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2 Centre for Quantum Science and Technology, Macquarie University, Sydney, NSW 2109, Australia

Received: 11 Feb. 2015, Revised: 11 Apr. 2015, Accepted: 12 Apr. 2015
Published online: 1 Nov. 2015

Abstract: We study theoretically the fluorescence of a two-level atom driven by a laser of weak to moderate intensity, that is, a regime
where squeezing would occur. Close to saturation atomic fluctuations dominate and become non-Gaussian, degrading the squeezing.
Using Bloch equations and quantum jump trajectories we find that allowing a moderate degree of non-linearity, conditional homodyne
detection [G.T. Foster, L.A. Orozco, H.M. Castro-Beltran,H.J. Carmichael, Phys. Rev. Lett.85, pp. 3149-3152, 2000] would actually
help in observing the elusive squeezing in the fluorescence by increasing the size of the characteristic negative spectrum.
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1 Introduction

Squeezing is the quantum effect where fluctuations in one
quadrature of the electromagnetic field are reduced below
those of a coherent state at the expense of increasing
fluctuations in the other quadrature. Squeezed light is
efficiently produced by nonlinear effects such as
four-wave mixing in optical fibers and optical parametric
oscillation [1]. However, squeezing of the resonance
fluorescence of a laser driven two-level atom [2,3] is yet
to be observed. It would occur in the linear regime, with
low laser intensity so that the fluorescence, which itself
swamps the squeezing, would be very weak, but the low
collection solid angle and non-unit quantum efficiency of
detection worsen the prospects for observation. There are
proposals to improve the collection efficiency [4] or to
enhance the squeezing signal using cavities [5] or
feedback [6]. Two experiments succeeded in observing
squeezing but in modified conditions: In [7] a long-lived
transition is used, little affected by spontaneous emission,
and in [8] the atom is strongly coupled to a cavity, where
the modal structure surrounding the atom is notably
altered.

A different strategy seeks to cancel the effects of
detection efficiency [9,10,11,12]. The method of
conditional homodyne detection (CHD) has allowed

observation of the weakly squeezed light of a cavity QED
system [10,11], resulting from single photon fluctuations
separated by long time intervals [13]. CHD consists of
balanced homodyne measurement of one quadrature
conditioned on the detection of a photon from the source,
making the measurement free of detector efficiencies.
Formally, it is a two-time amplitude-intensity correlation
of the source field, giving an expression ofthird order in
the field amplitude, thus introducing third order
fluctuations. To relate this measurement to squeezing,
however, the latter must vanish (if the fluctuations are
Gaussian or symmetric about the mean) or must be very
small [10,14].

The two-level atom resonance fluorescence has
non-Gaussian fluctuations [15]; it is highly non-linear,
thus it cannot be described by a quasi-probability
distribution. Also, the fourth order moment of the dipole
cannot be written in terms of a second order moment, as
Gaussians do: the former vanish while the latter is the
intensity. Third order fluctuations of resonance
fluorescence have already been studied [9,16], but only
indirectly, buried in a fourth order (intensity-intensity)
correlation.

In this paper we find advantageous to use CHD to
reveal non-Gaussianity of fluctuations in resonance
fluorescence. Indeed, we find useful to bypass the
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restriction to the low driving regime by using the
non-negligible third order fluctuations to obtain a picture
of the difficulty of dealing with the fragile squeezing
alone, and a means to obtain a more measurable
spectrum: the extra noise, below saturation, also has a
single-peaked negative spectrum. Further, analytical
tractability of resonance fluorescence helps to illustrate
squeezed and non-Gaussian fluctuations in a manner
cavity QED cannot do [10,11,13,17]. A Bloch equations
approach allows a separation of the correlation into terms
of second and third order in the dipole noise operators
[18]. We also apply quantum jump theory [19] to simulate
the CHD correlation, even though the proper method
would combine quantum jumps and quantum diffusion
[10,19,20]. This allows for the analytical calculation for
the probability that no photon (or one, or two) is emitted
in a suitable observation time. In the weak field limit,
where clean squeezing is present, the no-photon history
approaches very accurately the exact result.

