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Abstract: In this paper we consider stochastic interest rate and ifjfaiss deterministic part with respect to oscillation and
monotonicity, latter according to Kiguradze. We illustrasefulness of such classification on convenient exanipldading feasibility
ratio and choice of pension pillar. Interest rate followsd @rder quasilinear stochastic differential equationcllgeneralizes a result
of [13]. As a side result we obtain Kiguradze characterizatiomadsth solutions of deterministic part of Parker’s stocitadifferential
equation. We show that Parker’s model allows oscillatiarg laetter long term behavior of the interest rate in compari 1st order
interest rate model. In such a setup we study the sensitififgasibility ratio to the dynamics of the underlying irgst rate. We
cover the wide spectrum of life time distributions incluglithe generalized Gamma as well as the Gompertz-MakehanWewpply
obtained results to briefly discuss the situation typical§ome Eastern-European countries when many people are enemba
pension scheme operated under public management as wdlliadeal scheme financed by employees contributions.

Keywords: generalized Gamma distribution, Kiguradze class, persistem, quasilinear differential equation, stochasterast rate

1 Introduction models and brings the novelty in the study of several
actuarial problems. As a side result we obtain Kiguradze
Many economist as well as financial analysts will characterization of smopth solgtions of Qeterministidpar
disagree with an assumption of constant interest rate®f Parkers stochastic differential equation. As far as we
Stochastic interest rates play an important roleknow, an analogous classification for stochastic
considering long maturity contracts. This is well-known differential equations (systems) has not been done yet.
in the literature, see e.gl[L9 or [16] and references SUch @ classification is important for initial values
therein. However, most of the literature uses one-factoroblems in theory of ordinary differential equations
interest rate models which do not capture long run trends(ODES). This relates to solutions which can be extended
In this paper we consider stochastic interest rate, it2n the semi-axis. Therefore the unique classification
classification and illustration of its effects on convenien OPtained by Kiguradze can be well employed to classify
examples, including feasibility ratio and choice of deterministic part of stochastlc dlfferentlal' equations.
pension pillar. The interest rate is following a 2nd order From our numerical experiments this classification can
quasilinear stochastic differential equation, which play a s[gr)|f|cant role in an analogous classification for
generalizes differential equation of 13. This  Stochastic interest rates.
generalization allows interest rate to mimic oscillatory  The paper is organized as follows. In the 2nd section
behavior, improve its long-term properties and give we introduce the model of time-dependent interest rate
opportunity to study faster (slower) diffusion models for following 2nd order quasilinear stochastic differential
interest rate. Thus inclusion of Parker's model in its equation, which generalizes a result d8]. In section 2.1
natural generalization by quasilinear SDE provides uswe characterize smooth solutions of deterministic part of
possibility to better study main features of Parker’'s Parker's stochastic differential equation according to
interest rate and behind. This also modifies the classicaKiguradze. We also discuss main features of introduced
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interest rates. In section 3 we present life time Definition 1 By deterministic interest rate we consider a
distributions  used in  this paper, namely weak solution of differential equationd); i.e. the
Gompertz-Makeham law and generalized Gammaderivative of interest rate exists up to 2nd order in a weak
distribution. We derive the feasibility ratios for thesteli  sense (see e.g. Chapter 5.4 6])[ By stochastic interest
time models and several interest rate models. We showate we understand arbitrary solution of stochastic
that decreasing deterministic interest rate boostdifferential equation¥).

feasibility ratio in comparison withu/v for constant Our model B) can be expressed in the classical form
interest rate, which makes investment in pension fund Iessof the stochastic differential?aquation (system)

attractive for individual person. In the section 3.5 theecas Y

of stochastic interest rate is discussed. Therein we will ar — o1 (S ) g

see that size of volatility is crucial for expected feadipil e =%y p(t)

ratio E(u/v) to be grater (lower) in comparison withyv _

computed for constant interest rate. The pattern of dst = dop(t) Py(re) ot + 0 (1) Pay (1) W )
decreasingu/v for increasingT is well visible also for Using e.g. following theorem we can directly obtain

non-constant (both deterministic and stochastic) interesuniqueness result. We writ&|2 = YiilZij |? for matrix Z.
rates. This justifies the fact (observed for a constant
interest rate.by2{| that given the age of the member, Theorem 1 (12, Theorem.5.2.1) Let T > 0 and
when the retirement age increases, the fund can afford ) n n i n nxm

; : : () [0,T] xR"—=R", 2(-,-) : [0,T] x R" — R"™™M be
to pay a higher pension rateto the member. In section 4
we illustrate the impact of both constant and non-constan
interest rates on pensions with the real data from Ib(t, )| + | Z(t,X)] < C(1+ |x));
Slovakia. Technicalities and proofs are put in Appendix. ’ R

(x,t) e R"x [0, T] for some constant C, and such that

{neasurable functions satisfying

2 Model of interest rate Ib(t,x) —b(t,y)| +|Z(t,x) — Z(t,y)| < D|x—y|;

[13] assumes that interest rate (orforce of intere(ﬂ;'g)can X,y € Rn7 te [O’T] for some constant D. Let Z be be a
be modeled, fot > 0, by a linear second-order stochastic random variable which is independent of trealgebra
differential equation (SDE) of the form zm generated by W.), s> 0and such that
dr ) -
d(#) = 0o dry + dpre dt + o(t) dWi, (1)

whereo is nonconstant volatility. One can divide this type
of equation into deterministic part (ODE) and stochastic

E [|Z[?] < oo.

Then the stochastic differential equation

noise (Wiener process). For technical purposes, we rewrite  dx, = b(t,X)dt + = (t,%)dwW, 0<t<T,
deterministic part of ) in the Sturm-Liouville form (as Xo=Z
differential equation, DE) . _ _ .
DY — tr=0 2 has a unique t-continuous solutiop(¥) with the property

(p(O)F ). aolp( )r=0 @ that X% (w) is adapted to the filtrationZ? generated by Z
wherep(t) is defined as and W(-); s<t and

p(t) = e~ -

To be able to better classify Parker’s interest rate we E [/T I%|2dt < oo] '
modify both @) and () into a quasilinear DE and SDE, 0

respectively, by adjustment of derivatives together with

multiplying the volatility by powered interest rate terrh. | [N our case we have=2, X = (r,) and

is formalized by means of a signed-power function s

,(2) = 2"z y > 0. b(t,X) = (cpl (_) cop(t) By (r ) ,
Thus we arrive to the following two nonlinear DE and (%) Y \p(t) oP(t) P{re)
SDE for interest rate

ny’ _ o 0 0
(PO @y ("))’ — a0 P)Py(r) = O, ) Z(tX) = (0 o) %B(rt)> |
dr In the linear case, i.eg =1, az = 1, we have following
d (p(t)(‘by (E)) — Qop(t) Py(rt) dt— values of constants in inequalities of previous theorem

—0(t) Poy (1) W = 0. ) C:D:Zmax{S+P|ao|,}},
Notice that @) is quasilinear DE and5j is quasilinear P
SDE which is apparently generalization of Parker model - -

(1) obtained from ) for y — 1 andaz — 0. S= max|o(t)],P = max p(t).

