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1 Department of Applied Statistics, Johannes Kepler University in Linz, Austria
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Abstract: In this paper we consider stochastic interest rate and classify its deterministic part with respect to oscillation and
monotonicity, latter according to Kiguradze. We illustrate usefulness of such classification on convenient examples,including feasibility
ratio and choice of pension pillar. Interest rate follows a 2nd order quasilinear stochastic differential equation which generalizes a result
of [13]. As a side result we obtain Kiguradze characterization of smooth solutions of deterministic part of Parker’s stochastic differential
equation. We show that Parker’s model allows oscillations and better long term behavior of the interest rate in comparison of 1st order
interest rate model. In such a setup we study the sensitivityof feasibility ratio to the dynamics of the underlying interest rate. We
cover the wide spectrum of life time distributions including the generalized Gamma as well as the Gompertz-Makeham law.We apply
obtained results to briefly discuss the situation typical for some Eastern-European countries when many people are members of a
pension scheme operated under public management as well as afunded scheme financed by employees contributions.
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1 Introduction

Many economist as well as financial analysts will
disagree with an assumption of constant interest rate.
Stochastic interest rates play an important role
considering long maturity contracts. This is well-known
in the literature, see e.g. [1,19] or [16] and references
therein. However, most of the literature uses one-factor
interest rate models which do not capture long run trends.
In this paper we consider stochastic interest rate, its
classification and illustration of its effects on convenient
examples, including feasibility ratio and choice of
pension pillar. The interest rate is following a 2nd order
quasilinear stochastic differential equation, which
generalizes differential equation of [13]. This
generalization allows interest rate to mimic oscillatory
behavior, improve its long-term properties and give
opportunity to study faster (slower) diffusion models for
interest rate. Thus inclusion of Parker’s model in its
natural generalization by quasilinear SDE provides us
possibility to better study main features of Parker’s
interest rate and behind. This also modifies the classical

models and brings the novelty in the study of several
actuarial problems. As a side result we obtain Kiguradze
characterization of smooth solutions of deterministic part
of Parker’s stochastic differential equation. As far as we
know, an analogous classification for stochastic
differential equations (systems) has not been done yet.
Such a classification is important for initial values
problems in theory of ordinary differential equations
(ODEs). This relates to solutions which can be extended
on the semi-axis. Therefore the unique classification
obtained by Kiguradze can be well employed to classify
deterministic part of stochastic differential equations.
From our numerical experiments this classification can
play a significant role in an analogous classification for
stochastic interest rates.

The paper is organized as follows. In the 2nd section
we introduce the model of time-dependent interest rate
following 2nd order quasilinear stochastic differential
equation, which generalizes a result of [13]. In section 2.1
we characterize smooth solutions of deterministic part of
Parker’s stochastic differential equation according to
Kiguradze. We also discuss main features of introduced
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interest rates. In section 3 we present life time
distributions used in this paper, namely
Gompertz-Makeham law and generalized Gamma
distribution. We derive the feasibility ratios for these life
time models and several interest rate models. We show
that decreasing deterministic interest rate boosts
feasibility ratio in comparison withu/v for constant
interest rate, which makes investment in pension fund less
attractive for individual person. In the section 3.5 the case
of stochastic interest rate is discussed. Therein we will
see that size of volatility is crucial for expected feasibility
ratio E(u/v) to be grater (lower) in comparison withu/v
computed for constant interest rate. The pattern of
decreasingu/v for increasingT is well visible also for
non-constant (both deterministic and stochastic) interest
rates. This justifies the fact (observed for a constant
interest rate by [3] that given the age of the member,
when the retirement ageT increases, the fund can afford
to pay a higher pension ratev to the member. In section 4
we illustrate the impact of both constant and non-constant
interest rates on pensions with the real data from
Slovakia. Technicalities and proofs are put in Appendix.

