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Abstract: In this paper, we present a new hybrid swarm optimization anddifferential evolution algorithm for solving constrainedand
engineering optimization problems. The proposed algorithm is called hybrid particle swarm optimization and differential evolution with
population size reduction (HPSODEPSR). The powerful performance of any metaheuristics algorithm is measured by its capability to
balance between the exploration and exploitation process.In the beginning of the search, the algorithm needs to explore the search
space with a large number of solutions in the population thenduring the search the need of the exploration process is reduces while
the need of the exposition process increases. From this point, we propose a population size reduction mechanism (PSRM),in PSRM,
the proposed algorithm starts with a large number of solutions in the population and during the search the number of thesesolutions
decreases after applying the greedy selection operator in order to remove the worst solutions from the population. Also, we propose
a new automatic termination criterion which is called a progress vectorV. V is a (1× n) zero vector, wheren equal to the number
of population partitions and contains of a number of subsetsequal to the number of population reduction steps (partitions), when the
population reduced, the corresponding subset value in V converted to one. The algorithm terminates the search when all subsets values
in the progress vector become ones. Moreover, we test the proposed algorithm on eleven benchmark functions and five engineering
optimization problems. We compare our proposed algorithm against seven algorithms in order to investigate the generalperformance of
it. The numerical experiments show that the proposed algorithm is a promising algorithm and can reach to the optimal or near optimal
solution faster than the other comparative algorithms.

Keywords: Particle swarm optimization, differential evolution, constrained/engineering optimization problems, populationsize
reduction, global optimization

1 Introduction

In 1995, James Kennedy and Russell C. Eberhart [17]
proposed the particle swarm optimization (PSO)
algorithm for optimization problems. PSO is a
population-based search algorithm based on the
simulation of the social behavior of birds within a flock.

Due to its simplicity, easy implementation, and
efficiency, PSO has attracted much attention by many
researchers and been successfully applied in a variety of
fields [3], [4], [23], [36], [37]. In the original version of
PSO, particles fly through the search space influenced by
two factors in order to find global optima: each
individual’s best position ever found (pbest) or local best

solution (lbest) and the group’s best position ever found
(global best solution denoted by gbest).

In gbest, all particles share information with each
other and move to global best position. However, gbest
has drawback, because it is easy to trapped in local
optima. In lbest, a specific number of particles are
neighbors to one particle, but it also has drawback, which
is the slow of convergence. In order to overcome these
drawbacks, many researchers tried to improve the
performance of PSO by combining it with other
algorithms, for example genetic algorithm (GA).

Robinson et al. [29] proposed two hybrid PSO and
GA algorithms for solving a particular electromagnetic
application of profiled corrugated horned antenna. The
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first algorithm is called GA-PSO, while the second
algorithm is called PSO-GA. In PSO-GA algorithm, PSO
generates an initial population for GA, while in GA-PSO
algorithm, the initial population is generated by using GA
for PSO. The final results showed that the PSOGA hybrid
algorithm outperforms the GA-PSO version as well as
simple PSO and GA versions.

Also, in [20], Krink and Lvbjerg hybridized PSO with
the GA and Hill Climbing approaches and was applied for
solving unconstrained global optimization problems. The
authors showed that the proposed algorithm can be applied
to a different sub-population of individuals in which each
individual is dynamically assigned according to some pre-
designed rules.

Grimaldi et al. [10] proposed a hybrid technique
combining GA and PSO called genetical swarm
optimization (GSO) for solving combinatorial
optimization problems. They applied GSO algorithm for
solving an electromagnetic optimization problem. In
GSO, the population is divided into two parts and is
evolved with the GA and PSO algorithms at each
iteration. The populations are then recombined in the
updated population, and divided again randomly into two
parts in the next iteration for another run of genetic or
particle swarm operators. In GSO, a new parameter HC
(or Hybridization Constant) has been defined that
expresses the percentage of population that is evolved
with GA in every iteration.

Gandelli et al. [9] proposed several hybridization
strategies (static, dynamic, alternate, self adaptive etc.)
for GSO algorithm and validated them with some
multimodal benchmark problems.

There are some applications of GSO that [7], [8] and
[9]. Juang [15] proposed another hybridization strategy of
PSO and GA (HGAPSO) to neural/fuzzy network design,
where the upper half of the best performing individuals in
a population is regarded as elite solutions. Before using
GA operators, the algorithm was first enhanced by means
of PSO, instead of being reproduced directly to the next
generation.

In [30], Settles and Soule proposed a breeding swarm
(BS) algorithm for solving four unconstrained
optimization problems with different dimensions by
hybrid GA and PSO. The BS algorithm combines the
standard velocity and position update rules of PSOs with
the GAs selection, crossover and mutation.

In [14], Jian and Chen introduced a PSO hybrid with
the GA recombination operator and dynamic linkage
discovery called PSO-RDL for solving 25 unconstrained
test problems with varying degrees of complexities. They
assumed that the relation between different dimensions is
dynamically changed along with the search process and
updated the linkage configuration according to the fitness
feedback.

Mohammadi and Jazaeri [26] proposed a hybrid
algorithm for solving an IEEE 68 bus system in which the
initial population for GA is generated by PSO. Esmin et
al. [6] proposed a HPSOM algorithm for solving

unconstrained global optimization problems by
combining PSO algorithm with a GA mutation operator
only.

Kim [18] proposed an improved GA, called GA-PSO
for obtaining the local and global optima of Foxhole
function by using PSO and the concept of Euclidean
distance. In GA-PSO, the performance of GA was
improved by using PSO and Euclidean data distance on
mutation procedure of GA. In the PSO-GA, Yang et al.
[35] proposed a hybrid evolutionary algorithm (HEA) for
solving 3 unconstrained as well as 3 constrained
optimization problems by dividing the evolution into two
stages. The first stage is similar to the standard PSO
algorithm. The second stage is similar to GA where
genetic operators of selection, reproduction, crossover,
and mutation are exerted on particles at predetermined
probability. They used a single point crossover, Gaussian
mutation and Roulette wheel for selection process.

In the last few years, many researchers have applied
PSO to solve constrained optimization problems (COPs)
because of its success in solving unconstrained
optimization problems. For example, Liang and
Suganthan [24] proposed a new dynamic multi-swarm
PSO with a novel constraint to solve COPs and Krohling
and Coelho [21] proposed a co-evolutionary PSO based
on Gaussian distribution for solving constrained
optimization by generating the acceleration coefficients
using Gaussian probability distribution.

He and Wang [11] proposed another co-evolution
PSO algorithm by coping it with both decision variables
and constraints. In this algorithm, the swarm is divided in
two parts: searching good solutions and optimizing
appropriate penalty factor, respectively. He and Wang
[12] proposed a hybrid PSO with feasibility-based rule
[5] by implementing the feasibility based rule to update
the personal best of each particle in the swarm and the
applied simulated annealing algorithm in order to avoid
premature convergence.

Pulido and Coello [28] proposed a simple mechanism
to handle constraints with PSO. In their proposed
mechanism if the particles compared are infeasible, the
best particle is the particle with the lower value in its
normalized violation of constraints.

Wang et al. [33] proposed a hybrid multi-swam
particle swarm optimization (HMPSO) for solving
constrained optimization problems by splitting the swarm
into several sub-swarms and each sub-swarm evolves
independently. HMPSO uses the feasibility based rule to
compare particles in the swarm.