(@© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 2L, 325-338 (2015)Wwww.naturalspublishing.com/Journals.asp NS P 327

Existence is always secured, but changing valugsotr; "
either violates uniquene$¢s 1) or causes blow-up> 1).

To characterize the oscillatoric interest rates, let us
consider the analogue with the linear equation by looking o 005
for smooth solutions of 4) in the form r(t) = €.
Substituting into 4) we get the algebraic equation far
in form

F(A):=yA""! —a1®y(A) —ao = 0. (7) AN\
FunctionF introduced by 7) is not convex but it has only ’ ' et .R ! . ' m_ ? . !
one point of extremum (zero is inflection point) and hencefigure 1. Behavior of Figure 2: Behavior of
the equationF(A) = 0 has two, one or no (real) root Monotonicr(t) oscillatoryr(t)

according to the values of parameters. Using calculus we
find that double root in%) occurs only forA = 2L and

0.04+ 0.04

0.01 0.01

y+1
1
oy =— (‘y‘fl‘;;l. In the case Example 2 Stochastic processrelated to power interest
rate
o> oy |VHE ®) Considering the original Parker's equatiori)( and
0 (y+1)v+1 having rt) = t%,a < 0, o(t) = 1 and integrating

all classical solutions of4) are oscillating (by oscillation ~€duation from0 10 o, t > 0 we obtain

we mean that function has infinite many roots). Sgle [

chapter 1.4.2 for detailed discussion of analogous case. a1 a ao ,g41

Thus we know that if condition8) holds, then only W(to) =W(0) +aty " — aitg — a+1to

oscillatory solutions can occur (this immediately holds

when ag is positive). The following example illustrates which is the non-random function with random beginning.
the case of oscillatory interest rate. If o(t) is non-constant, we have after integration frOrio
to,to >0

Example 1Oscillatory interest rate-deterministic part
Now, consider the special case of the equatirfor a1 a a0 q41 [©
ao satisfying(8). Be more specific we study equations of ~ 0t ~— 01ty — ==l "~ /o o(t)dw(t) =0
the type ’
"y _ If we consider the generalized SDg) @nd use (t) =
(p(t) ey )) ~ doPp(t) By(r) =0. ©) t? a <0, o(t) = 1 and integrate fron0 to ty,tp > O(tzlen
Exact solution can be expressed in the implicit form we receive

(with periodic continuation) similarly as half-linear

t
trigonometric functions (generalized sine and cosineg, se /O(| —aly(a — )"V =1p(t) — app(t)t¥ +
[5], chapter 1.1.2._ (representative in the linear case is .
cleatcosbt+ czeatsmbt). +| . a|yalp(t)ty(a—1))dt _ / otaagdw(t) (11)
0
The initial value problem witlo = —1, a1 = 0.2 The right side of equatiorL.() could be written agi’ (t —
Y _ s)%3dW(t) where t=t — s which is a fractional Brownian
(P(t) @y(r)') -+ p(t) @y(r) = O, motion. In the case of non-constam(t) the right side of
r(0) =0.05, equation (1) will become/° o (t)t¥3dW(t).
r'(0) = —0.05, (10)

has a solution, which is oscillatory decreasing, see Figure
1
2 for several values of parameter gamma (bjue 3, red

y =1, blacky = %), where a solution in the weak sense is
taken.

2.1 Kiguradze classification of deterministic
interest rates

To be able to classify interest rates defined in Definition 1

By oscillatory interest rates we can obtain solutions ofby means of Kiguradze classes, we focus on smooth
Parker’s equation which are possibly negative. In the nexsolutions with p(t) > 0, ap < 0 and such that the
section we focus on non-oscillatory interest rates whichfollowing condition holds (in the Lebesgue sense)
can be classified by the means of Kiguradze. This allows ” N
us for a better classification of such interest rates. / p(t) ¥ dt = co. (12)

The next example illustrates the special case of 0
interest rater(t) = t% a < 0 as a solution of either Notice that from 12) we havea; > 0 in (3). [13]
Parker's equationl{ or generalized SDE5). considered negative constany to obtain stable and
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revertible stochastic process. Negatiwe can occur in  Theorem 2 If both integrals(13),(14) converge, then the
oscillatory solutions (see previous Section). equation(4) has solutions in class M.

Taking into account the corresponding homogeneous .
equation one can see that its solution space is generated fye know that in our case

1
Jo(t) =1, I, = lim g dut (/ aoe_"lsd3> dt <
T—o Jo 0

510 = [ Gofspi) Vos= L (¥ 1)

(in linear case it is called a principal system). It can be
shown (a generalized lemma of Kiguradze (s@g dlso ;g
see RO] for an English treatment on generalization for the

nelinear case) that if is nonoscillatory solutiorf.#") of T, T :
(4) then it belongs into the one of the following classes I, = T|im p(t)Y (/ Ip(s)] ds) dt <
—o Jo t
JI{):{FGJVI It : rr’<0,r(p(t)¢y(r’))/>0,t2t,}, 1y
P (ao0) Yo
Jt/lz{reﬂ/:Ht,:rr’>0,r(p(t)CDy(r’))/<O,t2tr}, <Y 5 !
. . /
Mo = {r €N 3t i’ >0,1 (p(t) @y(r)) >0, t 2tr}~ Example 3Nonoscillatory interest rate - deterministic
Important consequence of mentioned lemma is the fact ] parzt o -
that, in view of inequalities valid for € .41, there exist Let us considery < —aj7/4 (which is the condition
positive Constanteo’ c1 andT such that considered by 13] and negatlon of Condltlor(B) from
previous section). In the case pf= 1, it is not hard to
Codo(t) <r(t)| <crdy(t), for t>T. show that the initial value problem
Th_e following properties can be fo_und iﬁ][(chapt_er 4). p(t) r’)’ —agp(t)r =0,
It is known that equation 4) with arbitrary initial r(0) = 0.05
conditions is a well-posed problem. Further, all solutions T
of the @) must be nonoscillatory since the equation r'(0) = 0.05c, (15)

(p(t) @,(r"))" = 0iis its nonoscillatory majorant. For such
equations we know even more about nonoscillatorywhere ¢ = %(al — 1/a12+4a0), has a solution

solutions. Ifp(t) is different from zero for largé then all F(t) = 0.05€%. The quotient of the parametes,, ao

solutions of non(')sqllatory. equation are eygntually determine how fast the interest rate will decrease in time.
monotone. Thus, it is possible, a-priori, to divide the

. . a . . .
solutions into the following classes: The higher |sa—l the slower is the decreasing and vice

0

versa. Now consider the nonlinear cage= 3 under
negation of condition(8) from previous section, i.e. the
initial value problem

MY ={r:3t:r'>0t>t},

M™={r:3t:rr'<0,t>t}.