2 Model of interest rate

[13] assumes that interest rate (or force of interest)r(t) can
be modeled, fort ≥ 0, by a linear second-order stochastic
differential equation (SDE) of the form

d

(

drt

dt

)

= α1 drt +α0 rt dt+σ(t)dWt , (1)

whereσ is nonconstant volatility. One can divide this type
of equation into deterministic part (ODE) and stochastic
noise (Wiener process). For technical purposes, we rewrite
deterministic part of (1) in the Sturm-Liouville form (as
differential equation, DE)

(p(t) r ′)′−α0 p(t)r = 0, (2)

wherep(t) is defined as

p(t) = e−α1 t . (3)

To be able to better classify Parker’s interest rate we
modify both (2) and (1) into a quasilinear DE and SDE,
respectively, by adjustment of derivatives together with
multiplying the volatility by powered interest rate term. It
is formalized by means of a signed-power function
Φγ (z) = |z|γ−1z, γ > 0.
Thus we arrive to the following two nonlinear DE and
SDE for interest rate
(

p(t)Φγ (r
′)
)′−α0 p(t)Φγ (r) = 0, (4)

d

(

p(t)Φγ

(

drt

dt

))

−α0p(t)Φγ (rt)dt−

−σ(t)Φα3(rt )dWt = 0. (5)

Notice that (4) is quasilinear DE and (5) is quasilinear
SDE which is apparently generalization of Parker model
(1) obtained from (5) for γ = 1 andα3 = 0.

Definition 1 By deterministic interest rate we consider a
weak solution of differential equation (4), i.e. the
derivative of interest rate exists up to 2nd order in a weak
sense (see e.g. Chapter 5.4 of [6]). By stochastic interest
rate we understand arbitrary solution of stochastic
differential equation (5).

Our model (5) can be expressed in the classical form
of the stochastic differential equation (system)

drt = Φ−1
γ

(

st

p(t)

)

dt

dst = α0p(t)Φγ(rt )dt +σ(t)Φα3(rt )dWt (6)

Using e.g. following theorem we can directly obtain
uniqueness result. We write|Z|2 = ∑i, j |Zi j |2 for matrixZ.

Theorem 1 (12, Theorem. 5.2.1.) Let T > 0 and
b(·, ·) : [0,T]×R

n → R
n, Σ(·, ·) : [0,T]×R

n → R
n×m be

measurable functions satisfying

|b(t,x)|+ |Σ(t,x)| ≤C(1+ |x|);

(x, t) ∈R
n× [0,T] for some constant C, and such that

|b(t,x)−b(t,y)|+ |Σ(t,x)−Σ(t,y)| ≤ D|x− y|;

x,y ∈ R
n, t ∈ [0,T] for some constant D. Let Z be be a

random variable which is independent of theσ -algebra

F
(m)
∞ generated by Ws(·), s≥ 0 and such that

E
[

|Z|2
]

< ∞.

Then the stochastic differential equation

dXt = b(t,Xt)dt +Σ(t,Xt)dWt , 0≤ t ≤ T,

X0 = Z

has a unique t-continuous solution Xt(ω) with the property
that Xt(ω) is adapted to the filtrationFZ

t generated by Z
and Ws(·); s≤ t and

E

[

∫ T

0
|Xt |2dt < ∞

]

.

In our case we haven= 2, Xt = (rt ,st ) and

b(t,Xt) =

(

Φ−1
γ

(

st

p(t)

)

,α0p(t)Φγ (rt)

)

,

Σ(t,Xt) =

(

0 0
0 σ(t)Φα3(rt)

)

.

In the linear case, i.e.γ = 1, α3 = 1, we have following
values of constants in inequalities of previous theorem

C= D = 2max

{

S+P|α0|,
1
P

}

,

S= max
t∈[0,T]

|σ(t)|,P= max
t∈[0,T]

p(t).
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Existence is always secured, but changing values ofγ or α3
either violates uniqueness(< 1) or causes blow-up(> 1).

To characterize the oscillatoric interest rates, let us
consider the analogue with the linear equation by looking
for smooth solutions of (4) in the form r(t) = eλ t .
Substituting into (4) we get the algebraic equation forλ
in form

F(λ ) := γ |λ |γ+1−α1Φγ (λ )−α0 = 0. (7)

FunctionF introduced by (7) is not convex but it has only
one point of extremum (zero is inflection point) and hence
the equationF(λ ) = 0 has two, one or no (real) root
according to the values of parameters. Using calculus we
find that double root in (7) occurs only forλ = α1

γ+1 and

α0 =− |α1|γ+1

(γ+1)γ+1 . In the case

α0 >− |α1|γ+1

(γ +1)γ+1 (8)

all classical solutions of (4) are oscillating (by oscillation
we mean that function has infinite many roots). See [5],
chapter 1.4.2 for detailed discussion of analogous case.
Thus we know that if condition (8) holds, then only
oscillatory solutions can occur (this immediately holds
when α0 is positive). The following example illustrates
the case of oscillatory interest rate.

