g1(x) = V2X1 4 %o b <0
' V22 + 2x1%; -
f(x) = 0.78547x5(3.33334 + 14.9334 " o 5 0
X)= —=—F——"—P-0<
—43.0934 9% V2X2 + 2X1 %o B
—1.508¢ (G +X8) + 7.4TTTE +3) 1, 0
X)=———P-0<
+0.7854x4X2 + X5X2) 93(x) 2%+ X1 =
Subject to
) 27 where 0< x; <1 and 0< x <1, | =100 cm,
9(x) = ——p-—1<0 P = 2kN/cn? and ¢ = 2kN/cn?. The minimum
17273 weighted structure should be achieved by determining the
02 (X) = 3975 1<0 optimal cross-sectional aregg andx,.
X xexg T
1.93¢
gg(X): XXgX4_1§O . ] )
2 3); 7.7 Tension compression spring problem
1.93¢
= —-1<0
94(x) xodig 1S

In this problem, we need to minimize the weidtk) of a
gs(X) = (7454 /%2%3)* + 169 x 10°°5 1<0 tension compression spring design subject to constraints

1100x¢ on minimum deflection, shear stress, surge frequency,
745 2., 15759% 100105 limits on outside diameter and on design variable. The
96(X) = I 5/X2X3)8;OX3 <107 —1<0 mean coil diameteD(x;), the wire diameted(x;) and
T the number of active coilB(xz are the design variables as
X2X3 A
g7(x) = ﬁ—lgo shown in Figure/.
gs(X) = % -1<0 f(X) = (Xg+2)x¢
xll Subject to
Go(X) = 120 1<0 ) X3X3
1(X) =1— <
d10(X) = 1.5X6X4+ 19 1<0 71785(11
A%2 — X1% 1
11x7+1.9 X) = 2 + —1<0
gu(x) = ;75 -1<0 (20) %2() 12566%%5 —x) ~ 5108¢
14045x;
where 26 < x; < 3.6,07 < x, < 0.8, 17< x5 < 28, 73 < %) =1 =0

X4 <83,7.3<x5<83,29<x5<39,and5< x; <55
where 005< x; <2,025<x < 1.3 and 2< x3 < 15.
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Fig. 8: The general performance of the proposed HPSODEPSR algowith engineering optimization problems

Table 5: The general performance (function evaluations) of HPSOBERith engineering optimization problems

Design problem Best Mean Worst Std

Welded beam design 24,690 26,062.5 28,110 1452.111
Pressure vessel design 11,385  14,591.25 16,620 2242.70
Speed reducer design 91,335 90,195 92,055 806.4738
Three-bar truss design 9390 10,062 10,500  410,5728
A tension/compression 20,640 24,174 26,220 2321.795

spring design

Table 6: The general performance (function values) of HPSODEPSRevigineering optimization problems

Design problem Best

Mean

Worst Std

2.380957153
6059.714335
2.99447106614
263.89584338

0.012665233

Welded beam design
Pressure vessel design
Speed reducer design
Three-bar truss design
A tension/compression
spring design

2.380957168
6059.714335
2.99447106614
263.89584338

0.012665233

2.380957192 .8225&
60585143 45423 12
230884 0.00
264838 35427% 11

0.0188%52 577594 12

7.7.1 The general performance of the proposed
HPSODEPSR algorithm with engineering optimization
problems

runs in Table$ and6 respectively. We can conclude from
Figure8, Tables5 and6 that the proposed algorithm can
obtain optimal or near optimal solutions in reasonable
time.

The general performance of the proposed HPSODEPSR

algorithm

is tested on 5 engineering optimization

problems shown in Figur8 by plotting the number of

8 Conclusion

iterations versus the number of function values. The best
mean worst and standard deviation of the functionin this paper, we propose a novel hybrid particle swarm
evaluations and function values are reported over 10@ptimization and differential evolution algorithm in orde
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to solve constrained optimization problems and a real life [8] E. A. Gandelli, F. Grimaccia, M. Mussetta, P. Pirinolican
engineering optimization problems. The proposed R. E. Zich, Genetical swarm optimization: an evolutionary
algorithm applies a new population size reduction algorithm for antenna design, Journal of AUTOMATIKA,
mechanism (PSRM) in order to balance between the Vol. 47, (3-4), pp. 105-112, 2006.
exploration and exploitation process by starting the searc [9] E. A. Gandelli, F. Grimaccia, M. Mussetta, P. Pirinoli, R
in early stage with large number of solutions in the Zich, Development and validation of different hybridizati
population and during the search the number of theses Strategies between GA and PSO, Proceedings of the IEEE
solutions decreases. Also in the proposed algorithm, we ggggress on Evolutionary Computation, pp. 2782-2787,
tried to avoid terminating the search with the traditional S . L s
termination criterion like number of iterations, but we [10]E. A. _Gr|mald|, F. Gn_mama, M. Mussetta, P. _P|r|nol|,
proposed the progress vectd as a new automatic R.E. Zich, A new h_yb_rld genetlcal swarm algorithm for
termination criterion instead of letting the algorithm electromagnetic optimization, Proceedings of Intermatio
. . . . . . . Conference on Computational Electromagnetics and its
running with more |terzf\t|ons'W|thout any improvementin Applications, Beijing, China, pp. 157-160, 2004.
the results. In order to investigate the general performanc 11]Q. He and L. Wang, An effective co-evolutionary
of the proposed algorithm, we tested the propose particle swarm optimization for constrained engineering
algorithm on eleven benchmark functions and five real  gesign problems, Engineering Application of Artificial
life engineering optimization problems and compared Intelligence, Vol. 20, No. 1, pp.89-99, 2007.
against seven algorithms. Our numerical experimentaf12] Q. He and L. Wang, A hybrid particle swarm optimization
results show that the proposed algorithm is a promising  with a feasibility-based rule for constrained optimizatio
algorithm and can solve the constrained optimization  Applied Mathematics and Computation, Vol. 186, No. 2, pp.
problems with high performance in reasonable time. 1407-1422, 2007.
[13]F.Z. Huang, L. Wang and Q. He, An effective co-
evolutionary differential  evolution for constrained
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