It is shown thaM* (either positive increasing or negative (p(t) (r/)g)/ —aop(t)r* =0,
decreasing)M~ (either positive decreasing or negative r(0) = 0.05,

increasing) are not empty fod). In addition these classes ,

can be divided into mutually disjoint subclasses r'(0) =0.05c. (16)
depending on the limit ofr(t) near infinity. M~ can
contain only bounded solutions tending to zero on
nonzero constant. Moreover we need the following
notations

Assume that there exist solution in forit)r= €. Then
after substituting we obtain quartic algebraic equation
p(k) = k* — L k3 — 22 = 0. With the change of variable

; t 1 k=1I1+ % it can be reduced to an incomplete equation
o 1 v and then the so-called cubic resolvent can be written. The
= 'I!ILnoo/o P(t)Y (/0 |p(s)|ds> dt (13) roots of the incomplete quartic equation are determined
T T 1 by the 'roots of the cupic resolven_t. One can chgck that

I, = lim p(t)% </ (S| ds) "t (14)  discriminant of the cubic resolvent is always positive and
T—oJo t therefore it has one real root and two complex conjugate.

The convergence or divergence of these integraIsThUS our related quartic equation must have two real and

characterize the classes above, i.e. decide abol¥¥O COMPleX conjugate roots. We also found the local
qualitative behavior of solution of equatiof) ( minima —5—5}6 —ag in kp = %. But obviously
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p(0) = —%. So there must always exist negative root asgeneralized Gamma or Gompertz-Makeham distribution
p(k) — o for k — —oo. If we denote it as ¢, then we have modeling the death time. It is worth mentioning that
found the solution of the problem(16), namely several different approaches dealing with the problem of
r(t) = 0.05€. Notice that such a solution belongs to contribution rate exist. For example some authors used
M~, also it is decreasing (asymptotically 0), which is a the approach based on Lee-Carter models or Lee-Yang
convenient model of interest rate. The example ofapproach based on Kalman filter-like processes.
monotonic interest rate is displayed on Figure

3.1 The generalized Gamma

2.2 Properties of introduced interest rates .
We assume thatt follows a generalized Gamma

The usage of introduced interest rates allows us to modeflistribution (ggd), i.e. its density has the form

several periods of diffusion driven interest rate, in which a y

. . . _ B y a
the speed of diffusion changes. Thus the main advantage fY19) = —3357 (5) eXp(—(E) )s
of 2nd order SDE model is the flexible model which can ol (=5~)

be used for forecasts with cycles. In particular, it may B
have a tendency to continue its recent trend beforeIor y >0, and & = (a,B,0). The god has many

reverting to its long term mean. Moreover, the meaningsappllcatlons in life sciences since many of the important

of the parameterst, and a; are interesting (see also nondiscrete density functions can be derived from it. For

[11]): ao represents the restoring force bringing the €X@mMple, f(y[(2,0,v20)) is the one-sided normal
process back to the equilibrium position and is a d|zstr|'but.|on,. and f(yl(1,n/2 — 1,2)) is the
damping force which, for large values of brings the ~ Xn-distribution. In the special case @ = a —1 the
process back to its equilibrium position. Then we can Gamma distribution is called the Weibull distribution and

argue that the process has a mean reverting property! €ase ofa =1 we obtain the Gamma distribution.

stronger than the one we find in first order models. hile not as frequently used for modeling life data the
Beside that we have advantage of nonlinearity. Thedeneralized Gamma distribution does have the ability to

operatorAyu = div [Ou~X0u, often used in heat-type mimic the attributes of other distributions such as the

equation like Black-Scholes PDE etc., describes the typd/Véibull or lognormal, based on the values of the

of diffusion with density-dependent diffusivity d|str|but|ons parameters and therefore is sometimes used

(depending on the gradient of the main unknown), whicht© model life data by 't(sflf' _It—')ro.m now on we uge= 1/0

also has a strong connection with fast diffusion equation&S @ parameter of our distribution.

(y < 1) or slow diffusion ¢ > %). Thus one can The Weibull distribution is a versatile distribution that

n n’*

effectively regulate speed of the diffusion. In some senséf@n take on the characteristics of other types of
it is the simplest nonlinear modification of the heat distributions, based on the value of the shape parameter
equation in the area of diffusion. In our case with B > 0-Ithas the density of the form

dimensionn = 1 we have generalized Parker model in 1 B

order to obtain better diffusion-control. Model can be f(y19) = BYPyPexp—(w)P).y > 0,

understood as a one dimensional analogue of quasilinez%h 9 —

PDE (SDE). These type of equations might be even more ered = (B.y)-

"nonlinear”. There are many models including Relationship between ggd and Lee-Carter model

p-Laplacian, but also models including other types of o ) i
nonlinearity, see e.g. Nualart and Ouknidé][ Girosi and King has shown in (2007) that the
Lee-Carter model is equivalent to a special type of

multivariate random walk with drift (RWD) model, in

e L L o which the covariance matrix depends on the drift vector.