Example 1Oscillatory interest rate-deterministic part
Now, consider the special case of the equation(4) for

α0 satisfying(8). Be more specific we study equations of
the type
(

p(t)Φγ(r
′)
)′−α0 p(t)Φγ (r) = 0. (9)

Exact solution can be expressed in the implicit form
(with periodic continuation) similarly as half-linear
trigonometric functions (generalized sine and cosine), see
[5], chapter 1.1.2. (representative in the linear case is
c1eat cosbt+ c2eat sinbt).

The initial value problem withα0 =−1,α1 =−0.2
(

p(t)Φγ (r)
′)′+ p(t)Φγ(r) = 0,

r(0) = 0.05,

r ′(0) =−0.05, (10)

has a solution, which is oscillatory decreasing, see Figure
2 for several values of parameter gamma (blueγ = 1

3, red
γ = 1, blackγ = 4

3), where a solution in the weak sense is
taken.

By oscillatory interest rates we can obtain solutions of
Parker’s equation which are possibly negative. In the next
section we focus on non-oscillatory interest rates which
can be classified by the means of Kiguradze. This allows
us for a better classification of such interest rates.

The next example illustrates the special case of
interest rater(t) = tα ,α < 0 as a solution of either
Parker‘s equation (1) or generalized SDE (5).

Figure 1: Behavior of
monotonicr(t)

Figure 2: Behavior of
oscillatoryr(t)

Example 2Stochastic process related to power interest
rate

Considering the original Parker‘s equation (1) and
having r(t) = tα ,α < 0, σ(t) = 1 and integrating
equation from0 to t0, t0 > 0 we obtain

W(t0) =W(0)+αtα−1
0 −α1t

α
0 − α0

α +1
tα+1
0

which is the non-random function with random beginning.
If σ(t) is non-constant, we have after integration from0 to
t0, t0 > 0

αtα−1
0 −α1t

α
0 − α0

α +1
tα+1
0 −

∫ t0

0
σ(t)dW(t) = 0

If we consider the generalized SDE (5) and use r(t) =
tα ,α < 0, σ(t) = 1 and integrate from0 to t0, t0 > 0 then
we receive

∫ t0

0
(|−α|γγ(α −1)tγ(α−1)−1p(t)−α0p(t)tγα +

+|−α|γα1p(t)tγ(α−1))dt =
∫ t0

0
tαα3dW(t) (11)

The right side of equation (11) could be written as
∫ t0

0 (t̄ −
s)αα3dW(t) where t= t̄−s which is a fractional Brownian
motion. In the case of non-constantσ(t) the right side of
equation (11) will become

∫ t0
0 σ(t)tαα3dW(t).

2.1 Kiguradze classification of deterministic
interest rates

To be able to classify interest rates defined in Definition 1
by means of Kiguradze classes, we focus on smooth
solutions with p(t) > 0, α0 < 0 and such that the
following condition holds (in the Lebesgue sense)

∫ ∞

0
p(t)−

1
γ dt = ∞. (12)

Notice that from (12) we have α1 > 0 in (3). [13]
considered negative constantα1 to obtain stable and
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revertible stochastic process. Negativeα1 can occur in
oscillatory solutions (see previous Section).

Taking into account the corresponding homogeneous
equation one can see that its solution space is generated by

J0(t) = 1,

J1(t) =
∫ t

0
(J0(s) p(s))−

1
γ ds=

γ
α1

(

e
α1 t

γ −1
)

(in linear case it is called a principal system). It can be
shown (a generalized lemma of Kiguradze (see [8], also
see [20] for an English treatment on generalization for the
nelinear case) that ifr is nonoscillatory solution(N ) of
(4) then it belongs into the one of the following classes

N0 =
{

r ∈ N : ∃ tr : r r ′ < 0, r
(

p(t)Φγ (r ′)
)′
> 0, t ≥ tr

}

,

N1 =
{

r ∈ N : ∃ tr : r r ′ > 0, r
(

p(t)Φγ (r
′)
)′
< 0, t ≥ tr

}

,

N2 =
{

r ∈ N : ∃ tr : r r ′ > 0, r
(

p(t)Φγ (r
′)
)′
> 0, t ≥ tr

}

.