This paper is organized as follows. First, we briefly
review two methods of study of resonance fluorescence.
Then, we calculate the amplitude-intensity correlation of
CHD, followed by the calculation of the fluctuations
spectra. Finally, we discuss the results and give
conclusions.

2 Theoretical Model

We consider a single two-level atom interacting with a
monochromatic laser field. The Hamiltonian in the
interaction picture is

H = h̄∆σ+σ−+
h̄Ω
2

(σ++σ−) , (1)

where ∆ is the detuning of the laser from the atomic
transition frequency,Ω is the Rabi frequency describing
the coupling strength between atom and laser, andσ± are
Pauli pseudospin operators. The atom is also coupled to a
reservoir of harmonic oscillators at zero temperature
which causes spontaneous emission jumps at the rateγ.
For concreteness, in this paper we take∆ = 0, which
allows to obtain analytical results, though a comment on
finite detuning effects is given at the end of Section 4. We
briefly review two approaches to study the atomic
dynamics.

2.1 Bloch Equations

The Bloch equations describing the atomic dynamics in a
slowly rotating frame are [19]

d
dt
〈σ̃∓〉 = ∓i

Ω
2
〈σz〉−

γ
2
〈σ̃∓〉 , (2)

d
dt
〈σz〉 = iΩ〈σ̃+〉− iΩ〈σ̃−〉− γ(〈σz〉+1) , (3)

whereσ̃∓(t) = σ∓e±iωt andω is the laser frequency. The
steady state solutions are

〈σ̃∓〉st = ± iY√
2(1+Y2)

, (4)

〈σz〉st = − 1
1+Y2 , (5)

〈σ+σ−〉st =
1
2
(1+ 〈σz〉st) =

Y2

2(1+Y2)
, (6)

whereY =
√

2Ω/γ. Throughout this paper steady state
values are denoted with the subindexst. For later
reference, we replace the atomic operators by its mean
plus noise,

σm(t) = 〈σm〉st+∆σm(t) , (7)

wherem=−,+,z, leading to the equations

d
dt
〈∆σ̃∓〉 = ∓i

Ω
2
〈∆σz〉−

γ
2
〈∆σ̃∓〉 , (8)

d
dt
〈∆σz〉 = iΩ〈∆σ̃+〉− iΩ〈∆σ̃−〉− γ〈∆σz〉 . (9)

2.2 Quantum Jump Method

Alternatively, we can study the quantum dissipative
evolution solving stochastic Schrödinger equations, some
of which simulate actual measurement strategies [19]. A
quantum trajectory is a record of a possible history of the
wave function. A large ensemble of histories reproduce
the density operator. As sketched in the Introduction, we
only consider the direct detection of the emitted photons.
Due to dissipation the Schrödinger equation
d|Ψ̄c(t)〉/dt = −(i/h̄)Heff|Ψ̄c(t)〉 describes the
non-unitary stochastic evolution of the wave function,
with periods of coherent evolution interrupted by
spontaneous emissions, governed by the effective
non-hermitian Hamiltonian

Heff = H − ih̄
γ
2

σ+σ− . (10)

The wave function |Ψ̄c(t)〉 = c̄g(t)|g〉 + c̄e(t)|e〉 is
non-normalized and conditioned on its previous
evolution. The solutions for the amplitudes from jump to
jump, when the initial conditions ¯cg(0) = 1 andc̄e(0) = 0
are repeated, are (with∆ = 0)

c̄g(t) = e−(γ/4)t
[

coshκt+
γ

4κ
sinhκt

]

,

c̄e(t) = −i
Ω
2κ

e−(γ/4)t sinhκt , (11)

where 2κ =
√

(γ/2)2−Ω2. The emission of a photon is
described by the action of the jump operator