3 Llfg .t'me distributions and feasibility These observations suggest that, since the RWD does not

condition make any assumption about the structure of the
covariance matrix, while the Lee-Carter approach does,

[2] derived a feasibility (equilibrium) condition on the the Lee-Carter estimator will be preferable to the RWD

ratio of contribution and pension rates which makes theonly when we have high confidence in its underlying

model equally convenient for both the fund and its assumptions. Such a model have a form

members. In2] however, the exact form of the feasibility

ratio is given only for the exponentially distributed death ¢+ =X+ 6+ &1, & ~ N(0, a?). 17)

time and an approximation is given in the case of thelLet us generalizel(?) by

Weibull distribution while B] derived the exact form of

feasibility ratio for Gompertz-Makeham distribution. But X1 =X+ 0(%) + Mia, (18)

in reality, the life-time distribution can be more complex. where g is a positive function and{n:} is a

Here we present an analytical study in the case of asquare-integrable martingale difference sequence, the
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second conditional moments of which depend only on thebe feasible if it satisfies1@). But this definition is not
present state of the proceXgs It is known that a large suitable for the case of nonconstargince it is not true
class of processes (18) diverges with positive probability anymore. Thus we consider the following analogy

and when properly normalized converges almost surely or . o .
converges in distribution to a normal or a lognormal Definition 2 A pair of contribution and pension rates
distribution (here notice that one sided normal and(U.V), U,v>0in case of nonconstant interest rate is said
lognormal distributions are special cases of a ggd).to be feasible if

Klebaner P] has founpl a class of processes Sl_JCh that u o fPexp(— fEr(uydu)g(s)ds

when properly normalized converges in distributiontoa = =": - : g . (20)
ggd. Applications of this result to state dependentrandom vV J;, eXp(— J;, r(u)du)q(s)ds

walks and population size-dependent branching processes . . . . .
yield new results and reprove some of the known results. >ince lifetime density functions have nonnegative
In such a setup usage of generalized Gamma distributiofUPPOrt and

is properly justified and Lee-Carter model could be a . .
{ (s< T)e_.]tor(u)dUdsjl =E] {/ g(s) ds] =
to

T
properly specified special case, if we are sure about its Ef I
underlying assumptions. Notice, that beside this random
walk justification, feasible estimation and testing “

procedures for ggd are developed, see e.g. Steflik [ =/ f(1) Tg(s) dsdt = /oc a(1) /w f(s)dsdr =
and references therein. to to to T

fo

— [T <T)e horwd / f(s) dsdr,

oy ey oy t .

3.2 The feasibility condition . . . '
this formulation is equivalent to

We consider a deterministic pension scheme where the lim Ry (T)
total amountJ (t) of contributions to the fund follows the U Tow f 1
differential equationdU(t) = udt, and the total amount v R¢(T) ’

V(t) of pensions paid by the fund follows the differential
equation dV(t) = vdt, where u and v are positive

: hereR((T) = T e ho" %1 _ F(1))dr andF is cdf
constants. These two rates are linked by the so—calle%i 0 ; '
feasibility condition foru/v which will be discussed in elated to pdff. Both integrals are defined properly as

: ) X ; they converge (numerator is less or equaEtX) and we
this section. It follows that such a pension scheme is bOthbonsider distribution with existing mean value). It is thus

of a defined-benefit pension plan type and of 4 obvious that ratio is decreasing functionTobounded by
defined-contribution pension plan type. The retlremento from below (remind here thatis decreasing function to

dateT for a member is assumed to be imposed by the law. : ; e
Also is assumed that until subscriber death time Iifeé?srt?i)ﬁulagrni we giveRy(T) for certain type of lifetime

annuities are paid not depending on fund performances. .

Many Eastern European countries prefer some form ofexponential distributiorR; (T) = ftcT, g horWdu-AT 4o

compulsory annuitization. The problem of optimal assetGamma distribution:

allocation in this case is discussed iff] [under the Rf(T):LfT efftgrw)dul-(ﬁ yT)dr

assumption of a constant interest rateWe emphasize (B) Mo ’

that our paper does not deal with an optimal allocation

problem but with the dynamics of feasibility ratio

imposed by a condition on contribution and pension rates

insuring that the model is equally convenient for both the

fund and its members. a T
We suppose the constant level of the contribution and Rf(T) =eP j{g e o'

the pension ratesu(and v respectively). Equating the

expected present value of contributions and pensions then

leads to the equation (3) i8]t 3.3 Feasibility ratio for constant r

u 7 exp—rs)q(s)ds

- = jTT prs)a(s) ; (19)  First let us consider the Gamma distribution of the form

Vo, exp(—rs)g(s)ds 51

[
where at timety, the member enters the fund, is the f(tly) = yP =o€, for 1 >0, (21)
L , . . rg)

(deterministic) retirement age and is the survival
function. Finally we may recall the Definition 1 fror3]| where y > 0 is scale parameter anfl > 0 is shape
that a pair of contribution and pension rates parameter. Following theorem provides the feasibility
(u,v), u,v > 0 in case of constant interest rate is said toratio for the Gamma distributed life time.

Gompertz-Makeham distribution:The
Gompertz-Makeham law states that the death rate is
the sum of an age-independent component and an
age-dependent  component  which increases
exponentially with age.

(u)du—A r—%eﬁf dr
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Theorem 3 Let 7 follow the Gamma distribution2(l). Table 1: u/v for Exponential distribution, constant, oscillatory

. . ~ __t
Then the feasibility ratio has the form and exponentially decreasing rate§) = s 1 cos 14p)-
B ‘ r ‘ y ‘ T ‘ e ) ‘ const.r ‘ f(t) ‘
E:M_L 0.02 | 0.013] 50 | 6.2137 | 0.2377 ] 0.1839
v A 0.02 | 0.013| 30 | 15.9806 | 0.5912 | 0.3918
where 0.02 | 0.013| 20 | 34.1186 | 1.0697 | 0.6843

0.005| 0.013| 50 | 6.213736| 0.6851 | 0.1839
r(Bp,yT) 0.01 | 0.013| 50 | 6.213739| 0.4633 | 0.1839
r(p) - 0.05 | 0.013| 50 | 6.213762| 0.0477 | 0.1839

002 | 0.02 | 50 | 2.7844 | 0.1565 | 0.1023
v r(B,(y+1T) 0.02 | 0.025| 50 | 1.8140 | 0.1178 | 0.0723
- 1—7,—(3) ; 0.02 | 0.03 | 50 | 1.2615 | 0.0894 | 0.0525

r(B,t) = ;" exp(—s)s#~1ds is an incomplete Gamma
function. Feasibi|ity ratios fOIﬁ =1and Variousy's are Table 2: Feasibility ratios for Gompertz-Makeham distributionnionconstant case
in Table1. c=—¥.
[ ] a [ B [ A T[T TT r(® Tconstr ]
The next theorem provides the exact feasibility ratior—5.02 T 0.000007 [ 0.21807 | 0.0006 | 50 | 05431 | 0.235

for 1 distributed according to generalized Gammal| 0.02 | 0.000314 | 0.08564 | 0.0006 | 50 | 0.2423 | 0.115
distribution 0.02 0.00062 0.0532 | 0.0006 | 50 0.5328 0.213

