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Abstract: We study theoretically the fluorescence of a two-level atored by a laser of weak to moderate intensity, that is, anegi
where squeezing would occur. Close to saturation atomitufidions dominate and become non-Gaussian, degrading|tdeezng.
Using Bloch equations and quantum jump trajectories we fiatlallowing a moderate degree of non-linearity, condéldromodyne
detection [G.T. Foster, L.A. Orozco, H.M. Castro-Beltrbha). Carmichael, Phys. Rev. Le85, pp. 3149-3152, 2000] would actually
help in observing the elusive squeezing in the fluorescepdedpeasing the size of the characteristic negative spectr
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1 Introduction observation of the weakly squeezed light of a cavity QED
system L0, 11], resulting from single photon fluctuations

Squeezing is the quantum effect where fluctuations in on eparated by long time intervaldg. CHD consists of
alanced homodyne measurement of one quadrature

quadrature of the electromagnetic field are reduced belo o ;
those of a coherent state at the expense of increasin onditioned on the detection of a photon from the source,
P aking the measurement free of detector efficiencies.

fluctuations in the other quadrature. Squeezed light ISFormally, it is a two-time amplitude-intensity correlatio

efficiently produced by monlinear -effects such as of the source field, giving an expressiontbird order in
four-wave mixing in optical fibers and optical parametric the field amplitude, thus introducing third order

oscillation [I]. However, squeezing of thez 3rﬂesonance fluctuations. To relate this measurement to squeezing
fluorescence of a laser driven two-level at IS yet however, the latter must vanish (if the fluctuations are

to be observed. It would occur in the linear regime, with Gaussian or symmetric about the mean) or must be ver
low laser intensity so that the fluorescence, which itself y y

swamps the squeezing, would be very weak, but the Iomf'ma" [10.14)

collection solid angle and non-unit quantum efficiency of ~ The two-level atom resonance fluorescence has
detection worsen the prospects for observation. There arBon-Gaussian fluctuationd §); it is highly non-linear,
proposals to improve the collection efficienc§] [or to thus it cannot be described by a quasi-probability
enhance the squeezing signal using cavitié ¢r  distribution. Also, the fourth order moment of the dipole

feedback §]. Two experiments succeeded in observing cannot be written in terms of a second order moment, as
squeezing but in modified conditions: I [a long-lived ~ Gaussians do: the former vanish while the latter is the
transition is used, little affected by spontaneous emigsio intensity. Third order fluctuations of resonance
and in B] the atom is strongly coupled to a cavity, where fluorescence have already been studi@d g, but only
the modal structure surrounding the atom is notablyindirectly, buried in a fourth order (intensity-intensity
altered. correlation.

A different strategy seeks to cancel the effects of In this paper we find advantageous to use CHD to
detection efficiency 9,10,11,12]. The method of reveal non-Gaussianity of fluctuations in resonance
conditional homodyne detection (CHD) has allowed fluorescence. Indeed, we find useful to bypass the
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restriction to the low driving regime by using the wherefij(t):oeri“*Jt andw is the laser frequency. The
non-negligible third order fluctuations to obtain a picture steady state solutions are
of the difficulty of dealing with the fragile squeezing iy

alone, and a means to obtain a more measurable (G.)g=4+———-, (4)
: . 2

spectrum: the extra noise, below saturation, also has a V2(1+Y2)

single-peaked negative spectrum. Further, analytical B 1 5

tractability of resonance fluorescence helps to illustrate (0z)st = T14v2’ ®)

squeezed and non-Gaussian fluctuations in a manner y2

, . 1
cavity QED cannot do1[0,11,13,17]. A Bloch equations  (040_)st = §(1+ (Oz)st) = 1Y) (6)
approach allows a separation of the correlation into terms (1+Y2)

of second and third order in the dipole noise operators,parey — V20 ;
. i = y. Throughout this paper steady state
[18]. We also apply quantum jump theord/q] to simulate 5,65 gre den/oted with the subindex For later

the CHD correlation, even though the proper methodiefarence, we replace the atomic operators by its mean
would combine quantum jumps and quantum diffusion plus noise

[10,19,20]. This allows for the analytical calculation for

the probability that no photon (or one, or two) is emitted Om(t) = (Om)st+A0m(t), @)

in a suitable observation time. In the weak field limit, wherem= —,+,z, leading to the equations

where clean squeezing is present, the no-photon history

approaches very accurately the exact result. d AGL) = qﬂig(AUz) — X<A5:F> (8)
This paper is organized as follows. First, we briefly d(tj 2 2 ’

review two methods of study of resonance fluorescence. @ o o o

Then, we calculate the amplitude-intensity correlation of gt ‘A0 = 1Q(80+) —1Q(AC-) —y(Agy) . ©)