√γσ−, that
resets the wave-function to the ground state, at timetc,

|Ψ̄c(tc)〉 →
√

γσ−|Ψ̄c(tc)〉=
√

γ c̄e(tc)|g〉 , (12)
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Fig. 1: (Color online) Distribution of the number of jumps per
trajectory for an ensemble of 105 realizations of lengthγT = 15
and∆ = 0. For weak fields,Ω = γ/10, k = 0.12; at saturation,
Ω = γ/4, k= 0.68.

with probability pc(t) = γdt〈Ψc|σ+σ−|Ψc〉 in the interval
[t, t+dt], where|Ψc(t)〉= |Ψ̄c(t)〉/[〈Ψ̄c(t)|Ψ̄c(t)〉]1/2 is the
normalized wave function.

Quantum jump trajectories allow to retrieve the photon
statistics on the fly [19,21]. Assuming ergodicity, the mean
number of photons emitted in the intervalt = [0,T] is k=
γ
∫ T

0 〈σ+σ−〉(t)dt, whereT is chosen long enough for the
atom-field interaction to have reached the steady state in
the ensemble average sense. Figure1 shows calculations
of the probabilityPk(T) to havek photons in a trajectory
of lengthT.

Also, one can calculate the average time between two
consecutive photons [22],

τ =
1

γ〈σ+σ−〉st
=

γ2+2Ω2

γΩ2 , (13)

where we used Eq. (6). For a propagation timeγT = 15 we
find that for weak driving,Ω = γ/10, we haveγτ = 102,
and for moderate driving,Ω = γ/4, we haveγτ = 18. For
Ω < γ/10, trajectories withk ≥ 2 events are very rare so,
for weak excitation, the weight of one photon events might
be obtained approximately by substracting the zero-jump
trajectories to the ensemble.

3 Conditional Homodyne Detection

The CHD measures the delayed evolution of a quadrature
of the field Eφ ∝ σφ = (1/2)

(

σ−eiφ +σ+e−iφ) by
balanced homodyne detection, whereφ is the phase
between the strong local oscillator and the driving field,
conditioned on the direct measurement of the intensity
I ∝ σ+σ− at time τ = 0 in the other detector, that is,
〈I(0)Eφ (τ)〉. The normalized third-order correlation in

the field amplitude [10,11] is

hφ (τ) =
〈: σ+(0)σ−(0)σφ (τ) :〉

〈σ+σ−〉st〈σφ 〉st
, (14)

where the dots :: stand for time and normal operator
ordering. To calculatehφ (τ) the Bloch equations are
solved first and then the quantum regression formula is
used [19].

Sincehφ (τ) is of odd order in the field amplitude, we
expect the CHD to be very sensitive to fluctuations.
Indeed, forτ ≥ 0 it is the quadrature amplitude of the
field that is measured on the cue of a photon count, while
for τ ≤ 0 it is the intensity that is conditioned on the
amplitude measurement. The phase dependence ofhφ (τ)
makes it non-trivial to relate quadrature amplitude and
intensity. For the two-level atom the correlation is given
by Eq. (20) below, obtained with a different method in
[23,24], which happens to be time-symmetric due to low
dimensionality.

To reveal the effects of fluctuations we use Eq. (7) in
Eq. (14), thus splitting the amplitude-intensity correlation
into correlations of second and third order in the dipole
noise operators [18],

hφ (τ) = 1+h(2)φ (τ)+h(3)φ (τ) , (15)

where

h(2)φ (τ) =
2〈: Re[〈σ̃−〉st∆σ̃+(0)]∆σ̃φ (τ) :〉

〈σ+σ−〉st〈σ̃φ 〉st
, (16)

h(3)φ (τ) =
〈: ∆σ̃+(0)∆σ̃−(0)∆σ̃φ (τ) :〉

〈σ+σ−〉st〈σ̃φ 〉st
. (17)

Note that the numerator of Eq. (16) is the autocorrelation
of the quadrature fluctuations〈: ∆σ̃φ (0)∆σ̃φ (τ) :〉, usual
in studies of squeezing. Solutions of the two-time
correlations are sketched in the Appendix.