Inspired by the paper in [33], we propose a new
hybrid particle swarm optimization and deferential
evolution algorithm to solve COPs. The proposed
algorithm is called hybrid particle swarm optimization
and differential evolution with population size reduction
(HPSODEPSR).

In the proposed algorithm, the particle swarm
optimization algorithm is used to explore the search space
while the DE mutation is used to update the best personal
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particle at each iteration. Also, we propose a new
population size reduction mechanism to control the
number of the particles during the search process. In the
beginning of the search, the algorithm needs to make
exploration process with large number of particles
(solutions) then during the search, the need of the
exploration is reduced and the need of the exploitation
increases which needs lower number of solutions. In order
to monitor the search process and control the population
reduction process, we propose a progress vectorV which
is a zero vector and each subset corresponds to population
reduction stage (partition). When the algorithm reaches to
the stage of getting the desired value, then the value of the
corresponding subset converted from zero to one and the
population size is reduced by applying the greedy
selection operator. Furthermore, we test the proposed
algorithm on eleven benchmark functions and compare
against seven algorithms. The experimental results show
that the proposed algorithm is a promising algorithm and
can obtain the optimal or near optimal solution in
reasonable time.

The rest of this paper is organized as follows. In
Section2, we present the definition of the constrained
optimization problem. We summarize the main concepts
of the particle swarm optimization and the differential
evolution algorithm in Section3 and 4, respectively. In
Section 5, we describe the population size reduction
mechanism. In Section6, we highlight the proposed
algorithm and its main structure. In Section7, we report
the experimental results and finally, the conclusion makes
up Section8.

2 Constrained optimization problems

The constrained optimization problems and constraint
handling is one of the most challenging in many
applications. A general form of a constrained
optimization is defined as follows:

Minimize f (x),x= (x1,x2, · · · ,xn)
T , (1)

Subject to

gi(x)≤ 0, i = 1, · · · ,m
h j(x) = 0, j = 1, · · · , l
xl ≤ xi ≤ xu

Where f (x) is the objective function,x is the vector ofn
variables,gi(x) ≤ 0 are inequality constraints,h j(x) = 0
are equality constraints,xl ,xu are variables bounds. Many
techniques were proposed in order to handle constraints.
Michalewicz [27] grouped them into the following
categories: penalty function technique; rejection of
infeasible solutions technique; repair algorithms
technique; specialized operators technique; and behavior
memory technique.

2.0.1 The Penalty function method

The penalty function method is used to transform the
constrained optimization problems to unconstrained
optimization problem by penalizing the constraints and
forming a new objective function as follows:

f (x) =

{

f (x) if x∈ feasible region
f (x)+ penalty(x) x 6∈ feasible region.

(2)

Where,

penalty(x)=

{

0 if no constraint is violated
1 otherwise.

There are two different types of points in the search space
of the constrained optimization problems (COP), namely,
feasible points which satisfy all constraints and infeasible
points which violate at least one of the constraints. At the
feasible points, the penalty function value is equal the
value of objective function, but at the infeasible points the
penalty function value is equal to a high value as in (2). In
this paper, a non stationary penalty function has been
used, which the values of the penalty function are
dynamically changed during the search process. A
general form of the penalty function is defined in [34] as
the following:

F(x) = f (x)+h(k)H(x), x∈ S⊂ R
n, (3)

where f (x) is the objective function,h(k) is a non
stationary (dynamically modified) penalty function,k is
the current iteration number andH(x) is a penalty factor.

3 Particle swarm optimization

In the following subsection, we will give the main
concepts and structure of the particle swarm optimization
algorithm.

3.1 Main concepts

Particle swarm optimization (PSO) is a population based
method that inspired from the behavior (information
exchange) of the birds in a swarm [16]. In PSO the
population is called a swarm and the individuals are
called particles. In the search space, each particle moves
with a velocity. The particle adapt his velocity due to the
information exchange between it and other neighbors. At
each iteration, the particle uses a memory in order to save
its best position and the overall best particles positions.
The best particle position is saved as a best local position,
which assigned to a neighborhood particles, while the
overall best particles position is saved as a best global
position, which assigned to all particles in the swarm.
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3.2 Particle movement and velocity

Each particle is represented by aD dimensional vectors,

xi = (xi1,xi2, . . . ,xiD) ∈ S. (4)

The velocity of the initial population is generated
randomly and each particle has the following initial
velocity:

vi = (vi1,vi2, . . . ,viD). (5)

The best local and global positions are assigned, where the
best local position encounter by each particle is defined as

pi = (pi1, pi2, . . . , piD) ∈ S. (6)

At each iteration, the particle adjust it’s personal position
according to the best local position (pbest) and the overall
(global) best position (gbest) among particles in its
neighborhood as fellow.

x(t+1)
i = x(t)i + v(t+1)

i , i = 1, . . . ,P (7)

v(t+1)
i = v(t)i + c1r i1× (pbest(t)i − x(t)i )

+c2r i2× (gbest− x(t)i ). (8)

where c1,c2 are two acceleration constants called
cognitive and social parameters,r1, r2 are random vector
∈ [0,1].

3.3 Particle swarm optimization algorithm

We can summarize the main steps of the PSO algorithm as
follows.

–Step 1.The algorithm starts with the initial values of
swarm size P, acceleration constantsc1 andc2.

–Step 2. The initial position and velocity of each
solution (particle) in the population (swarm) are
randomly generated as in (4) and (5).

–Step 3.Each solution in the population is evaluated by
calculating its corresponding fitness valuef (xi).

–Step 4.The best personal solutionpbestand the best
global solutiongbestare assigned.

–Step 5. The following steps are repeated until the
termination criterion is satisfied

Step 5.1.At each iterationt, the position of each
particlext

i is justified in (7), while the velocity of each
particlevt

i is justified in (8).
Step 5.2. Each solution in the population is

evaluated f (xi) and the new best personal solution
pbestand best global solutiongbestare assigned.

Step 5.3. The operation is repeated until the
termination criteria are satisfied.

–Step 6.Produce the best found solution so far.

Algorithm 1 Particle swarm optimization algorithm
1: Set the initial value of the swarm size SS, acceleration

constantsc1 andc2.
2: Sett := 0.
3: Generate randomx(t)i andv(t)i ∈ [L,U ] wherei = 1, . . . ,SS.

{SSis the population (swarm) size}.

4: Evaluate the fitness functionf (x(t)i ).
5: Setgbest(t). {gbestis the best global solution in the swarm}.

6: Set pbest(t)i . {pbest(t)i is the best local solution in the
swarm}.

7: repeat

8: v(t+1)
i = v(t)i +c1r i1× (pbest(t)i −x(t)i )+c2r i2× (gbest−

x(t)i ). {r1 andr2 are random vectors∈ [0,1]}.

9: x(t+1)
i = x(t)i + v(t+1)

i , i = 1, . . . ,SS. {Update particles
positions}.

10: Evaluate the fitness functionf (x(t+1)
i ), i = 1, . . . ,SS.

11: if f (x(t+1)
i )≤ f (pbest(t)i ) then

12: pbest(t+1)
i = x(t+1)

i .
13: else
14: pbest(t+1)

i = pbest(t)i .
15: end if
16: if x(t+1)

i ≤ f (gbest(t)) then

17: gbest(t+1) = x(t+1)
i .

18: else
19: gbest(t+1) = gbest(t).
20: end if
21: Sett = t +1. {Iteration counter increasing}.
22: until Termination criteria are satisfied.
23: Produce the best particle.