CHD, followed by the calculation of the fluctuations

spectra. Finally, we discuss the results and give

conclusions. 2.2 Quantum Jump Method

Alternatively, we can study the quantum dissipative
2 Theoretical Model evolution solving stochastic Schrodinger equations,esom
of which simulate actual measurement strategie. [A
We consider a single two-level atom interacting with a guantum trajectory is a record of a possible history of the

monochromatic laser field. The Hamiltonian in the Wave function. A large ensemble of histories reproduce
interaction picture is the density operator. As sketched in the Introduction, we

only consider the direct detection of the emitted photons.
hQ Due to dissipation the Schrodinger equation
KA =hAo.0o-+— (0. +0-), D) dw)/dt = —(i/R)g|%(t) describes  the
non-unitary stochastic evolution of the wave function,
where A is the detuning of the laser from the atomic with periods of coherent evolution interrupted by
transition frequencys2 is the Rabi frequency describing spontaneous emissions, governed by the effective
the coupling strength between atom and laser,@n@re  non-hermitian Hamiltonian
Pauli pseudospin operators. The atom is also coupled to a
reservoir of harmonic oscillators at zero temperature %ﬂ:%_iﬁzo'+g_' (10)
which causes spontaneous emission jumps at theyrate 2
For concreteness, in this paper we take= 0, which
allows to obtain analytical results, though a comment on . . ¢ '
non-normalized and conditioned on its previous

finite detuning effects is given at the end of Section 4. We . : : .
g g evolution. The solutions for the amplitudes from jump to

briefly review two approaches to study the atomlcjump, when the initial conditions,(0) — 1 andcs(0) — 0

The wave function |¥(t)) = Cy(t)|g) + Ce(t)|e) is

dynamics. are repeated, are (with = 0)
. &(t) = & /4t [cosht + - sinhkt] |
2.1 Bloch Equations o(t) [ 4K }
, - _ Gt = —iﬁe—<v/4>tsinh;<t, (11)
The Bloch equations describing the atomic dynamics in a 2K

slowly rotating frame are1] where X = \/(y/2)2— Q2. The emission of a photon is

d, . .Q Y ~ described by the action of the jump operatgyo_, that

§il0%) = Fi5(02) = 5(0%), (2)  resets the wave-function to the ground state, at time
d N . _ _

gi(02 = 1Q{04) —iQ{0-) —y({oz) +1), 3) [WE(t)) — VYO |¥h(te)) = Yee(te)lg),  (12)
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Lo the field amplitude0,11] is
% Mm ~ (101(0)0-(0)ap(1) 1)
Q =1l0 Q =% olr) = (0.0 )st(Tg)st a4

where the dots :: stand for time and normal operator
ordering. To calculateh,(7) the Bloch equations are
solved first and then the quantum regression formula is
used [L9.
Sincehy(7) is of odd order in the field amplitude, we
expect the CHD to be very sensitive to fluctuations.
— Hm" Indeed, fort > 0 it is the quadrature amplitude of the
4 field that is measured on the cue of a photon count, while
for T < 0 it is the intensity that is conditioned on the

Fig. 1: (Color online) Distribution of the number of jumps per @mplitude measurement. The phase dependenhg(of

trajectory for an ensemble of @ealizations of lengtlyT =15  Makes it non-trivial to relate quadrature amplitude and
andA = 0. For weak fieldsQ = y/10, k = 0.12; at saturation,  intensity. For the two-level atom the correlation is given

Q =y/4,k=0.68. by Eq. 0) below, obtained with a different method in
[23,24], which happens to be time-symmetric due to low
dimensionality.