The quadrature withφ = π/2 is the one that features
squeezing, thus most of our results are restricted to this
case. The normalization is given by the product of Eq. (6)
and〈σ̃π/2〉st = −Y[

√
2(1+Y2)]−1. The CHD correlation

for this quadrature is

h(2)π/2(τ) = − 1
1+Y2 e−(3γ/4)τ

×
[

(1−Y2)coshδτ +
1−5Y2

4δ/γ
sinhδτ

]

, (18)

h(3)π/2(τ) = − 2Y2

1+Y2 e−(3γ/4)τ

×
[

coshδτ +
2−Y2

4δ/γ
sinhδτ

]

, (19)

whereδ = (γ/4)
√

1−8Y2, and the total correlation is

hπ/2(τ) = 1−e−(3γ/4)τ
[

coshδτ +
1−2Y2

4δ/γ
sinhδτ

]

,

(20)
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Fig. 2: (Color online) Amplitude-intensity correlation forφ =

π/2 for weak driving,Ω = γ/10. Shown are: (i) 1+ h(2)π/2, (ii)

h(3)π/2, (iii) total (exact), (iv) single zero-photon trajectory,and (v)
the weak field formula. A large ensemble (not shown) approaches
the exact formula.

with initial values given by

h(2)π/2(0) =
Y2−1
1+Y2 ,

h(3)π/2(0) = − 2Y2

1+Y2 =−4〈σ+σ−〉st ,

resulting, from Eq. (15), in hπ/2(0)= 0. For strong driving,

Y2 ≫ 1, h(3)π/2(0) → −2, which implies a large deviation
from Gaussian fluctuations.

Special cases are those of the weak field limit,Y2 ≪ 1,

hweak
π/2 (τ) = 1−e−(3γ/4)τ [cosh(γτ/4)+ sinh(γτ/4)] ,

(21)

and at saturation,Ω = γ/4 (orY2 = 1/8),

hsat
π/2(τ) = 1−e−(3γ/4)τ

(

1+
3
16

γτ
)

. (22)

The in-phase quadrature,φ = 0, plays a minor role in
this paper. For instance,〈σφ=0〉 = 0. Hence, in order to
measure a finite signal a coherent offset of amplitudeEoff
has to be added to the source field, modifying Eq. (14) (see
[10,18]). This gives

h0(τ) = 1+
〈σ+σ−〉st

〈σ+σ−〉st+E2
off

e−γτ/2

= 1+

[

1+
(EoffY)2

2(1+Y2)

]−1

e−γτ/2 . (23)

Hereh0(0)> 1 andh(3)0 (τ) is zero at all times.
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Fig. 3: (Color online) Amplitude-intensity correlation forφ =

π/2 for driving on saturation,Ω = γ/4. Shown are: (i) 1+h(2)π/2,

(ii) h(3)π/2, (iii) total (exact), (iv) single zero-photon trajectory,and
(v) a sub-ensemble of zero- and one-photon trajectories. The full
ensemble (not shown) contains 105 realizations.

CHD requires a strong local oscillator field to be
mixed with the source’s output. The balanced homodyne
detection (BHD) arm of the CHD setup thus detects far
more photons from the local oscillator than of the source
so, strictly, a simulation of the detection process should
be of the quantum state diffusion type that, however,
keeps a record of the start photons [10]. Our aim, though,
is to study the photon emission dynamics and fluctuations
near the squeezing conditions. Thus we only use the
simpler quantum jump approach to calculate the wave
function and, with it, the relevant observables.

It is not possible to split the correlation into terms of
second and third order fluctuations when we use quantum
trajectory methods. However, with quantum jumps, we
may split the correlation into contributions of histories
with k photons emitted in a given time intervalT,

hφ (τ) = ∑
k

Pk(T)hφ (τ,k) . (24)

At τ = 0 we have thestart photon of the correlation and
then count the number of photonsk at thestopdetector in
the periodT. With each photon emission the atom returns
to its ground state.