Important consequence of mentioned lemma is the fact
that, in view of inequalities valid forr ∈ N1, there exist
positive constantsc0, c1 andT such that

c0J0(t)≤ |r(t)| ≤ c1J1(t), for t ≥ T.

The following properties can be found in [5] (chapter 4).
It is known that equation (4) with arbitrary initial
conditions is a well-posed problem. Further, all solutions
of the (4) must be nonoscillatory since the equation
(

p(t)Φγ (r ′)
)′
= 0 is its nonoscillatory majorant. For such

equations we know even more about nonoscillatory
solutions. Ifp(t) is different from zero for larget then all
solutions of nonoscillatory equation are eventually
monotone. Thus, it is possible, a-priori, to divide the
solutions into the following classes:

M+ =
{

r : ∃ tr : r r ′ > 0, t ≥ tr
}

,

M− =
{

r : ∃ tr : r r ′ < 0, t ≥ tr
}

.

It is shown thatM+ (either positive increasing or negative
decreasing),M− (either positive decreasing or negative
increasing) are not empty for (4). In addition these classes
can be divided into mutually disjoint subclasses
depending on the limit ofr(t) near infinity. M− can
contain only bounded solutions tending to zero on
nonzero constant. Moreover we need the following
notations

I1 := lim
T→∞

∫ T

0
p(t)

1
γ

(

∫ t

0
|p(s)|ds

)
1
γ

dt (13)

I2 := lim
T→∞

∫ T

0
p(t)

1
γ

(

∫ T

t
|p(s)|ds

)
1
γ

dt. (14)

The convergence or divergence of these integrals
characterize the classes above, i.e. decide about
qualitative behavior of solution of equation (4).

Theorem 2 If both integrals(13),(14) converge, then the
equation(4) has solutions in class M−.

We know that in our case

I1 = lim
T→∞

∫ T

0
e−α1 t

(

∫ t

0
α0 e−α1sds

)
1
γ

dt ≤

≤ Φ 1
γ
(α0)γ α

− 1+γ
γ

1

and

I2 = lim
T→∞

∫ T

0
p(t)

1
γ

(

∫ T

t
|p(s)|ds

)
1
γ

dt ≤

≤
Φ 1

γ
(α0)γ α

− 1+γ
γ

1

2
.

Example 3Nonoscillatory interest rate - deterministic
part

Let us considerα0 ≤ −α2
1/4 (which is the condition

considered by [13] and negation of condition(8) from
previous section). In the case ofγ = 1, it is not hard to
show that the initial value problem

(

p(t) r ′
)′−α0 p(t) r = 0,

r(0) = 0.05,

r ′(0) = 0.05c, (15)

where c = 1
2(α1 −

√

α2
1 +4α0), has a solution

r(t) = 0.05ect. The quotient of the parametersα1,α0
determine how fast the interest rate will decrease in time.

The higher is
α1

α0
the slower is the decreasing and vice

versa. Now consider the nonlinear caseγ = 3 under
negation of condition(8) from previous section, i.e. the
initial value problem

(

p(t)(r ′)3)′−α0 p(t) r3 = 0,

r(0) = 0.05,

r ′(0) = 0.05c. (16)

Assume that there exist solution in form r(t) = ekt. Then
after substituting we obtain quartic algebraic equation
p(k) = k4 − α1

3 k3 − α0
3 = 0. With the change of variable

k = l + α1
12 it can be reduced to an incomplete equation

and then the so-called cubic resolvent can be written. The
roots of the incomplete quartic equation are determined
by the roots of the cubic resolvent. One can check that
discriminant of the cubic resolvent is always positive and
therefore it has one real root and two complex conjugate.
Thus our related quartic equation must have two real and
two complex conjugate roots. We also found the local

minima − α4
1

256 − α0 in km = α1
4 . But obviously
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p(0) = −α0
3 . So there must always exist negative root as

p(k)→ ∞ for k →−∞. If we denote it as c, then we have
found the solution of the problem(16), namely
r(t) = 0.05ect. Notice that such a solution belongs to
M−, also it is decreasing (asymptotically 0), which is a
convenient model of interest rate. The example of
monotonic interest rate is displayed on Figure1.