To reveal the effects of fluctuations we use EQ.if
with probability pc(t) = ydt(¥4|o.o_|¥%) in the interval ~ EQ. 14, thu; splitting the amplitudg-intensity correlgtion
[t,t 4 dt], where|Y4(t)) = |Ll7c(t)>/[<ll7c(t)|il7c(t)>]1/2 is the mtp correlations of second and third order in the dipole
normalized wave function. noise operatorsifg],

Quantum jump trajectories allow to retrieve the photon

I

. 2 3
jumps per trajectory

2 3
statistics on the fly]9,21]. Assuming ergodicity, the mean he(T) =1+ hgp >(T) + hgp ) (7), (15)
number of photons emitted in the inter¢ak [0, T] isk = where
yf0T<a+a,>(t)dt, whereT is chosen long enough for the _ . . . _
atom-field interaction to have reached the steady state ip(2)(7) — 2(: Re[<0—>stAU+(9 |40,(1) ) (16)
the ensemble average sense. Figlighows calculations ¢ (040 )st(Tg)st ’
glt ltgre]zgrtJr:(_)rbablhtyH((T) to havek photons in a trajectory h;?)(r) _ (: 08, (0)AG_(0)A,(T) :) | an
Also, one can calculate the average time between two (00 )st{Op)st
consecutive photongp], Note that the numerator of EqL§) is the autocorrelation
of the quadrature fluctuations AGy(0)AGy(T) :), usual
3 1 V24202 in studies of squeezing. Solutions of the two-time
T= = ; (13)  correlations are sketched in the Appendix.

2
V(010 )s v The quadrature witlp = 11/2 is the one that features

squeezing, thus most of our results are restricted to this
case. The normalization is given by the product of Bj. (
and (G 2)st = —Y[vV2(1+Y?)]L. The CHD correlation

for this quadrature is

where we used Eq6J. For a propagation timgl = 15 we
find that for weak drivingQ = y/10, we have/T = 102,
and for moderate driving? = y/4, we haveyT = 18. For
Q < y/10, trajectories wittkk > 2 events are very rare so,

for weak excitation, the weight of one photon events might,_(2) B 1 @y
be obtained approximately by substracting the zero-jum 7T/2( )=- 1+Yze
trajectories to the ensemble. ) 1-5y2
X {(1 —Y“)coshdt + a5jy smhér} , (18)

" . @ 2Y2 /e

3 Conditional Homodyne Detection ho(T) = “Tyee
2-Y?

The CHD measures the delayed evolution of a quadrature X |coshoT + 5]y sinhoT| (19)

of the field E, O gy = (1/2) (0-€?+0.e7'?) by

balanced homodyne detection, whegeis the phase whered = (y/4)v/1— 8YZ2, and the total correlation is
between the strong local oscillator and the driving field, 1 2y2

conditioned on the direct measurement of the intensityhn/z(r) —1—e BV/4r [cosh5r+ ;sinhér} 7

| 0 o,o- at time1 = 0 in the other detector, that is, 40y

(1(0)Ey(T)). The normalized third-order correlation in (20)
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Fig. 2: (Color online) Amplitude-intensity correlation fa =
/2 for weak driving,Q = y/10. Shown are: (i) :H—hgf/)z, (i)
hf’/)z, (iii) total (exact), (iv) single zero-photon trajectoand (v)

the weak field formula. A large ensemble (not shown) appresich
the exact formula.

with initial values given by

2
M2 = 7532+
3 2y?
h%@%*quz—“mmﬂ’

resulting, from Eq.15), in h;/»(0) = 0. For strong driving,
Y2 > 1, th/)Z(O) — —2, which implies a large deviation

from Gaussian fluctuations.
Special cases are those of the weak field livft< 1,

hvnv/egk(T) = 1—e /9T[cosh(yr/4) + sinh(yT/4)],
(21)
and at saturatior = y/4 (orY? = 1/8),

h?;tz(_[) —1- e—(3V/4)T (1+ %y]’) . (22)

The in-phase quadratur@,= 0, plays a minor role in
this paper. For instancgg,—o) = 0. Hence, in order to
measure a finite signal a coherent offset of amplitigte
has to be added to the source field, modifying E¢) (see
[10,18]). This gives

(0,0 )st /2
ho(T) = 14+ ——— /5t g v/
e =3

_ (EotrY)? ! —VT/2

=1+ {14— 20+Y2) e . (23)

Herehp(0) > 1 andhff)(r) is zero at all times.

=
o

o
oo

g
o2}

o
~

o
N

o

amplitude-intensity correlation

S
N
|

Fig. 3: (Color online) Amplitude-intensity correlation fa =

11/2 for driving on saturationQ = y/4. Shown are: (i) & hf/)z,

(i) hf/)z, (iii) total (exact), (iv) single zero-photon trajectognd
(v) a sub-ensemble of zero- and one-photon trajectoriesfdlh
ensemble (not shown) contains®I@alizations.