0.005 | 0.00062 | 0.0532 | 0.0006 | 50 | 0.5329 0.426

il ; ; 0.01 | 0.00062 | 0.0532 | 0.0006 | 50 | 0.53288 | 0.340
Theqrem4 Feasibility ratio for Generalized Gamma R B e
Distribution has form

0.005 | 0.000007 | 0.11807 | 0.0006 | 50 | 8.90776 | 2.896
0.01 | 0.000007| 0.11807 | 0.0006 | 50 | 8.90776 | 1.417

A= (y+r)P (1—exp(—rT)

u_ o 1 0.05 | 0.000007 | 0.11807 | 0.0006 | 50 | 8.90778 | 0.086

v U 0.02 | 0.000007 | 0.11807 | 0.001 | 50 | 7.9660 | 0.537

0.02 | 0.000007 | 0.11807 | 0.002 | 50 | 6.1380 | 0.498

where 0.02 | 0.000007 | 0.11807 | 0.01 | 50 | 1.5232 | 0.2869

. B+1 2 (—DKr(B+ka+1)
=r <7> _akzo Ki(or)pritka -
Feasibility ratio for Gompertz-Makeham distribution is
. B+1 B+1 [T\ 7 given in [3]. Some special cases are shown in Tadble
v="r (T) -r <T< ) )e - Tables1 and 2 show in particular that non-oscillatory
decreasing deterministic interest rates increase féigibi
. ratio in comparison withu/v for constant interest rate
(which makes investment in pension fund less attractive

Table 3 provides the comparison between the exactfor  individual — person). ~ The  difference  for
and approximative feasibility ratio, where Batt. denotesGompertz-Makeham distribution (Tabl@) is lower.
[2] approach. We can observe a severe bias for specifiElowever, notice that oscillatory decreasmg-lr)t.erest rate
values ofr,a,B,T. Therefore we recommend the exact ' (t) = 0.05e™/*®cogt/100) decreases feasibility ratio
feasibility ratio for its practical assessment and we usedVith respect tou/v for constant interest rate. In section
entirely exact formulas in the paper. In the section Al of 3.5 the case of stochastic interest rate is discussed.
appendix we illustrate inaccuracy of approximative Therein we will see that size of volatility is crucial for
feasibility ratio when the parameters of Weibull €xpected feasibility ratidE(u/v) to be grater (lower) in
distribution are estimated by maximum likelihood, which comparison withu/v for constant interest rate.
also justify usage of exact formulas.

Feasibility ratio in the case of a logistic model fort

g CONIM(Brka 1) T (B+ka+1.Tr)]
kgo k!(o’r)ﬁ+l+ka

The force of mortalityic = P+ ;7 Zwwleads tapc= 3.4 Feasibility ratio for r following 2nd order
exp[— (p+9)t] Lt ODE

I . -
;Z%‘gﬁg] 5 The feasibility ratioy, for the above logistic We compare3] results for the case of distribution

u=exp((p+s) (to—T)) [(p+r)+r (p+S+r)exp(sT)] o .
= —I(t— b (1—e b
V= exp(—r (to—T)) [(p-+1) +1 (p-+-+1) exp(sio)] - altot) =exp{ ~I(t—to) +e’s" (1-e7" )}

—exp(p+s) (to—T)[(p+Tr)+r(p+s+r)expsT)]. and parameters = 0.01, m=8818 b= 105.
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Table 3: Values of feasibility ratio for different values of 3§ Feasibility ratio for r foIIowing SDE
parameters and Weibull distribution

| r [ a [ B]T] Series Batt. | ) ) o ) _
0021 001 1 15150 0274725 T 025844~ In this section we 'study feasibility ratl_o'f.crrfollqw[ng
0021 001 15130 0697062 | 0627378 SDE. Notice that in such cases feasibility ratio is also
0021 001 151 20 126771 109244 random variable. We are interested in both SDE of 1st and
2nd order which are treated separately in sections 3.5.1

882 881 13 28 ggggg; 8;122?; and 3.5.2. The.r_e.ason_is bett_er comparison of qlifferent
0'02 0'01 1'9 =0 0’ 7415 0.230378 features of feasibility ratios for interest rates follogihst

- . - - - and 2nd order SDE. Let us recall that 1st order SDE
0.02] 0.005]| 1.5 50 | 0.42889 | 0.397525 interest rates are widespread in insurance and
0.02) 0008 1.5] 50 | 0.330223 | 0.308385 finance,however, it is well known fact that they are not
0.02] 002 | 1.5] 50| 0.103901 | 0.0912553 capturing  oscillations and long-term  behavior
0.01] 001 | 1.5 50 | 0.512524 | 0.461475 satisfactorily. Also in the case of 1st order SDE interest
0.03] 001 | 1.5] 50| 0.155897 | 0.148266 rates we know explicit solution, however, in the case of
0.04] 0.01 | 1.5] 50 | 0.0912556 | 0.087176 2nd order SDE interest rate we must rely on numerical
0.02] 01 [15[50] 1,77x10°° | 0.0400618 methods. Unlike the scalar homogeneous linear
0.02] 001 | 4 | 50| 0.298932 | 0.0787496 equations, it is generally not possible to solve linear SDE
0.02] 0.06 | 1.8 | 50 | 7,42x 10> | 0.076965 explicitly for even when all of the involved matrices are
0.02] 0.01 | 10 | 50 | 0.339487 | -0.12023 constant (see e.g.4]). Here we consider only one

Figure 3: Behavior of v/u

forr(t)

Thus we obtain the following ratio

u

_ 1
T 1+t2

Figure 4: Behavior ofv/u

v Joalto,ele ™ %d = qto,t)elo’ St

Fatoneh % fatones S a

realization of E(u/v). For numerical solution of interest
rate we have used strong numerical scheme of
EulerMaruyamaKuler()) from The MAPLE Stochastic
Package (version 5.1 by S. Cyganowski). This type of
scheme is of strong order of convergemce 1, i.e. mean

of the error sug. -1 E[|Xn — X(tn)[]| < K(At)P, with At
being the maximum time increment of the discretization.
Such convergence is sufficient for our purposes. It is in
fact the strong stochastic Taylor scheme of ordér Bor
simulations we have used numerical approximations of
integrals in feasibility ratio quotient. Several
computations have been made also in softwar@5R [

3.5.1 Exponential life time distribution and SDE of 1st
order

Here we consider exponential life time distribution, thus
we have Ri(T) = [ e AT lrWdigr  where r is
deterministic or stochastic process (both plotted on Egur
10), respectively:

r(t) = 0.05€",

since, even for the simplest casdt) = expct) the
integrals are not in explicit form.