The k = 0 term can be obtained analytically exactly
using the solutions (11), which give the evolution of the
wave function between two consecutive jumps. Equation

c© 2015 NSP
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(14) is reduced tohφ (τ) = 〈σ̃φ (τ)〉/〈σ̃φ 〉st, where

〈σ̃φ (τ)〉 = Im(c̄ec̄
∗
g)/(|c̄g|2+ |c̄e|2)

=
(Ω/2κ)sinhκτ [coshκτ +(γ/4κ)sinhκτ]

cosh2 κτ + sinh2 κτ +(γ/2κ)coshκτ sinhκτ
(25)

and 〈σ̃π/2〉st = −Y[
√

2(1 + Y2)]−1. Note that a
zero-photon trajectory does not have a steady state but the
correlation is normalized with the ensemble value.

Figure2 shows comparisons of the exact (ensemble),
the zero photon (k= 0) trajectory, the weak field formula,
and the second and third order formulas. Figure3 shows
the saturation case, noting thathπ/2(τ) needs thek = 0
andk= 1 sub-ensembles to approach accurately the exact
result (or full ensemble).

It is very important to stress that it is not possible to
associate the splittings of Eqs. (15) and (24), on a one to
one basis. Even for weak excitation, the no-photon
sub-ensemble does not mean that third order fluctuations
are absent, or that the one-photon sub-ensemble deviate
fluctuations from Gaussian. Even one photon can destroy
squeezing.

4 Spectra of Squeezed and other Fluctuations

In most experimental schemes, squeezing is studied in the
frequency domain. In CHD the measurement is made in
the time domain. This allows to assess the
non-classicality of the quadratures, squeezed or not, by
the violation of two classical inequalities [18]. The noise
spectra of the quadratures are obtained from the Fourier
cosine transform of the CHD correlations [10,18]. The
spectrum can be split as

S(2)φ (ω) = 4γ〈σ+σ−〉st

∫ ∞

0
dτ cos(ωτ)[h(2)φ (τ)−1] , (26)

S(3)φ (ω) = 4γ〈σ+σ−〉st

∫ ∞

0
dτ cos(ωτ)h(3)φ (τ) . (27)

Eq. (26) is a variant of the so-calledspectrum of squeezing,

S(2)φ (ω) = 2γ
∫ ∞

0 dτ cosωτ〈: ∆σ̃φ (0)∆σ̃φ (τ) :〉. However,
as we will see, the moniker is inaccurate. From Eqs. (18–
20,23), we obtain

S0(ω) = S(2)0 (ω) =
−2γY2

1+Y2

λ0

ω2+λ 2
0

, (28)

S(2)π/2(ω) =
γY2

(1+Y2)2

[(

1−Y2+
1−5Y2

4δ/γ

)

λ+

ω2+λ 2
+

+

(

1−Y2− 1−5Y2

4δ/γ

)

λ−
ω2+λ 2

−

]

, (29)

S(3)π/2(ω) =
2γY4

(1+Y2)2

[(

1+
2−Y2

4δ/γ

)

λ+

ω2+λ 2
+

+

(

1− 2−Y2

4δ/γ

)

λ−
ω2+λ 2

−

]

, (30)
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Fig. 4: (Color online) Spectra of fluctuations forφ = π/2 for
weak driving,Ω = γ/10. Shown are the second order (i), third
order (ii), and the total spectrum (iii).

whereλ0 = −γ/2 andλ± = −(3/4)γ ± δ [see Eq. (43)].

The total spectrum,S(2)π/2(ω)+S(3)π/2(ω), for φ = π/2 is

Sπ/2(ω) =
γY2

1+Y2

[(

1+
1−2Y2

4δ/γ

)

λ+

ω2+λ 2
+

+

(

1− 1−2Y2

4δ/γ

)

λ−
ω2+λ 2

−

]

. (31)

Let’s recall Eqs. (28–31) are all exact.
S0(ω) is a positive Lorentzian of widthγ, meaning

there is no squeezing forφ = 0, even thoughh0(τ) is
non-classical [18]. Moreover, the third order term is zero.
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Fig. 5: (Color online) Spectra of fluctuations forφ = π/2 for
driving on saturation,Ω = γ/4. Shown are the second order (i),
third order (ii), and the total spectrum (iii).