CHD requires a strong local oscillator field to be
mixed with the source’s output. The balanced homodyne
detection (BHD) arm of the CHD setup thus detects far
more photons from the local oscillator than of the source
so, strictly, a simulation of the detection process should
be of the quantum state diffusion type that, however,
keeps a record of the start photod§][ Our aim, though,
is to study the photon emission dynamics and fluctuations
near the squeezing conditions. Thus we only use the
simpler quantum jump approach to calculate the wave
function and, with it, the relevant observables.

It is not possible to split the correlation into terms of
second and third order fluctuations when we use quantum
trajectory methods. However, with quantum jumps, we
may split the correlation into contributions of histories
with k photons emitted in a given time interve

hy(T) = Z&(T)h(p(ﬁk)- (24)

At T = 0 we have thestart photon of the correlation and
then count the number of photok&t thestopdetector in
the periodT. With each photon emission the atom returns
to its ground state.

The k = 0 term can be obtained analytically exactly
using the solutions1(l), which give the evolution of the
wave function between two consecutive jumps. Equation
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(14) is reduced tdy(T) = (Gy(T))/(Ty)st, Where 0

(Gp(1)) = Im(CeCy)/(|Cg|* +Cel?)
_(Q/2k)sinhkt[coshk T + (y/4K) sinhkT] 00z
~ cosHKT+sintP KT + (y/2K) coshk Tsinhk T

2
(25) U'?: -0.04—

and (Gy2)st = —Y[V2(1 + Y21 Note that a -

zero-photon trajectory does not have a steady state buttt  .o.06-

correlation is normalized with the ensemble value.
Figure 2 shows comparisons of the exact (ensemble)

the zero photonk(= 0) trajectory, the weak field formula, -0.085

and the second and third order formulas. FigBighows

the saturation case, noting thiat>(7) needs thek = 0

andk = 1 sub-ensembles to approach accurately the exagtig. 4: (Color online) Spectra of fluctuations fqr= 11/2 for

result (or full ensemble). o _ weak driving,2 = y/10. Shown are the second order (i), third
It is very important to stress that it is not possible to order (ji), and the total spectrum (iii).

associate the splittings of Eq4.5) and @4), on a one to

one basis. Even for weak excitation, the no-photon

sub-ensemble does not mean that third order fluctuations

are absent, or that the one-photon sub-ensemble deviatghereAo = —y/2 andA+ = —(3/4)y+ 0 [see Eq. 43)].
fluctuations from Gaussian. Even one photon can destroyrhe total spectru Tf}z(w) + 5513/)2(‘*’)' for p=11/2is

squeezing.
yY? 1-2Y? Ay
S2@) = 1732 |\ 5y ) wrraz

+<1—1_2Y2) A } (31)

In most experimental schemes, squeezing is studied in the 45/y ) w?+A?
frequency domain. In CHD the measurement is made in_gps recall Egs. 28-31) are all exact.

the time domain. This allows to assess the g (w)is a positive Lorentzian of widtly, meaning
non-classicality of the quadratures, squeezed or not, bynere is no squeezing fap = 0, even thougthy(T) is

the violation of two classical inequalitied. The noise  on-classical18l. Moreover. the third order term is zero.
spectra of the quadratures are obtained from the Fouri

cosine transform of the CHD correlation$([18]. The
spectrum can be split as

2 () = 4y(0, 0 )s /0 " dreos(wn)h? (1)~ 1], (26)

4 Spectra of Squeezed and other Fluctuations

s (w) = 4y(o, o) /0 dreos(wnhd (). (27) 01
Eq. 26) is a variant of the so-callespectrum of squeezing _
Sf?(w) =2y Jo dTcoswT(: AGy(0)AG,(T) ;). However, %_0'2
as we will see, the moniker is inaccurate. From Eg8-( )
20,23), we obtain
P s A G 03
2 _ > 0.4 | | | | | | | | | | |
2) A 2 1-5Y Ay 6 -4 -2 0 2 4 6
S(’T/Z(w) C(14Y?)2 _(1 v 45y ) w?+A? wly
>, 1-5Y2\ A _ _ _
+(1-Y"— AE (29) Fig. 5: (Color online) Spectra of fluctuations fgr = 11/2 for
40/y ) w?+AZ driving on saturation{2 = y/4. Shown are the second order (i),
3) (@) 2yy4 '(1 2_Y2) Ay third order (i), and the total spectrum (iii).
W= ——>5 SR, | S
/2 (1+Y2)2 | 48/y ) w?+A2
(1o 2-Y? A (30) For thep = /2 quadrature we emphasize, again, the
45/y ) w?+A2]’ weak and moderate driving regime. Figudeand5 show
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their respective spectra calculated from the exact E$s. ( 0
31). The second order term, usually called the spectrum of