4 Differential evolution algorithm

Differential evolution algorithm (DE) was proposed by
Stron and Price in 1997 [31]. In DE, the initial population
consists of number of individuals, which is called a
population sizeP. Each individual in the population size
is a vector consists ofD dimensional variables and can be
defined as follows:

x(t)i = {x(t)i,1,x
(t)
i,2, . . . ,x

(t)
i,D}, i = 1,2, . . . ,P (9)

where t is a generation number,D is a problem
dimensional number andP is a population size. DE
employs mutation and crossover operators in order to
generate a trail vectors, then the selection operator starts
to select the individuals in new generationt+1. We
present in details the overall process as follows:

4.1 Mutation operator

Each vectorxi in the population size creates a trail mutant
vectorvi as follows.

v(t)i = {v(t)i,1,v
(t)
i,2, . . . ,x

(t)
i,D}, i = 1,2, . . . ,P. (10)
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DE applies different strategies to generate a mutant vector
as follows:

DE/rand/1 : v(t)i = x(t)r1 +F · (xr2 + xr3) (11)

DE/best/1 : v(t)i = x(t)best+F · (xr1 + xr2) (12)

DE/currenttobest/1 : v(t)i = x(t)i +F · (xbest− xi)

+F · (xr1 − xr2) (13)

DE/best/2 : v(t)i = x(t)best+F · (xr1 − xr2)

+F · (xr3 − xr4) (14)

DE/rand/2 : v(t)i = x(t)r1 +F · (xr2 − xr3)

+F · (xr4 − xr5) (15)

where the indexesrd, d = 1,2, . . . ,5 represent the random
and mutually different integers generated within the range
[1,P] and and also different from indexi. F is a mutation

scale factor within the range[0,2]. x(t)best is the best vector
in the population in the current generationt.

4.2 Crossover operator

A crossover operator starts after mutation in order to
generate a trail vector according to target vectorxi and
mutant vectorvi as follows:

ui, j =

{

vi, j , if rand(0,1)≤ CR or j = jrand,

xi, j , otherwise.
(16)

where CR is a crossover control parameter or factor
within the range[0,1] and presents the probability of
creating parameters for a trial vector from the mutant
vector. Index jrand is a randomly chosen integer within
the range[1,P].

4.3 Selection operator

The DE algorithm applies greedy selection. The selection
operator selects between the trails and targets vectors.
The selected individual (solution) is the best vector with
the better fitness value. We present the description of the
selection operator as follows.

x(t+1)
i =

{

u(t)
i , if f (u(t)

i )≤ f (x(t)i ),

xi , otherwise.
(17)

Algorithm 2 Differential evolution algorithm
1: Set the generation countert := 0.
2: Set the initial value ofF andCR.
3: Generate randomly an initial populationPop0.
4: Evaluate the fitness function of all individuals inPop0.
5: repeat
6: Sett = t +1. {Generation counter increasing}.
7: for i = 0;i < P; i++ do
8: Select random indexesr1, r2, r3, wherer1 6= r2 6= r3 6=

i.
9: v(t)i = x(t)r1 +F × (x(t)r2 −x(t)r3 ). {Mutation operator }.

10: j = rand(1,D)
11: for (k= 0;k< D;k++) do
12: if (rand(0,1) ≤ CRor k= j then

13: u(t)ik = v(t)ik {Crossover operator}
14: else
15: u(t)ik = x(t)ik
16: end if
17: end for
18: if ( f (u(t)i )≤ f (x(t)i )) then

19: x(t+1)
i = u(t)

i {Greedy selection}.
20: else
21: x(t+1)

i = x(t)i
22: end if
23: end for
24: until Termination criteria are satisfied.

4.4 Differential evolution algorithm

In this subsection, we highlight the main steps of the DE
algorithm which are depicted in Algorithm2.

–Step 1.The algorithm starts by setting the initial values
of the iteration parametert, mutation scale factorF and
crossover factor.Lines(1,2)

–Step 2.The initial population is generated and each
solution in the population is evaluated by calculating
its fitness function.Lines(3,4)

–Step 3.The algorithm starts its main loop by selecting
three different solutionsxri from the population, where
r1 6= r2 6= r3 in order to apply mutation operator at each
solution in the population as in (11) and (15).

–Step 4. The trail solutions are randomly generated
after applying the crossover operator by comparing
each variable in the trail solution (after applying
mutation operator) and its corresponding variable in
the original solution, then the new solution is
generated with new variables if its fitness function is
better than the corresponding variables in the original
solution.Lines (11-17).

–Step 5. The trail solutions that generated from the
crossover operator are accepted to participate in the
next iteration if their fitness function are better than
the original solutions in the population, this kind of
selection is called greedy selection.Lines (18-22).

–Step 6. The overall process is repeated until the
termination criteria are satisfied.Line (24).
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5 Population size reduction mechanism

The proposed population size reduction mechanism
(PSRM) helps the proposed algorithm to accelerate the
search and explore the search space. In the first stage,
iterations of the algorithm with large number of solutions
in the population will be reduced during the search since
the need of the exploration process is decreased while the
need of exploitation process is increased.The PSRM
depends on the following two techniques

–balancing between the exploration and exploitation
during the search process

–Apply automatic termination criterion by using a
zero’s vector V to monitor the progress of the
algorithm and terminate the search when all subset in
V Convert from zero’s to one’s.
The main steps of the proposed PSRM mechanism are
presented in Algorithm3 and Figure1.

Algorithm 3 Population size reduction mechanism
1: Set the values ofpartno, popsize,
2: Set the reduction counterK := 0.
3: Set the initial value of reduction vectorV, where V =

zero(1, partno).
4: Evaluate all individuals in the populationP and assign the

global best solutionGbestin the population.
5: SetPRP= gbest.
6: Setpopred= popsize/partno
7: SetRF= (Gbest−optsol)/partno.
8: for (i = 1;i ≤ partno; i++) do
9: SetPRP= PRP−RF

10: SetList(i) = PRP
11: end for
12: repeat
13: SetK = 1
14: if (Gbest≤ List(K)) then
15: Evaluate and sort the populationP
16: Remove the worstpopred solutions from the

population
17: Setpopsize= popsize− popred{Greedy selection}
18: Update the populationP
19: SetV(1,K) = 1
20: SetK = K +1
21: end if
22: until popsize< popred.

We can describe the main steps in Algorithm3 as
follows.

–Step 1. The PSRM algorithm starts by setting the
values of partno, popsize, and reduction counterK.
Lines(1,2).

–Step 2.The PSRM algorithm uses a special zero vector
with size(1, partno), called progress vectorV, in order
to monitor the progress of the search and terminate the
search as soon as all subsets converted from zeros to
ones.Line 3.

–Step 3.The fitness function of each solution in the
population is calculated and the best overall solution
value is assigned togbest. Lines (4,5).

–Step 4. The popred variable is calculated and
determined the number of the worst solutions which
are removed from the population as soon as the subset
with zero value in the progress vector converted to
one.Line 6

–Step 5. The reduction scale is assigned by using a
reduction factorRF, which is calculated by dividing
the subtracting of the initialGbest value from the
optimal solution (given with each tested function) by
the number of partition numberspartno. Line 7.