As we can see from Figure, the choice of
r(t) = ﬁz does not change substantially behaviow (i
in comparison with 3], the similar happens for
r(t) = exp(—10t). However, slowly decreasingt) leads
to a substantial differences wfu in comparison with 3]

2

r = 0.05dH—ZtHoW (22)
with 0 = 0.1, u = —0.1. The following Table4 compares
u/vandE(u/v) for both cases.

Figures compare case of = 20 (see Figuré) with
: 1 X case of T = 50 (see Figure). In both cases we have
(see e.g. Figurd for r(t) = 1>7). Both Figures3and4 ) — .15, The pattern of decreasing'v for increasingT
are computed from the numerical solutionwgi. Notice  is well visible also for stochastic interest rate. This
that all 3 interest rates considered here are fromjustifies the fact (observed for a constant interest rate by
Kiguradze classes as a solutions of specific deterministi¢3] that given the age of the member, when the retirement
part of generalized Parker equation with nonconstantage T increases, the fund can afford to pay a higher
coefficients. pension rate to the member.

(@© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 2L, 325-338 (2015)Wwww.naturalspublishing.com/Journals.asp NS P 333

Table 4: Values of feasibility ratiosu/v and E(u/v) for oo 005
deterministic and stochastic rate 001
| A | T ] gfordetermr(t) [ E(u/v)forry | 00t ool
0.05| 20 0.4597413456 0.1856195632 on oo
0.1 | 20 0.120974967 0.1196360311 '
0.15| 20 0.039603543 0.038107873 0021 0oLy A
0.1 | 50 0.005229213 | 0.03090041290 ool N
0.15 | 50 0.000407282 | 0.004006664665 ' 001 V
o _— Figure 7: Comparison of 2nd Figure 8: Oscillating interest
ML 0 miL | order SDE @3 = 1) with rate
407 I T normal diffusion (red lingz =
1507 1) and slow diffusion (black
1 linety=4/3)
0= T . T ™ ™ T T T T T " 0.04
Figure 5: Histogram forT = Figure 6: Histogram forT = " 00
20,A =0.15 50,A =0.15 ool .
3.5.2 Exponential life time distribution and SDE of 2nd S A R R I
order Figure 9: 2nd order SDE with Figure 10: Geometric
. . . . o az3=1 Brownian Motion
Here we consider exponential life time distribution,
deterministic interest rate
l \/ 19 1804 | 7*7
r(t) = max<0, 0.05e 10 cos(wt>> , (23) a0 Ho
and stochastic interest ratg respectively, wherg solves ° 2001
modified Parker equation wl
dpr = (a1 pt + Qort) At + O (t) Pgy(rr) AWM o I
dr = pe o, 24) T
t=p (24) U e

T T N T T 0 T T T T T T
0.040 0.045 0.050 0.055 0.060 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

withap=0a1=-0.2,0=0.1, u=0, y=1hereas=01  fjgyre 11: Histogram forT =  Figure 12: Histogram forT =
fori=0andasz = 1fori= 1. Solution of 2nd order SDEis 20\ —0.15 50,A —0.15

compared with the deterministic solution and their match
can be seen at Figue
The following figure compares case ©f= 20 (see
Figure11) with case ofT = 50 (see Figurd2). In both  thanr! at the same value of volatility (for graphical
cases we havd = 0.15. The pattern of decreasing/v comparison see Figui@. Also higher volatility increases
for increasingT is well visible also for stochastic interest expected feasibility ratio thus making pension fund less
rate. attractive for the individual investment. FiguBeshows
Table 5 compares feasibility ratios for deterministic deterministic (red line) and stochastic (black line)
and five different stochastic rates (Where not statedoscillating interest rate.
explicitly, we consideraz = 1,y = 1. \olatility o is
written in brackets.) Notice tha(u/v) is closer tou/v
for r! (than for r?) since process has a regularized 4 Impact of interest rates on pensions: Real
volatility part by the multiplication of higher exponent of Jata illustration
r.. Also notice thatE(u/v) for slow(fast) diffusion
y= ‘3‘ >1(y= % < 1) provides less (more) convenient, In this section we illustrate the impact of both constant
i.e. greater (lower) values of expected feasibility ratio and non-constant interest rates on pensions with the real
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Table 5: Values of expected feasibility rati(u/v) for various volatilitieso Table 6: Month Mean Brutto Salary, 1993-2009
LA LT[ r® [ nOD [ r(©2 [ r(00D | Year | Max Salary| Min Salary
0.05 | 20 | 0.5334 0.4180 0.5028 0.3965
0.1 | 20 | 0.1570 0.1491 0.1810 0.3546 1993 9882 4579
0.15 | 20 | 0.0531 0.4931 0.7539 0.6541 1994 11592 5179
0.05 | 50 | 0.0533 0.0291 0.0431 0.0413 1995 13537 5975
0.1 | 50 | 0.0057 0.0727 0.1701 0.2368 1996 19377 6326
0.15 | 50 | 0.0005 0.3434 0.5972 0.2245 1997 54804 5639
| [ ] | | | |
= 1998 24 233 6208
[ A [T ]r01 ] y=301 ] y=301) ] oscil(0.1) ] 1999 56 867 6071
0.05 | 20 | 0.5561 0.5059 0.1458 0.4828
0.1 | 20 | 0.6320 03357 0.2000 0.1399 2000 30021 6785
0.15 | 20 | 1.0007 0.6268 0.4347 0.2578 2001 31825 7262
0.05 | 50 | 0.0459 0.0675 0.0068 0.0308
0.1 | 50 | 0.6095 0.1127 0.1078 0.0001 2002 34041 8533
0.15 | 50 | 0.4005 | 0.4013 0.3074 0.1665 2003 34443 8840
2004 39452 9446
2005 42544 10199
2006 45349 10947
2007 51154 12945
data from Slovakia. In the World Bank formulation, the 2008 57186 14614
first pillar is a mandatory pension scheme operated under 2009 60736 15428

public management. The second pillar is a fully funded

mandatory scheme financed by employees contributions.