For theφ = π/2 quadrature we emphasize, again, the
weak and moderate driving regime. Figures4 and5 show
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their respective spectra calculated from the exact Eqs. (29-
31). The second order term, usually called the spectrum of
squeezing, is negative, which indicates that the fluctuations
are indeed squeezed. But the third order spectrum is also
negative, increasing with the strength of the driving field.

For weak fields, keeping a singleY-dependent
correction in Eq. (31) we have

Sweak
π/2 (ω) ≈ −γ2Y2

[

1
ω2+(γ/2)2(1+4Y2)

+
3γ2Y2/2

[ω2+(γ2/2)(1+Y2)]2

]

. (32)

The width of the leading peak isγ(1+ 2Y2), slightly
increased by the presence of the second peak.
Disregarding all corrections we find that
Sweak

π/2 (ω)→−S0(ω).

Interestingly, Rice and Carmichael [25] found that
squeezing reduces the weak field linewidth of the
incoherent spectrum of resonance fluorescence, a narrow
squared Lorentzian, due to the substraction of two
Lorentzians. One of them is slightly smaller but carries
the squeezed fluctuations. In the present case, however,
the extra noise is correlated to increase the size and width
of the spectrum of squeezing.

For saturation intensity,Ω = γ/4, we evaluate Eq. (31)
atY2 = 1/8, giving

Ssat
π/2(ω) =− γ2

24

[

5(3γ/4)2+3ω2

[ω2+(3γ/4)2]2

]

, (33)

a squared Lorentzian plus a frequency-dependent term,
with linewidth ∆ω = 0.82(3γ/2). Above saturation the
eigenfrequencyδ = (γ/4)

√
1−8Y2 becomes imaginary

and sidebands appear.
However, the spectrum remains a single negative peak

up to Ω ∼ γ/2, above which the peak splits. It seems
practical then to look at squeezing via the size of the
spectrum at the frequencyω = 0,

S(2)π/2(ω = 0) =
4Y2(2Y2−1)
(1+Y2)3 , (34)

S(3)π/2(ω = 0) =
2Y4(Y2−5)
(1+Y2)3 , (35)

Sπ/2(ω = 0) =
2Y2(Y2−2)
(1+Y2)2 , (36)

shown in Fig.6, These are negative forΩ < γ/2,
Ω < γ

√

5/2, andΩ < γ, respectively. The minimum of
the 2nd order spectrum (maximum squeezing) is seen at
Ω = 0.3γ. This means that maximal is not optimal, a
point observed previously [3,9]. In our case, it means that
near and above saturation squeezing might be large but is
contaminated by the third order fluctuations. Cleaner
squeezing (small third order fluctuations) is limited to
Ω < 0.1γ.
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Fig. 6: (Color online) Size of the spectrum atω = 0 for second
order (i), third order(ii), and total (iii) spectrum. ForΩ > γ/2 (see
the inset for an extended range) the total spectrum is no longer a
single peak, and forΩ > 0.7γ takes on positive vaues.

4.1 Integrated Spectra and Variances

The integrated spectrum represents the total power
emitted by the atom. Likewise, the integrated
phase-dependent spectrum represents the size of the noise
in a quadrature: in the standard treatment of squeezing it
is expressed in terms of the variance,

(4πγ)−1∫ ∞
−∞ S(2)φ (ω)dω = 〈: ∆σ̃φ (0)∆σ̃φ (τ) :〉 = Vφ [3].