–Step 6. After assigning the scale of reduction, the
population reduction pointsPRP are assigned and
saved in a list in order to know at which function
value the algorithm has to reduce the number of the
population and update the subset in the progress
vector from zero to one.Lines (8-11)

–Step 7.The algorithm starts to monitor the progress
of the search, checks thegbestwith the currentPRP
in the list, and applies the greedy selection on the
population in order to remove the worst solutions
from the population. The progress vector monitors the
search progress and terminates the search when its all
subsets values converted from zeros to ones and the
population is updated.Lines (12-22)

In Figure1, we give an example whenpartno = 5 to
explain the PSRM algorithm. There are 5 stages in order
to reduce the population sizeP from P1 to P5, whereP1 is
the full population size andP5 is the minimum population
size after removing all worst solutions. As shown in
Figure 1, the progress vector is initialized with zeros
subsets and each subset value convert to one when the
population size reduced. The overall process is repeated
until all the progress vector subsets converted to ones,
then the algorithm is terminated and search is stopped.
Finally, the algorithm produces the best solution ”Best”.

6 The proposed HPSODEPSR algorithm

In this section, we present in details the main steps of the
proposed HPSODEPSR algorithm as shown in Algorithm
4 and the Flowchart in Figure2. Before we give a
description of the main steps of the proposed algorithm,
we highlight on how the proposed algorithm can handle
the constraints when the variables violate the constraints.

6.1 Constraints handling

All particles positions and velocities in the population are
updated when we use the PSO algorithm. At each particle

if the variable value x(t+1)
i j violates the boundary

constraints the violated variable value reflected back from
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Fig. 1: Population size reduction mechanism

the violated boundary as follow [33].

x(t+1)
i, j =

{

0.5(xt
(i, j)+L j , if xt

(i, j) < L j ,

0.5(xt
(i, j)+U j , if xt

(i, j) >U j ,
(18)

where L,U are the lower and upper bound for each
function.

At each iteration, the best personal particlespbestare
saved in a list, then the DE mutation operator starts to
update these particles in order to improve their positions
(values) by generating a trail solutionsZt

(i, j). If the
variable in eachpbest particle (solution) violates the
boundary constraints, then the violated variable value
reflected back from the violated boundary as follows [33]

z(t)i, j =























L j if (r ≤ 0.5)∧ (zt
(i, j) < L j),

U j if (r ≤ 0.5)∧ (zt
(i, j) >U j),

2L j − zt
(i, j) if (r > 0.5)∧ (zt

(i, j) < L j),

2U j − zt
(i, j) if (r > 0.5)∧ (zt

(i, j) >U j),

(19)

wherer is a uniform distributed random number and
r ∈ [0,1].

6.2 The proposed HPSODEPSR algorithm

In the following subsection, we describe the proposed
algorithm in more details as follows.

–Step 1.HPSODEPSR algorithm starts with the initial
values of the acceleration constantsc1 andc2, mutation
scale factorF , partitions numberpopno, and the initial
value of the iteration countert. Lines (1,2)

–Step 2. The initial position and velocity for each
solution (particle) in the population (swarm) is
generated randomly as in (4) and (5). Lines (3,4)

–Step 3.Each solution in the population is evaluated by
calculating its corresponding fitness valuef (xi). Line
5

–Step 4.The best personal solutionpbestand the best
global solutiongbestare assigned.Lines (6,7)

–Step 5. The following steps are repeated until the
termination criterion satisfied

Step 5.1.At each iterationt, the position of each

particlex(t+1)
i is justified as in (7), while the velocity of

each particlev(t+1)
i is justified as in (8). Lines (10,11)

Step 5.2.At each variable in solutionx(t+1)
i , if

the variable violate the constraints, then the violated
variables are reflected back as in (18). Line 12

Step 5.3.The DE mutation is applied on each best
personal solutionpbestin the population and the trail
solutions are generated.Lines (13, 14)

Step 5.4.The new trail solution is assigned to the
personal best solationpbestif its value is better than
the currentpbest. Lines (15-19)

–Step 6.The variables on eachpbest in the personal
best solution list are reflected back as in (19) if their
values violate the constraints.Line 20

–Step 7. The population size reduction mechanism
PSRM as shown in Algorithm3 is applied in order to
reduce the population size when the proposed
algorithm produce progress during the search.Line
22

–Step 8.if all subsets in the progress vectorV converted
to ones instead of zeros, the algorithm terminates the
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Algorithm 4 Hybrid particle swarm optimization and
deferential evolution with population size reduction
algorithm
1: Set the values of the acceleration constantsc1 and c2,

amplification factorF and partitions numberpopno.
2: Sett := 0.
3: Generate the initial population (swarm)P andx(t)i particles

(solutions).

4: Generate (randomly) the velocityv(t)i of each particle in the
population, wherexi ,vi ∈ [L,U ] and i = 1, . . . ,P. {P is the
population (swarm) size}.

5: Evaluate the fitness functionf (x(t)i ).
6: Setgbest(t). {gbestis the best global solution in the swarm}.

7: Set pbest(t)i . {pbest(t)i is the best local solution in the
swarm}.

8: repeat
9: for (i = 0;i < P; i++ ) do

10: v(t+1)
i = v(t)i + c1r i1 × (pbest(t)i − x(t)i ) + c2r i2 ×

(gbest−x(t)i ). {r1, r2 are random vectors∈ [0,1]}.

11: x(t+1)
i = x(t)i + v(t+1)

i , i = 1, . . . ,P. {Update particles
positions}.

12: Check variables violation as shown in Equation18

13: Apply a DE mutation operator onPbest(t+1)
i for each

particlex(t+1)
i on the population.

14: Set the trail vectoru(t+1)
i equal to the DE mutation

output

15: if u(t+1)
i < pbest(t+1)

i then

16: SetPbest(t+1)
i = u(t+1)

i
17: else
18: SetPbest(t+1)

i = pbest(t+1)
i

19: end if
20: Check the variable violation on each variable on the

pbest(t+1)
i as in (19).

21: end for
22: Apply the population size reduction mechanism as shown

in Algorithm 3.
23: Sett = t +1. {Iteration counter increasing}.
24: until Termination criteria are satisfied.
25: Produce the best particle.

search and the best solution is presented. Otherwise the
algorithm terminates the search when it reaches to the
standard termination criterion which is the maximum
number of iterations.

7 Numerical experiments

In order to investigate the efficiency of the HPSODEPSR,
we present the general performance of it by applying
HPSODEPSR on 5 engineering optimization problems
and 11 benchmark functions. The results of the proposed
algorithm have been compared against 7 algorithms.
HPSODEPSR was programmed by MATLAB, the results

of the comparative algorithms are taken from their
original papers. In the following subsections, the
parameter setting of the proposed algorithm in more
details and the properties of the applied test functions
have been reported. Also, the performance analysis of the
proposed algorithm is presented with the comparative
results against the other algorithms.

7.1 Parameter setting

The parameters of the HPSODEPSR algorithm have been
summarized with their assigned values in Table1.

Table 1: Parameter setting.
Parameters Definitions Values
P population size 60
Partno partition numbers 4
PRS population reduction scale P/partno
c1 acceleration constant for

cognition part 0.5
c2 acceleration constant for social part 1.5
F amplification factor 0.7
δ equality constraint constant 0.00001
maxitr maximum iteration number 3000

–Population sizeP. The experimental tests show that
the best population size isP = 60¿ Note that
increasing this number, it will increase the evaluation
function values without any improvement in the
obtained results.

–Partitions number Partno.Partno is the maximum
number of partitions that the proposed algorithm
applied on the population. The experimental results
show that the best number of the applied partitions is
4. The general performance of the proposed algorithm
with different population partitioning number is
reported in Table3.

–Population reduction scale PRS. The proposed
algorithm applies the greedy selection where the
worst solutions in the population are discarded while
the best solutions will be remained to the next
iterations. The population reduction scalePRS
controls the number of the of discarded solutions
while it is equal to the number of the population
size/the number of partitions.