In many countries, this is a defined contribution system

managed by private companies. We consider the problem In what follows we concentrate on the second pillar
of pension membership from an individual perspective: aonly. We suppose that after reaching the retirement age of
person can be involved in two pillars, namely a state62 years (given by law) the member of the second pillar
pension pillar(obligatory) and another based on a pensiouys a life annuity. We compute his (her) monthly
fund (voluntary). This situation is typical for many pension under different assumptions on life time
Eastern European countries. While conditions in the statdlistributions as well as on interest rates,both constaght an
pension pillar are given by law there is more freedom in stochastic. Using the equation of equivalence we have

the pillar based on a private pension fund. We use the

interest rate defined in section 2 and illustrate its effects 17

on pensi_ons. The_ recent develo_pment of. pens_ion funds 210795>< 0.09 X X 1992¥ (1+rt)17—tt Pas =

not only in Slovakia is well described,e.g. in Whitehouse =

[21]. We consider two closed groups of Slovakian people -

(opposite with respect to their incomes),all entering — %0795XVX Px (1+1) ", pez,

pension fund in the year 1993. The salaries are taken from &

[18](see Labour Market,lll.3-10,Structure of average
gross nominal monthly wage of employees in the
economy of the Slovak Republic) and are shown in Tabl
6.

where the contribution rate = 0.09 (given by law),
Xi 11992 IS salary in yeat + 1992 P stands for pension,
€0.95 stands for 5% costs which is the standard actuarial

practice and we assume that people entered into the fund

In order to avoid the situation that pensions from the at the age 45 years. We recall that in Slovakia only defined
first pillar become inadequate (to guarantee an acceptableontribution plans exist and the contribution rate is given
state of living) people are recommended to join also theby law.
second pillar. Of course, some caution is necessary when Table7 provides the estimation of pension at age 62
a person considers whether to choose the first pillar soleljor 45 years old male for Weibull, Gamma, Logistic and
or to prefer a mix of both pillars. In what followgx Makeham life time distributions. Since Makeham does
means the probability of a person agedo survive the not have an explicit expressions for moments, we have
nextt years. We suppose that people with monthly wageemployed ] and obtained (from empirical data):
given in Table6 obey mortality published in Statistical A =0.,a = 0.116e— 3,3 = 0.84e— 1. We employ both
Yearbook of Slovak Republic (2009). It is well-known constant and non-constant interest rate. It follows from
(see,e.q.14)) that Weibull, Gompertz-Makeham, logistic this table that the ratiw/u is approximately 3 for Weibull
(and also Gamma) distributions fit the life data in and similarly for Gamma but it is too high for the logistic
Slovakia well.In order to find out the parameters of thesemodel. Comparing the results obtained by using the
distributions the method of moments was used. If amortality from Statistical Yearbook with the results from
person belongs to the first pillar only, the contributiorerat above mentioned distributions (with parameters obtained
is 18% of his (her) salary. If, however, he (she) chooseshy the method of moments) confirmed that the logistic
both the state and private pillar,the rate becomes 9% fodistribution is not suitable. As to the rest it is difficult to
each of these two pillars. say which model outperforms the others.
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Table 7: Estimation of pension at age 62 for 45 years old male, Table 8: Estimation of pension at age 62 for 45 years old male,

r(t) = 0.05exg—t/10) r(t)=0.05exg—t/10), rt, rp. Weibull distr. withy=0.033 3 =
[ distribution | 1] v | Pmax | Puin | 1.548.
Weibul | 0.005 | 0.271543] 3056.08] 842.30 | r [ v [ Puwax | Pun ]
7=0.033 | 0.01 | 0.301346| 3298.08| 913.12 r(t) 0.244068 | 2292.01] 620.108
B=1548 | 0.02 | 0.369141| 3827.27 | 1069.53 r, 0 =001 | 0.244068 | 2955.73| 781.066
r(t) | 0.244068| 2292.01| 620.108 r, 0=02 | 0.244068 | 2945.23| 777.05
Gamma | 0.005 | 0.217238| 3056.07| 842.30 ro(t) 0.244133 | 2435.95| 653.254
7=0.084 | 0.01 | 0.243699| 3298.09| 913.12 re, 0=0.01 | 0.244133 | 3048.93| 817.513
B=2297 | 0.02 | 0.303896| 3827.27 | 1069.54 rf, 0 =02 | 0.244133 | 3000.40 | 793.98
r(t) | 0.192834| 2179.20| 589.59 ros(t) 0.0954801| 2825.47| 752.75
Logistic | 0.005 | 0.416747| 3056.08| 842.30 reS, 0=0.01| 0.0954801| 3576.71| 945.19
[1=27.35 | 0.01 | 0.460883| 3298.08| 913.12 rS, 0=02 | 0.0954801) 3030.76| 825.81
6=9948 | 0.02 | 0.561155| 3827.27 | 1069.53
r(t) | 0.37605 | 2331.00| 630.657
Makeham 88i 812?2 ggiggg 18072212224 — Empirical -~ - Logistic Gamma — - — Weibulll
0.05 | 0.1193 | 3062.15| 804.80 LOT
r(t) | 0.1085 | 2400.89| 649.566 ool

0.8

Taking into account that the minimal pension in 0.7
Slovakia is approximately 7500 Slovakian crowns we T
come to the conclusion that people from the lowest
income group should stay in the first pay-as-you-go)
pillar exclusively because the benefit from the second ]
pillar is smaller than the loss from leaving the first pillar. 9.4
On the other hand people with the highest incomes are 1
recommended to become members of both the first ani 037
second pillars. Being the member of the second pillar ]
only is not possible because of the law.

0.6

0.54

0.2+

0.1
Table 8 illustrates impact of volatility and different
stochastic rates on pension. Thereiris given by @2),
ro(t) is defined by 23), rp := max(0,r;") wherer; solves
(5) with parameters
ap = —1/5, ap = —1/5, y =1 a3 = 1,
Mo 1= m.a)(O,.rt**),rtOS = max(0,ri**) where oscillatory Figure 13: Fit of empirical life time data by Logistic, Gamma
decreasing interest rateg™,r** solve @) and 6) and Weibull
respectively, both with parameters
ap=-1/5 a1 =-1/50, y=1, az = 1. We computed
from lifetime distribution and deterministic(constant or
following ODE). The same value of was used also for fesult we obtain Kiguradze characterization of smooth
stochastic interest rate. It is clear that for all cases ofgq| tions of deterministic part of Parker's stochastic
stochastic interest rates both decrease0éind increase

£ volatilitv h 2 | f1h - differential equation. This allows interest rate to mimic
of volatility have negative impact on value of the pension ,qijjatory behavior and improve its long-term propetties
in comparison with deterministic interest rate.