squeezing, is negative, which indicates that the fluctuatio i
are indeed squeezed. But the third order spectrum is alsc |

negative, increasing with the strength of the driving field. ?
For weak fields, keeping a singl&-dependent 3 -0.3
correction in Eq. 81) we have ]
~-0.4
eak( y2 2 1 o
~ —yY N
Stz (@) [w2+(y/2)2(1+4Y2) 09
3y2Y?/2 0.6
+— 3/2 / 5 2]. (32) L
[w?+(v?/2)(1+Y?)]
0 0.1 0.2 0.3 0.4 0.t
Qly

The width of the leading peak ig(1+ 2Y?), slightly
increased by the presence of the second peak.
Disregarding all  corrections we  find that Fig.6: (Color online) Size of the spectrum at= 0 for second
S,"T’ffk(w) — —S(w). order (i), third order(ii), and total (iii) spectrum. F& > y/2 (see
Interestingly, Rice and Carmichae2q found that the inset for an extended range) the total.s.pectrum is neeloag
squeezing reduces the weak field linewidth of theSingle peak, and fof2 > 0.7y takes on positive vaues.
incoherent spectrum of resonance fluorescence, a narrow
squared Lorentzian, due to the substraction of two
Lorentzians. One of them is slightly smaller but carries4
the squeezed fluctuations. In the present case, however,

the extra noise is correlated to increase the size and width,o integrated spectrum represents the total power
of the spectrum of squeezing. emitted by the atom. Likewise, the integrated
I;or saturation intensity2 = y/4, we evaluate Eq30)  phase-dependent spectrum represents the size of the noise
aty<=1/8, giving in a quadrature: in the standard treatment of squeezing it
is expressed in terms of the variance,

1 Integrated Spectra and Variances

5(3y/4)? + 3w? _1 oo ~ ~
(@) = _2_VZ [%] L (33 ()7, SP (w)dw = (: AGy(0)AG,(T) 5) =V, [3].

[w?+(3y/4)?] Integrating Eq.28) we have

a squared Lorentzian plus a frequency-dependent term, ® y2

with linewidth Aw = 0.82(3y/2). Above saturation the / So(w)dw = 4y ——- = 4m\p. (37)

: T —w 2(1+Y?)
eigenfrequencyd = (y/4)v/1—8Y2 becomes imaginary
and sidebands appear. This is the mean intensity emitted in the full solid angle

However, the spectrum remains a single negative peakrt. Similarly, integrating Eqs.29) and @0) we have
up to Q ~ y/2, above which the peak splits. It seems .. Y2(1-Y2)
practical then to look at squeezing via the size of the/_oo S‘nz/)z(w)dw = —ANy o ——55 = 4MWp2,  (38)

spectrum at the frequency =0, 2(14;Y2)2
« Y
2(py2 _ S® (w)dw = —4my———— . 39
Spp(@=0) = —4Y1(2\:(—2 =. (34) S Yy %)
(4 +2 ) The former is a well-known resul8], where the variance
¥ (w=0) = 2Y'(Y°-5) (35) is negative (i.e., there is squeezing) ¥ < 1, while the
/2 (1+Y2)3 ~ latter is new, negative for a¥f, required to match thital
2V2(Y2_ 2 noise of the in-phase quadrature,
Sual0=0) = 2D, (36) .
| Sua(e)dw=—4mpse. (40)

shown in Fig6, These are negative foQ2 < y/2,
Q < yy/5/2, andQ < y, respectively. The minimum of This is further proof of the non-Gaussianity of resonance
the 2nd order spectrum (maximum squeezing) is seen dtuorescence fluctuations.

Q = 0.3y. This means that maximal is not optimal, a

point observed previoush[9]. In our case, it means that

near and above saturation squeezing might be large but i4.2 Effect of Finite Detuning

contaminated by the third order fluctuations. Cleaner

squeezing (small third order fluctuations) is limited to Here we briefly discuss the effect of finite atom-laser
Q <0.1y. frequency detuning on the CHD correlation and spectra.