–Acceleration constantc1 and c2. The parametersc1
andc2 are acceleration constants, they are a weighting
stochastic acceleration, which pull each particle
towards personal best and global best positions. We
set the values ofc1 andc2 to 0.5 and 1.5, respectively.

–Mutation scale factor F is an mutation factor in the
mutation operator of the deferential evolution
algorithm.
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Fig. 2: HPSODEPSR flowchart
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–Equality constraint constant δ All equality
constraints have been converted into inequality by
using the degree of violationδ = 0.0001.

–Maximum iteration number maxitr . HPSOAC
terminates the search by applying two termination
criteria. The first one is when the population vector
converted from zeros to ones while the second
termination criterion is the maximum number of
iterations reaches to 3000.

7.2 Test constrained optimization problems

HPSODEPSR algorithm has been tested on 11
constrained optimization functions. These functions are
listed as the following.
Test problem 1. This problem is defined by

Minimize f1(x) = 5
4

∑
i=1

xi −5
4

∑
i=1

x2
i −

13

∑
i=5

xi

Sub ject to

g1(x) = 2x1+2x2+ x10+ x11−10≤ 0

g2(x) = 2x1+2x3+ x10+ x12−10≤ 0

g3(x) = 2x2+2x3+ x11+ x12−10≤ 0

g4(x) = −8x1+ x10≤ 0

g5(x) = −8x2+ x11≤ 0

g6(x) = −8x3+ x12≤ 0

g7(x) = −2x4− x5+ x10≤ 0

g8(x) = −2x6− x7+ x11≤ 0

g9(x) = −2x8− x9+ x12≤ 0

where 0≤ xi ≤ 1 when i = 1, . . . ,9, 0≤ xi ≤ 100 when
i = 10,11,12 and 0≤ x13 ≤ 1.
The global minimum is
x∗ = (1,1,1,1,1,1,1,1,1,3,3,3,1) where f (x∗) =−15.

Test problem 2. This problem is defined by

Maximize f2(x) =
∣

∣

∣

∑n
i=1cos4(xi)−2∏n

i=1cos2(xi)
√

∑n
i=1 ix2

i

∣

∣

∣

Sub ject to

g1(x) = 0.75−
n

∏
i=1

xi ≤ 0

g2(x) =
n

∑
i=1

xi −7.5n≤ 0

wheren= 20 and 0≤ xi ≤ 10 whnei = 1, . . . ,n.
The global maximum is unknown; the best reported
solution is f (x∗) = 0.803619.

Test problem 3. This problem is defined by

Maximize f3(x) = (∑n)2
n

∏
i=1

xi

Sub ject to

h(x) =
n

∑
i=1

x2
i −1= 0

wheren= 10 and 0≤ xi ≤ 10 wheni = 1, . . . ,n.
The global maximum isf (x∗) = 1.

Test problem 4. This problem is defined by

Minimize f4(x) = 5.358547x2
3+0.8356891x1x5

+37.293239x1−40792.141

Sub ject to

g1(x) = 85.334407+0.0056858x2x5

+0.0006262x1x4+0.0022053x3x6

≤ 92

g2(x) =−85.334407+0.0056858x2x5

−0.0006262x1x4+0.0022053x3x6

≤ 0

g3(x) = 80.51249+0.0071317x2x5

+0.0029955x1x2+0.0021813x2
3

−110≤ 0

g4(x) =−80.51249−0.0071317x2x5

−0.0029955x1x2−0.0021813x2
3

+90≤ 0

g5(x) = 9.300961+0.0047026x3x5

+0.0012547x1x3+0.0019085x3x4

−25≤ 0

g6(x) =−9.300961−0.0047026x3x5

−0.0012547x1x3−0.0019085x3x4

+20≤ 0

where 78≤ x1 ≤ 102, 33≤ x2 ≤ 45 and 27≤ xi ≤ 45
wheni = 3,4,5.
The global minimum isf (x∗) =−30665.539.

Test problem 6. This problem is defined by

Minimize f6(x) = (x1−10)3+(x2−20)3

Sub ject to

g1(x) = −(x1−5)2− (x2−5)2+100≤ 0

g2(x) = (x1−6)2+(x2−5)2−82.81≤ 0

where 13≤ x1 ≤ 100 and 0≤ x2 ≤ 100. The global
minimum is f (x∗) =−6961.81388.
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Test problem 7. This problem is defined by

Minimize f7(x) = x2
1+ x2

2+ x1x2−14x1−16x2

+(x3−10)2+4(x4−5)2+(x5−3)2

+2(x6−1)2+5x2
7+7(x8−11)2

+2(x9−10)2+(x10−7)2+45.

Sub ject to

g1(x) = −105+4x1+5x2−3x7+9x8 ≤ 0

g2(x) = 10x1−8x2−17x7+2x8 ≤ 0

g3(x) = −8x1+2x2+5x9−2x10−12≤ 0

g4(x) = 3(x1−2)2+4(x2−3)2+2x2
3

−7x4−120≤ 0

g5(x) = 5x2
1+8x2+(x3−6)2−2x4−40≤ 0

g6(x) = x2
1+2(x2−2)2−2x1x2+14x5

−6x6 ≤ 0

g7(x) = 0.5(x1−8)2+2(x2−4)2+3x2
5

−x6−30≤ 0

g8(x) = −3x1+6x2+12(x9−8)2−7x10≤ 0

where−10≤ xi ≤ 10 wherei = 1,2, . . . ,10.
The global minimum isf (x∗) = 24.3062091.

Test problem 8. This problem is defined by

Minimize f8(x) =
sin3(2πx1)sin(2πx2)

x3
1(x1+ x2)

.

Sub ject to

g1(x) = x2
1− x2+1≤ 0

g2(x) = 1− x1+(x2−4)2 ≤ 0

where−10≤ x1 ≤ 10 and 0≤ x2 ≤ 10.
The global minimumf (x∗) = 0.095825.

Test problem 9. This problem is defined by

Minimize f9(x) = (x1−10)2+5(x2−12)2

+x4
3+3(x4−11)2+10x6

5+7x2
6.

+x4
7−4x6x7−10x6−8x7

Sub ject to

g1(x) = −127+2x2
1+3x4

2+ x3

+4x2
4+5x5 ≤ 0

g2(x) = −282+7x1+3x2+10x3

+x4− x5 ≤ 0

g3(x) = −196+23x1+ x2
2+6x2

6

−8x7 ≤ 0

g4(x) = 4x2
1x2

2−3x1x2+2x2
3

+5x6−11x7 ≤ 0

where−10≤ xi ≤ 10 for i = 1,2, . . . ,7.
The global minimumf (x∗) = 680.6300573.

Test problem 10. This problem is defined by

Minimize f10(x) = x1+ x2+ x3

Sub ject to

g1(x) = −1+0.0025(x4+ x6)≤ 0

g2(x) = −1+0.0025(x5+ x7− x4)≤ 0

g3(x) = −1+0.01(x8− x5)≤ 0

g4(x) = −x1x6+833.33252x4+100x1

−83333.333≤ 0

g5(x) = −x2x7+1250x5+ x2x4−1250x4 ≤ 0

g6(x) = −x3x8+1250000+ x3x5−2500x5 ≤ 0

where −100≤ x1 ≤ 10,000 and 1000≤ xi ≤ 10,000
wheni = 2,3, . . . ,8.
The global minimumf (x∗) = 7049.248021.