The last mentioned case modifies the classical models and
brings the novelty in the study of several actuarial
] problems. As far as we know, analogous classification for
5 Conclusions stochastic differential equations (systems) has not been
done yet. Such a classification is important for initial
Owing to turbulence of financial markets many values problems in theory of ODEs. Also we demonstrate
economists as well as financial analysts agree that théhat the unique classification obtained by Kiguradze can
assumption of constant interest rate is not realistic. Thebe well employed to classify deterministic part of
main novelty of the paper is that force of interest follows stochastic differential equations. From our numerical
2nd order quasilinear stochastic differential equation,experiments this classification plays a significant role in
which generalizes model introduced ih3]. As a side  analogous classification for stochastic interest rates
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Beside that we also pay attention to different types ofcompares the exact solution (given in section 3) and the
mortality and present an analytical study in the case of eapproximative solution given by [2]. The simulation study
generalized Gamma or Gompertz-Makeham distributionds conducted and Weibull distribution with known shape
modeling the death time. We derive the feasibility ratios and scale parametersh@pe= 1,2,10, scale=0.1,1,10)
for these life time models. We show that decreasingis simulated. Then we estimate parameters by MLE from
deterministic interest rate increases feasibility ratio i the simulated data. We have computed the corresponding
comparison withu/v for constant interest rate which exact feasibility ratios based on true shape and scale
makes investment in pension fund less attractive forparameters (i.e. those, used in the simulation), the exact
individual person. We show that for the case of stochastideasibility ratios based on estimated parameters and
interest rate the size of volatility is decisive factor finally the approximated feasibility ratios given by [2]
whether expected feasibility rati&(u/v) is grater or  with estimated parameters. We can conclude that the
lower in comparison withu/v for constant interest rate. results edited in the Tabl@ support the exact approach
The pattern of decreasing/v for increasingT is well conducted in this paper.
visible also for non-constant (both deterministic and
stochastic) interest rates. This justifies the fact tha¢giv
the age of the member, when the retirement dge Appendix B: Proofs
increases, the fund can afford to pay a higher pension rate
v to the member. We also observed tHatu/v) for
slow(fast) diffusiony = 4 > 1(y = 1 < 1) provides
less(more) convenient, i.e. grater(lower) values of

Proof of Theorem 3
The direct computation leads to

expected feasibility ratio than! at the same value of oo
volatility. Also it is visible, that stochastic part of intest Pr>T)= W/T P leVdr =
rate has higher influence on feasibility ratios for -
y# 1,03 # 1 (i.e. not Parker’s case). = L/ EP-lg¢ds — M

Finally, in section 4 we illustrate the impact of both F(B) Jyr re
constant and non-constant interest rates on pensions with
the real data from Slovakia. For a fixed contribution rate B 1 vy \P e pg v \P
which is linked to income, we illustrated the implied Egle™""] =@ <m) /0 §F1edde = <m) :
pension rate taking account of constant interest rates, an
interest rate following the suggested 2nd order diffesdnti BT
equation and the different mortality laws. The results Efle " |ret] = —/ A-le-(vinTgr =
obtained for a real data agree with our intuitive (B) Jo
expectation that being the member of both pension vy \P B e Bt (yin)t
schemes is good for a person belonging to higher income = (m) - W/T e dr =

group but it can be too risky for people with low salaries.

It is clear that for all cases of stochastic interest ratel bo

decrease ofx; and increase of volatility have negative :< y )E yP /°° < é )Bleg dé
T(y+r)

impact on value of the pension in comparison with y+r r(B) y+r y+r
deterministic interest rate. B B
:( y ) _( y ) F(B,T(y+r)
y+r y+r rB) ’
Acknowledgement Using summarization we ges)

O
Research was supported by ASO project NO.  proof of Theorem 4
SK-0607-BA-018. We thank Milan Gera for the fruitful The density function has form
discussions we had. Jozef Kigk was partially supported

by grant VEGA M5 SR 1/0344/14. Second author is G(L)ﬁef(g)”
partially supported by Vega 2/0047/15 ft)=—5 7 a.B.0>0.
r (T)G
Appendix So the direct substitution givest > T) = 7 f(t)dt. We
use substitutioz= e (s)", thent = 0 ¢/=In(z) and dt =
Appendix A: On accuracy of feasibility ratio 0:\/|nzzl>rzx(z>d2- So direct substitution gives us
In this section we illustrate accuracy of the feasibility E .
ratio with respect to the maximum likelihood estimation  p(t>T) = a /0 A-In@)<oy, —In(z)dZ:
(MLE) of the parameters of Weibull distribution. Tatfe r <$> o’/a Zin(z)a
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Table 9: Comparison for f.r. for Weibull distribution: exact,
estimated and [2]

| a | B ] exact | Battocchio | MLE (exact) |
01] 1 0,03829 0,03829 0,02064
01] 2 1,7x10°° -11,483 0,000018236
01] 10| —-1,7x1014 -0,8545 —1,37x10°13
1| 1] 672x10™™ | 7,17x10 1% | 2,42x10°12
1] 2 0 1079 3,40x 1011
1 [10] 6,6x10° —2,4x10°% | 2,57x107°°
10| 1 0 0 —3,30x10°12
10 | 2 | —1,11x10°16 0 6,26x 1011
10 [ 10| 1,27x10 11 0 8,867x 10 11
a 0,1 0,09 0,1 1,16 | 1,01 | 1,01 | 9,57 | 9,82 | 10,05
B 1,13 2,1 10,0 | 1,01 2,3 10,2 | 1,10 | 1,95 9,48
1 G u+1
- r<¥)/0 ~In@] =" dz

where ¢; = e‘(%)a. Further we use integration by parts.
Denote ask = £=2*1 and | (k) = /5*[~In(2)]*dz Then
we have
1K) = (1) <In )zl — k/ 2% 1dz)
We obtain recurrence relation
1(K) = (=D)*cpIn(c) L+ ki (k—1).
The solution of this difference equation has form
(k) =T (k+1,—In(cy))
(We know that (0) = c3). So, finally

M (k+1-In(ey) _ [L (5) ]

(%)

Now we consideE[e™"].

Pt>T)=

But

(2 _ 2 CDM(E)
e (a) :kgo kl s
S0
a Lo (CDME)
Ele P ar (B Jo Fe kZO m dz=
a - a2,
- (B+1 Z k‘ or B+1+ka/ ZBH( dz=

KT (B +ka +1)
k! (o‘r)ﬁ+l+ka

a 2 (-
rEh &
ForEle " |t < T] we use similar procedure.

(1)K
B+1 Z kl o‘r B+1+ka

r

_ a < +ka g2
—m%zow{ Frkarn b 2
a i 1
_ (SR T — z‘”"" Zd2}7
rEty & ( ){ F(B+ka+1) /7
wherel (k) = Jr LBk Thus finally we have
a 2 (-D¢[F(B+ka+1)—T(B+ka+1, ™
(%) kZO kl(o‘r)ﬁ+l+ka
O
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