(@© 2015 NSP
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One should begin with the scattering rate, Acknowledgement
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and spectra. However, the increased generalized Raf§iupport.

frequency induces oscillations ittngpz)(r) at smaller

driving intensities, thus the spectrum develops sideband

like those in the strong driving case, with a positive

component at = 0 [13,18]. We sketch here the analytical solutions of the two-time
correlation functions, the numerators of Eq&6)(and
(17), for the dipole fluctuation operators. We start with
the Bloch equations for the atomic fluctuations, E@. (

Appendix

5 Discussion and Conclusions and @), written compactly asl{(As)/dt = M (As), where
AG- -y/2 0 -iQ/2
i ] ] - As= | AGy |, M= 0 —-y/2iQ/2
In this paper we have investigated conditions for Ac, -iQ iQ -y

non-Gaussian fluctuations to manifest in two-level atom

resonance fluorescence. Clean squeezing occurs when thksing the quantum regression formulkf], two sets of
atom is very weakly driven, when the average timeequations for the correlations of the dipole fluctuation
interval between two consecutive photons is much longeoperators, for the second and third order, are then
than the regression time to the (ensemble) steady state. lobtained. Both have the structure

CHD, which is only weakly sensitive to detection d , . -

inefficiencies, third order fluctuations can be studied gy ‘A9+(@AS(TAA(0)) = M(A0, (0)AS(T)AA(0)),
naturally. We found it convenient, however, to deviate (41)

from the ideal squeezing conditions by considering MOre i1 formal solution aiven b
moderate laser intensity. 9 y

A density operator calculaton of the (A&, (0)As(T)AA(0)) = ReTR(AG, ASAA), (42)
amplitude-intensity correlation allows to split the ] ) ) ]
fluctuations into terms of second and third order in theWhere R is a matrix that diagonalizesM, and
dipole noise operator. Second order noise is called®, = diagAo,Ay,A-) is the diagonal matrix of
squeezed if its spectrum is negative. The third order noisé&igenvalues oM given by
increases with the driving intensity in the interval where do=—y/2, Ay = —(3/4)y+3. (43)
squeezing occurs, contaminating the latter. Fortunately,
for moderately weak driving, both the second and third  For the second-order correlations, Ef6) substitute
order fluctuations have coincident negative spectra. ThigfdA= 1in Eq. 41) with the initial conditions{ = 0)
signature of third order fluctuations are more convenient A 2

(040-)st— (04 )st]

to observe experimentally than looking for clean AG.AS) — ~ 5
ing i i (A As) = —(04)s
squeezing in second order correlation measurements. 26 Va0 T )t
. . - +/S +Y—/s
The quantum jump method makes a decomposition of )
the CHD correlation in terms of the number of excitations Y2/2 Y
in @ measurement time. One has to note, however, that it = vz | ; (44)
is not possible, even in the weak field regime, to associate iv2y

the k—th contribution to either the second or the third |eading to the full time-dependent solutions
order dipole fluctuations. One photon is enough to imprint v2/4 v2/8
nonlinearity and non-Gaussianity on these quctuationsma+(o)Aa¢(r)> o7

The combined analysis, in the framework of conditional S 14y (1+Y2)2

homodyne detection, has helped to illustrate the physical , 1-5Y? At

processes that lead to the emergence and the degradation X 1=+ 45/y

of the elusive squeezing in resonance fluorescence. 1_5y2

Finally, the total noise emitted must be independent of + (1—Y2 — _5 ) e/‘T] , (45)

the quadrature observed. CHD has permitted us to find 40y

the integrated spectrum of the third order fluctuations in 3 V)

the out-of-phase quadrature. The third-order spectrum cafA &, (0)Aoy(1)) = iM 1-2v Mt
(14Y2)2 45/y

be used as a complement to second order spectrum of

. . . _ 2
squeezing to accurately identify and observe the +(1 1-2y )e"r]. (46)

squeezing in the light field emitted by an atom. N 45y
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For the third-order correlations, Eql®), substitute
AA=AG_ in Eq. (41) with the initial conditions

2<5—>st(|<5+>st|2 —(040-)st)

(AG.ASAG-) = 2(6)st([(61)stl* — (010 )st)
2<U+U—>st(2|<5+>st|2 — (0,0 )st)
Y42 —ivay
Taeer ()
obtaining the time-dependent solutions
(4G, (0)AG+(1)AG-(0)) =
Y5/\/§ 2-Y3\ o ;
wrives | (M a7y )¢
2-Y2\ ,
+(1——46/y)ef‘ } (48)
(A6 (0)A0,(1)A6-(0)) =
Y#/4 1+7Y2 5 e
e | (g —a)¢
2
—(1:57; +(1—Y2)) e“} . (49)
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