Test problem 11. This problem is defined by

Minimize f11(x) = x2
1+(x2−1)2

Sub ject to

h(x) = x2− x2
1 = 0

Where−1≤ x1 ≤ 1 and−1≤ x2 ≤ 1.
The global minimumf (x∗) = 0.75.

Test problem 12. This problem is defined by

Minimize f12(x) =
100− (x1−5)2− (x2−5)2− (x3−5)2

100
Sub ject to

g(x) = (x1− p)2+(x2−q)2+(x3−w)2−0.0625≤ 0

where 0 ≤ xi ≤ 10 when i = 1,2,3 and
p,q,w= 1,2, . . .= 1,2, . . . ,9.
The global minimumf (x∗) = 1.

7.3 The general performance of the proposed
HPSODEPSR algorithm with constrained
optimization problems

The general performance of the proposed HPSOAC
algorithm has been investigated by testing it on 11 test
benchmark functions which are reported in Table2. The
best, average (mean), worst, standard deviation (SD) of
the function values and the average of function evaluation
values (FFEs) are reported over 100 runs. The general
performance of the proposed algorithm with 6 benchmark
function (randomly picked) are shown in Figure3 by
plotting the values of function values versus the number
of iterations. The results in Table2, show that the
proposed algorithm can obtain the optimal or near optimal
solution within small number of function evaluations
values when compared with other algorithms as shown in
the next subsection. Figure3 shows the general
performance of HPSODEPSR algorithm for functionsf1,
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Table 2: The general performance of the proposed HPSODEPSR algorithm with constrained optimization problems
Function Best Mean Worst SD FFEs
f1 -15 -15 -15 9.59e−9 35,040

f2 -0.80361598 -0.8036149 -0.788415456 1.23e−2 90,195

f3 -1.0050 -1.0050100 -0.9999109 3.41e−5 90,285

f4 -30665.5387 -30665.5387 -30665.53887 2.14e−12 12,180

f6 -6961.81388 -6961.81388 -6961.81386 1.31e−9 91,635

f7 24.3062091 24.3062109 24.30620111 1.15e−6 90,495

f8 -0.095825041 -0.095825037 -0.095825041 1.32e−8 1540

f9 680.6300574 680.6300574 680.63005739 2.75e−9 57,660

f10 7049.248146 7049.248021 7049.248221 2.83e−8 90,195

f11 0.749999 0.749999 0.749999 3.15e−7 16,440

f12 1 1 1 0.00 3180

f2, f4, f6, f11, f12. We can conclude from Figure3 that
the function values of the proposed HPSODEPSR rapidly
decrease as the number of iterations increases and the
hybridization between the particle swarm optimization
algorithm and the deferential evolution mutation operator
with the population size reduction mechanism can
accelerate the search and helps the algorithm to obtain the
optimal or near optimal solution in reasonable time.

7.4 The efficiency of the population size
reduction mechanism

The idea of the population size reduction mechanism was
inspired from the cooling schedule and temperature
reduction value in the simulated annealing (SA) algorithm
[19]. In SA algorithm, there is a direct relation between
the quality of the generated trail solutions and the speed
of the cooling schedule. If the temperature is slowly
decreased, better solutions are obtained, but high
computation time is obtained, on the other side, a fast
decrement rule causes increasing the probability of being
trapped in a local minimum. The HPSODEPSR starts the
search with the whole population size in order to make a
wide exploration which needs big number of solutions to
search in the search space. During the search, the
exploration process decreases and the exploitation
process increases by focus the search around the
promising solutions and the needs of the big number of
solutions decreases. The balancing between the
exploration and exploitation process is very important and
depends on the number of applied solutions in the
population. The experimental results show that the best
number of applied partitions is 4, which means there are 4
stages (calling) for applying population size reduction
mechanism to reduce the population size as shown in
Table 3. In Table 3, the mean (average) and standard

deviation are reported over 100 runs. Increasing the
number of partitions more than 4 means the number of
the applied solution in the exploitation process are small
and not enough to focus the search around the promising
solutions. On the other side, decreasing the number of the
partitions numbers means reducing the number of the
solution in early stage of the algorithm which effect on
the exploration process that needs big number of
solutions in the first stages of the algorithm. The best
value is reported withbold face text. The results in Table
3 show that the best partition size is equal to 4.

7.5 HPSODEPSR and other algorithms

In order to investigate the performance of the proposed
HPSODEPSR algorithm, we compare it with seven
benchmark algorithms. Before discussing the comparison
results of all algorithms, we present a brief description
about the comparative seven algorithms as the following.

–PSO-DE [22]. An algorithm that integrates particle
swarm optimization (PSO) with differential evolution
(DE) to solve constrained numerical and engineering
optimization problems. DE is incorporated into
update the previous best positions of particles to force
PSO jump out of stagnation, because of its strong
searching ability. The hybrid algorithm speeds up the
convergence and improves the algorithm’s
performance.

–CRGA [1].Changing Range-based GA (CRGA): This
algorithm adaptively shifts and shrinks the size of the
search space of the feasible region by employing
feasible and infeasible solutions in the population to
reach the global optimum.

–SAPF[32]. Self-Adaptive Penalty Function (SAPF) is
an algorithm for solving constrained optimization
problems using genetic algorithms. In SAPF, a new
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Fig. 3: The general performance of the proposed HPSODEPSR algorithm with constrained optimization problems.

fitness value, called distance value, in the normalized
fitness-constraint violation space, and two penalty
values are applied to infeasible individuals so that the
algorithm would be able to identify the best infeasible
individuals in the current population.

–CDE [13]. A differential evolution algorithm based
on a co-evolution mechanism, is proposed to solve the
constrained problems. First, a special penalty function
is designed to handle the constraints. Second, a
co-evolution model is presented and differential
evolution (DE) is employed to perform evolutionary
search in spaces of both solutions and penalty factors.

–CULDE [2]. A cultural algorithm with a differential
evolution population is proposed in this paper. This
cultural algorithm uses different knowledge sources to
influence the variation operator of the differential
evolution algorithm, in order to reduce the number of
fitness function evaluations required to obtain
competitive results

–CPSO-GD [21]. An algorithm based on
co-evolutionary particle swarm optimization to solve
constrained optimization problems formulated as
min-max problems. In standard particle swarm
optimization (PSO), a uniform probability distribution
is used to generate random numbers for the
accelerating coefficients of the local and global s. The
proposed algorithm, uses a Gaussian probability

distribution to generate the accelerating coefficients of
PSO.

–SMES [25]. This algorithm uses a simple diversity
mechanism based on allowing infeasible solutions to
remain in the population instead of using a penalty
function. It uses a simple diversity mechanism based
on allowing infeasible solutions to remain in the
population. This technique helps the algorithm to find
the global optimum despite reaching reasonably fast
the feasible region of the search space.