Integrating Eq. (28) we have

∫ ∞

−∞
S0(ω)dω = 4πγ

Y2

2(1+Y2)
= 4πγV0 . (37)

This is the mean intensity emitted in the full solid angle
4π . Similarly, integrating Eqs. (29) and (30) we have
∫ ∞

−∞
S(2)π/2(ω)dω = −4πγ

Y2(1−Y2)

2(1+Y2)2 = 4πγVπ/2 , (38)

∫ ∞

−∞
S(3)π/2(ω)dω = −4πγ

Y4

(1+Y2)2 . (39)

The former is a well-known result [3], where the variance
is negative (i.e., there is squeezing) forY2 < 1, while the
latter is new, negative for allY, required to match thetotal
noise of the in-phase quadrature,

∫ ∞

−∞
Sπ/2(ω)dω =−4πγV0 . (40)

This is further proof of the non-Gaussianity of resonance
fluorescence fluctuations.

4.2 Effect of Finite Detuning

Here we briefly discuss the effect of finite atom-laser
frequency detuning on the CHD correlation and spectra.
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One should begin with the scattering rate,
γ〈σ+σ−〉st = γΩ2[2Ω2+ γ2+4∆2]−1. The photon rate is
reduced with increasing detuning and, hence, the
nonlinearity responsible for the third order correlation
and spectra. However, the increased generalized Rabi

frequency induces oscillations inh(2)φ (τ) at smaller
driving intensities, thus the spectrum develops sidebands
like those in the strong driving case, with a positive
component atω = 0 [13,18].

5 Discussion and Conclusions

In this paper we have investigated conditions for
non-Gaussian fluctuations to manifest in two-level atom
resonance fluorescence. Clean squeezing occurs when the
atom is very weakly driven, when the average time
interval between two consecutive photons is much longer
than the regression time to the (ensemble) steady state. In
CHD, which is only weakly sensitive to detection
inefficiencies, third order fluctuations can be studied
naturally. We found it convenient, however, to deviate
from the ideal squeezing conditions by considering more
moderate laser intensity.

A density operator calculation of the
amplitude-intensity correlation allows to split the
fluctuations into terms of second and third order in the
dipole noise operator. Second order noise is called
squeezed if its spectrum is negative. The third order noise
increases with the driving intensity in the interval where
squeezing occurs, contaminating the latter. Fortunately,
for moderately weak driving, both the second and third
order fluctuations have coincident negative spectra. This
signature of third order fluctuations are more convenient
to observe experimentally than looking for clean
squeezing in second order correlation measurements.

The quantum jump method makes a decomposition of
the CHD correlation in terms of the number of excitations
in a measurement time. One has to note, however, that it
is not possible, even in the weak field regime, to associate
the k−th contribution to either the second or the third
order dipole fluctuations. One photon is enough to imprint
nonlinearity and non-Gaussianity on these fluctuations.
The combined analysis, in the framework of conditional
homodyne detection, has helped to illustrate the physical
processes that lead to the emergence and the degradation
of the elusive squeezing in resonance fluorescence.

Finally, the total noise emitted must be independent of
the quadrature observed. CHD has permitted us to find
the integrated spectrum of the third order fluctuations in
the out-of-phase quadrature. The third-order spectrum can
be used as a complement to second order spectrum of
squeezing to accurately identify and observe the
squeezing in the light field emitted by an atom.
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Appendix

We sketch here the analytical solutions of the two-time
correlation functions, the numerators of Eqs. (16) and
(17), for the dipole fluctuation operators. We start with
the Bloch equations for the atomic fluctuations, Eqs. (8)
and (9), written compactly asd〈∆s〉/dτ = M〈∆s〉, where

∆s≡





∆σ̃−
∆σ̃+

∆σz



 , M ≡





−γ/2 0 −iΩ/2
0 −γ/2 iΩ/2

−iΩ iΩ −γ



 .