7.5.1 Comparison between PSO-DE,CRGA,SAPF,CDE,
CULDE, CPSO-GD,SMES and HPSODEPSR

In order to verify the efficiency of the HPSODEPSR
algorithm, we compare it against seven algorithms. The
best, mean, worst computational cost (number of function
evaluations FFEs) are reported over 100 runs in Table4.
The proposed algorithm requires from 1540 to 91,635
FFEs to obtain the reported results in Table4 as shown in
Table2, while the other reported results for the PSO-DE
require from 10,600 to 140,100 FFEs, 500,00 FFEs by
SAPF algorithm, 248,000 FFES by CDE, 100,100 FFEs
by CULDE and 240,000 FFEs by SMES algorithm. We
can conclude from the results in Table4, that the
HPSODEPSR can obtain the optimal or near optimal
solution faster than the other algorithms.
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Table 3: The efficiency of the population size reduction mechanism
Partno = 2 Partno = 3 Partno = 4 Partno = 5

f
f1

f2

f3

f4

f6

f7

f8

f9

f10

f11

f12

Mean Std.
-14.79999145 0.6

-0.802721064 2.7e−3

-0.962237027 6.96e−2

-30665.53867 0.00

-6961.813872 1.03e−6

24.30620907 9.46e−10

-0.095820081 3.23e−6

680.6300574 4.04e−9

7049.248025 6.02e−6

0.749928102 4.53e−5

0.9999992081 3.11e−9

Mean Std.
-14.9999999 5.94e−8

-0.80353757 4.9e−4

-0.992436478 2.11e−2

-30665.53867 2.13e−9

-6961.813874 1.42e−6

24.30620907 1.06e−5

-0.095824866 3.29e−6

680.6300574 7.63e−9

7049.248021 1.5e−3

0.749999 4.54e−5

0.99999911 7.3695e−6

Mean Std.
-15 9.59e−9

-0.8036149 1.23e−2

-1.0050100 3.41e−5

-30665.5387 2.14e−12

-6961.81388 1.31e−9

24.3062109 1.1e−6

-0.095825037 1.32e−8

680.6300574 2.75e−9

7049.248021 2.4e−8

0.749999 3.15e−7

1 0.00

Mean Std.
-15 7.2e−9

-0.790663954 1.72e−2

-0.863857 2.9e−2

-30665.5386 2.15e−5

-6961.81372 1.7e−6

24.30622538 5.16e−5

-0.09582068 2.64e−6

680.6300574 3.22e−9

7049.335286 1.15e−2

0.749999 4.08e−5

0.99999907 5.11e−7

Table 4: Comparison results of HPSOAC and other PSO-based algorithms for problemsf1− f12
Function PSO-DE CRGA SAPF CDE CULDE CPSO-GD SMES HPSODEPSR
f1 Best -15.000000 -14.9977 -15.000 -15.0000 -15.000000 -15.0 -15.000 -15

Mean -15.000000 -14.9850 -14.552 -15.0000 -14.999996 -14.997 -15.000 -15
Worst -15.000000 -14.9467 -13.097 -15.0000 -14.999993 -14.994 -15.000 -15

f2 Best -0.8036145 -0.802959 -0.803202 -0.794669 -0.803619 NA -0.803601 -0.80361598
Mean -0.756678 -0.764494 -0.755798 -0.785480 -0.724886 NA -0.785238 -0.8036149
Worst -0.6367995 -0.722109 -0.745712 -0.779837 -0.590908NA -0.751322 -0.788415456

f3 Best -1.0050100 -0.9997 -1.000 NA -0.995413 NA -1.000 -1.0050100
Mean -1.0050100 -0.9972 -0.964 NA -0.788635 NA -1.000 -1.0050100
Worst -1.0050100 -0.9931 -0.887 NA -0.639920 NA -1.000 -0.9999109

f4 Best -30665.539 -30665.520 -30665.401 -30665.539 -30665.539 NA -30665.539 -30665.5387
Mean -30665.539 -30664.398 -30665.922 -30665.536 -30665.539 NA -30665.539 -30665.5387
Worst -30665.539 -30660.313 -30656.471 -30665.509 -30665.539 NA -6952.482 -30665.53887

f6 Best -6961.8139 -6956.251 -6961.046 -6961.814 -6961.8139NA -6961.284 -6961.81388
Mean -6961.8139 -6740.288 -6953.061 -6960.603 -6961.8139NA -6961.284 -6961.81388
Worst -6961.8139 -6077.123 -6943.304 -6901.285 -6961.8139 NA -6952.482 -6961.81386

f7 Best 24.306210 25.746 27.328 NA 24.306210 25.709 24.475 24.3062091
Mean 24.306210 25.746 27.328 NA 24.306210 25.709 24.475 24.3062109
Worst 24.30622 27.381 33.095 NA 24.3062 27.166 24.843 24.30620111

f8 Best -0.095826 -0.095825 -0.095825 NA -0.095825 NA -0.095825 -0.095825041
Mean -0.0958259 -0.095819 -0.095635 NA -0.095825 NA -0.095825 -0.095825037
Worst -0.0958259 -0.095808 -0.092697 NA -0.095825 NA -0.095825 -0.095825041

f9 Best 680.63006 680.726 680.773 680.771 680.63006 680.678 680.632 680.6300574
Mean 680.63006 681.347 681.246 681.503 680.63006 680.7810680.643 680.6300574
Worst 680.6301 682.965 682.081 685.144 680.6301 681.371 680.719 680.63005739

f10 Best 7049.2480 7114.743 7069.981 NA 7049.2481 7055.6 7051.903 7049.248146
Mean 7049.2480 8785.149 7238.964 NA 7049.2483 8464.2 7253.04 7049.248021
Worst 7049.2482 10826.09 7489.406 NA 7049.2485 11,458 7638.366 7049.248221

f11 Best 0.749999 0.75 0.749 NA 0.749900 NA 0.75 0.749999
Mean 0.749999 0.752 0.751 NA 0.757995 NA 0.75 0.749999
Worst 0.750001 0.757 0.757 NA 0.796455 NA 0.75 0.749999

f12 Best 1.000000 -1.000000 -1.000000 -1.000000 -1.000000 NA -1.000 1
Mean -1.000000 -1.000000 -0.99994 -1.000000 -1.000000 NA -1.000 1
Worst -1.000000 -1.000000 -0.999548 -1.000000 -1.000000 NA -1.000 1
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7.6 Engineering optimization problems

In order to investigate the general performance of
HPSODEPSR on real world engineering optimization
problems, five well studied engineering design examples
have been selected and solved by the proposed algorithm.
HPSODEPSR has been applied with the engineering
optimization problems with the same parameter settings
which applied with the other 11 test problems. In the
following subsections, we highlight the five engineering
optimization problems.

7.6.1 Welded beam design problem

The aim of a welded beam design problem is to minimize
the cost of the welded beam structure which consists of a
beamA and the required weld to hold it to memberB
subject to constraints on shear stressτ, beam bending
stressθ , buckling load on the barPc, beam end deflection
δ . The four design variablesh(x1), l(x2), t(x3) andb(x4)
are shown in Figure4.

Minimize f(x) = 1.10471x2
1x2+0.04811x3x4(14.0+ x2)

Sub ject to

g1(x) = τ(x)− τmax≤ 0

g2(x) = σ(x)−σmax≤ 0

g3(x) = x1− x4 ≤ 0

g4(x) = 0.10471x2
1+0.04811x3x4(14.0+ x2)

−0.5≤ 0

g5(x) = 0.125− x1 ≤ 0

g6(x) = δ (x)− δmax≤ 0

g7(x) = P−Pc(x)≤ 0

where the other parameters are defined as the following.

τ(x) =
√

((τ ′)2+(τ ′′)2+
2τ ′τ ′′x2

2R
, τ ′ =

p√
2x1x2

τ ′′ =
MR
J

, M = P(L+
x2

2
), R=

√

(

x1+x3

2

)2

+
x2

2
4

J = 2

{

x1x2√
2

[

x2
2

12
+

(

x1+x3

2

)2] }

, σ(x) =
6PL

x4x2
3

δ (x) =
4PL3

Ex4x3
3

, Pc(x) =
4.013

√

EGx23x6
4/36

L2

(

1− x3

2L

√

E
4G

)

whereP= 6000lb,L = 14,δmax= 0.25in,E = 30,106 psi,
G= 12,106 psi,τmax= 13,600psi,σmax= 30,000 psi and
0.1≤ xi ≤ 10.0 wheni = 1,2,3,4.

7.6.2 Pressure vessel design problem

In this problem, a cylindrical vessel is capped at both
ends by hemispherical heads and the objective is to
minimize the total cost of material, forming and welding.

Fig. 4: Welded beam design problem

Fig. 5: Pressure vessel design problem

There are four design variables as shown in Figure5, Ts
(x1, thickness of the shell),Th (x2, thickness of the head),
R (x3, inner radius) andL (x4, length of the cylindrical
section of the vessel without the head).Ts and Th are
integer multiples of 0.0625in,R and L are continuous
variables.

f (x) = 0.6224x1x3x4+1.7781x2x2
3+3.1661x2

1x4

+19.84x2
1x3

Sub ject to

g1(x) = −x1+0.0193x3

g2(x) = −x2+0.00954x3 ≤ 0

g3(x) = −πx2
3x4−4/3πx3

3+1296000≤ 0

g4(x) = x4−240≤ 0

where 1≤ x1 ≤ 99, 1≤ x2 ≤ 99, 10≤ x3 ≤ 200 and 10≤
x4 ≤ 200.

7.6.3 Speed reducer design problem

The objective of a speed reducer problem is to minimize a
gear box volume and weight subject to several constrains
as shown in Figure6. There are seven design variables
x1− x7, which describe as follow.x1 is a width of the gear
face (cm),x2 teeth module (cm),x3 number of pinion
teeth,x4 shaft 1 length between bearings (cm),x5 shaft 2
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Fig. 6: Speed reducer design problem

length between bearing (cm),x6 diameter of shaft 1 (cm)
andx7 diameter of shaft 2 (cm).

f (x) = 0.7854x1x2
2(3.3333x2

3+14.9334x3

−43.0934)

−1.508x1(x
2
6+x2

7)+7.4777(x3
6 +x3

7)

+0.7854(x4x2
6+x5x2

7)

Sub ject to

g1(x) =
27

x1x2
2x3

−1≤ 0

g2(x) =
397.5

x1x2
2x2

3

−1≤ 0

g3(x) =
1.93x3

4

x2x4
6x3

−1≤ 0

g4(x) =
1.93x3

5

x2x4
7x3

−1≤ 0

g5(x) =
[(745x4/x2x3)

2+16.9×106]0.5

110.0x3
6

−1≤ 0

g6(x) =
[(745x5/x2x3)

2+157.5.9×106]0.5

85.0x3
7

−1≤ 0

g7(x) =
x2x3

40
−1≤ 0

g8(x) =
5x2

x1
−1≤ 0

g9(x) =
x1

12x2
−1≤ 0

g10(x) =
1.5x6+1.9

x4
−1≤ 0

g11(x) =
1.1x7+1.9

x5
−1≤ 0 (20)

where 2.6≤ x1 ≤ 3.6, 0.7≤ x2 ≤ 0.8, 17≤ x3 ≤ 28, 7.3≤
x4 ≤ 8.3, 7.3≤ x5 ≤ 8.3, 2.9≤ x6 ≤ 3.9, and 5≤ x7 ≤ 5.5

Fig. 7: Tension compression spring problem

7.6.4 Three-bar truss design problem

The objective of this application is to minimize the
weight f (x) of three bar truss subject to some constrains
as follows.

f (x) = (2
√

2x1+ x2)× l

Sub ject to

g1(x) =

√
2x1+ x2√

2x2
1+2x1x2

P−σ ≤ 0

g2(x) =
x2√

2x2
1+2x1x2

P−σ ≤ 0

g3(x) =
1√

2x2+ x1
P−σ ≤ 0

where 0≤ x1 ≤ 1 and 0≤ x2 ≤ 1, l = 100 cm,
P = 2kN/cm2 and σ = 2kN/cm2. The minimum
weighted structure should be achieved by determining the
optimal cross-sectional areasx1, andx2.

7.7 Tension compression spring problem

In this problem, we need to minimize the weightf (x) of a
tension compression spring design subject to constraints
on minimum deflection, shear stress, surge frequency,
limits on outside diameter and on design variable. The
mean coil diameterD(x2), the wire diameterd(x1) and
the number of active coilsP(x3 are the design variables as
shown in Figure7.

f (x) = (x3+2)x2x
2
1

Sub ject to

g1(x) = 1− x3
2x3

71785x4
1

≤ 0

g2(x) =
4x2

2− x1x2

12566(x2x3
1− x4

1)
+

1

5108x2
1

−1≤ 0

g3(x) = 1− 140.45x1

x2
2x3

≤ 0

where 0.05≤ x1 ≤ 2, 0.25≤ x2 ≤ 1.3 and 2≤ x3 ≤ 15.
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Fig. 8: The general performance of the proposed HPSODEPSR algorithm with engineering optimization problems

Table 5: The general performance (function evaluations) of HPSODEPSR with engineering optimization problems
Design problem Best Mean Worst Std
Welded beam design 24,690 26,062.5 28,110 1452.111
Pressure vessel design 11,385 14,591.25 16,620 2242.70
Speed reducer design 91,335 90,195 92,055 806.4738
Three-bar truss design 9390 10,062 10,500 410,5728
A tension/compression 20,640 24,174 26,220 2321.795
spring design

Table 6: The general performance (function values) of HPSODEPSR with engineering optimization problems
Design problem Best Mean Worst Std
Welded beam design 2.380957153 2.380957168 2.380957192 1.82257e−8

Pressure vessel design 6059.714335 6059.714335 6059.714335 4.5423e−12

Speed reducer design 2.99447106614 2.99447106614 2.99447106614 0.00
Three-bar truss design 263.89584338 263.89584338 263.89584338 3.5427e−11

A tension/compression 0.012665233 0.012665233 0.012665233 5.77594e−12

spring design

7.7.1 The general performance of the proposed
HPSODEPSR algorithm with engineering optimization
problems

The general performance of the proposed HPSODEPSR
algorithm is tested on 5 engineering optimization
problems shown in Figure8 by plotting the number of
iterations versus the number of function values. The best
mean worst and standard deviation of the function
evaluations and function values are reported over 100

runs in Tables5 and6 respectively. We can conclude from
Figure8, Tables5 and6 that the proposed algorithm can
obtain optimal or near optimal solutions in reasonable
time.

8 Conclusion

In this paper, we propose a novel hybrid particle swarm
optimization and differential evolution algorithm in order
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to solve constrained optimization problems and a real life
engineering optimization problems. The proposed
algorithm applies a new population size reduction
mechanism (PSRM) in order to balance between the
exploration and exploitation process by starting the search
in early stage with large number of solutions in the
population and during the search the number of theses
solutions decreases. Also in the proposed algorithm, we
tried to avoid terminating the search with the traditional
termination criterion like number of iterations, but we
proposed the progress vectorV as a new automatic
termination criterion instead of letting the algorithm
running with more iterations without any improvement in
the results. In order to investigate the general performance
of the proposed algorithm, we tested the proposed
algorithm on eleven benchmark functions and five real
life engineering optimization problems and compared
against seven algorithms. Our numerical experimental
results show that the proposed algorithm is a promising
algorithm and can solve the constrained optimization
problems with high performance in reasonable time.
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