Using the quantum regression formula [15], two sets of
equations for the correlations of the dipole fluctuation
operators, for the second and third order, are then
obtained. Both have the structure
d
dτ

〈∆σ̃+(0)∆s(τ)∆A(0)〉 = M〈∆σ̃+(0)∆s(τ)∆A(0)〉 ,
(41)

with formal solution given by

〈∆σ̃+(0)∆s(τ)∆A(0)〉 = R−1eλ τR〈∆σ̃+∆s∆A〉 , (42)

where R is a matrix that diagonalizesM , and
λ = diag(λ0,λ+,λ−) is the diagonal matrix of
eigenvalues ofM given by

λ0 =−γ/2, λ± =−(3/4)γ ± δ . (43)

For the second-order correlations, Eq. (16), substitute
∆A= 1 in Eq. (41) with the initial conditions (τ = 0)

〈∆σ̃+∆s〉 =





〈σ+σ−〉st−|〈σ̃+〉st|2
−〈σ̃+〉2

st
−2〈σ̃+〉st〈σ+σ−〉st





=
Y2/2

(1+Y2)2





Y2

1
i
√

2Y



 , (44)

leading to the full time-dependent solutions

〈∆σ̃+(0)∆σ̃∓(τ)〉 =
Y2/4
1+Y2 eλ0τ ∓ Y2/8

(1+Y2)2

×
[(

1−Y2+
1−5Y2

4δ/γ

)

eλ+τ

+

(

1−Y2− 1−5Y2

4δ/γ

)

eλ−τ
]

, (45)

〈∆σ̃+(0)∆σz(τ)〉 = i

√
2Y3/4

(1+Y2)2

[(

1+
1−2Y2

4δ/γ

)

eλ+τ

+

(

1− 1−2Y2

4δ/γ

)

eλ−τ
]

. (46)
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For the third-order correlations, Eq. (17), substitute
∆A= ∆σ̃− in Eq. (41) with the initial conditions

〈∆σ̃+∆s∆σ̃−〉 =





2〈σ̃−〉st(|〈σ̃+〉st|2−〈σ+σ−〉st)
2〈σ̃+〉st(|〈σ̃+〉st|2−〈σ+σ−〉st)

2〈σ+σ−〉st(2|〈σ̃+〉st|2−〈σ+σ−〉st)





=
Y4/2

(1+Y2)3





−i
√

2Y
i
√

2Y
1−Y2



 , (47)

obtaining the time-dependent solutions

〈∆σ̃+(0)∆σ̃∓(τ)∆σ̃−(0)〉=

∓ iY5/
√

8
(1+Y2)3

[(

1+
2−Y2

4δ/γ

)

eλ+τ

+

(

1− 2−Y2

4δ/γ

)

eλ−τ
]

, (48)

〈∆σ̃+(0)∆σz(τ)∆σ̃−(0)〉=

− Y4/4
(1+Y2)3

[(

1+7Y2

4δ/γ
− (1−Y2)

)

eλ+τ

−
(

1+7Y2

4δ/γ
+(1−Y2)

)

eλ−τ
]

. (49)
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de México with a thesis
on Wannier-Stark ladders
in elastic systems. He
is currently working towards
a Dr. Sc. degree with Dr. H.
M. Castro-Beltrán as advisor.

His research interests include quantum optics, laser
spectroscopy, and quantum physics analogies in elasticity.

c© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 6, 2849-2857 (2015) /www.naturalspublishing.com/Journals.asp 2857

Levente Horvath
received a B.Sc. (Hons.)
degree and a Ph.D. degree
in physics from Macquarie
University, Sydney, New
South Wales, Australia, in
1996 and 2002, respectively.
From 2003 to 2004, he
was a Research Associate
at Macquarie University

working on microwave antennas and waveguides in
photonic crystals. He was a Research Fellow at the
University of Auckland, Auckland, New Zealand, and the
University of Queensland, Brisbane, Queensland,
Australia for many years. He is currently a lecturer in
Electronic Engineering in Sydney Institute of Business
and Technology at Macquarie University. His research
interests include quantum optics, cavity QED, quantum
information, photonic crystal antennas, stochastic
methods, and computational methods for many body
problems.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Theoretical Model
	Conditional Homodyne Detection
	Spectra of Squeezed and other Fluctuations
	Discussion and Conclusions