2.2 Properties of introduced interest rates

The usage of introduced interest rates allows us to model
several periods of diffusion driven interest rate, in which
the speed of diffusion changes. Thus the main advantage
of 2nd order SDE model is the flexible model which can
be used for forecasts with cycles. In particular, it may
have a tendency to continue its recent trend before
reverting to its long term mean. Moreover, the meanings
of the parametersα0 and α1 are interesting (see also
[11]): α0 represents the restoring force bringing the
process back to the equilibrium position andα1 is a
damping force which, for large values oft, brings the
process back to its equilibrium position. Then we can
argue that the process has a mean reverting property
stronger than the one we find in first order models.

Beside that we have advantage of nonlinearity. The
operator∆γ u = div |∇u|γ−1∇u, often used in heat-type
equation like Black-Scholes PDE etc., describes the type
of diffusion with density-dependent diffusivity
(depending on the gradient of the main unknown), which
also has a strong connection with fast diffusion equations
(γ < 1

n) or slow diffusion (γ > 1
n). Thus one can

effectively regulate speed of the diffusion. In some sense
it is the simplest nonlinear modification of the heat
equation in the area of diffusion. In our case with
dimensionn = 1 we have generalized Parker model in
order to obtain better diffusion-control. Model can be
understood as a one dimensional analogue of quasilinear
PDE (SDE). These type of equations might be even more
”nonlinear”. There are many models including
p-Laplacian, but also models including other types of
nonlinearity, see e.g. Nualart and Ouknine [10].

3 Life time distributions and feasibility
condition

[2] derived a feasibility (equilibrium) condition on the
ratio of contribution and pension rates which makes the
model equally convenient for both the fund and its
members. In [2] however, the exact form of the feasibility
ratio is given only for the exponentially distributed death
time and an approximation is given in the case of the
Weibull distribution while [3] derived the exact form of
feasibility ratio for Gompertz-Makeham distribution. But
in reality, the life-time distribution can be more complex.
Here we present an analytical study in the case of a

generalized Gamma or Gompertz-Makeham distribution
modeling the death time. It is worth mentioning that
several different approaches dealing with the problem of
contribution rate exist. For example some authors used
the approach based on Lee-Carter models or Lee-Yang
approach based on Kalman filter-like processes.

3.1 The generalized Gamma

We assume thatτ follows a generalized Gamma
distribution (ggd), i.e. its density has the form

f (y|ϑ) =
α

σΓ (1+β
α )

(
y
σ
)β exp(−(

y
σ
)α),

for y > 0, and ϑ = (α,β ,σ). The ggd has many
applications in life sciences since many of the important
nondiscrete density functions can be derived from it. For
example, f (y|(2,0,

√
2σ)) is the one-sided normal

distribution, and f (y|(1,n/2 − 1,2)) is the
χ2

n-distribution. In the special case ofβ = α − 1 the
Gamma distribution is called the Weibull distribution and
in case of α = 1 we obtain the Gamma distribution.
While not as frequently used for modeling life data the
generalized Gamma distribution does have the ability to
mimic the attributes of other distributions such as the
Weibull or lognormal, based on the values of the
distribution’s parameters and therefore is sometimes used
to model life data by itself. From now on we useγ = 1/σ
as a parameter of our distribution.

The Weibull distribution is a versatile distribution that
can take on the characteristics of other types of
distributions, based on the value of the shape parameter
β > 0. It has the density of the form

f (y|ϑ) = β γβ yβ−1exp(−(γy)β ),y> 0,

whereϑ = (β ,γ).

Relationship between ggd and Lee-Carter model

Girosi and King has shown in (2007) that the
Lee-Carter model is equivalent to a special type of
multivariate random walk with drift (RWD) model, in
which the covariance matrix depends on the drift vector.
These observations suggest that, since the RWD does not
make any assumption about the structure of the
covariance matrix, while the Lee-Carter approach does,
the Lee-Carter estimator will be preferable to the RWD
only when we have high confidence in its underlying
assumptions. Such a model have a form

Xt+1 = Xt +θ + εt+1,εt ∼ N(0,σ2). (17)

Let us generalize (17) by

Xt+1 = Xt +g(Xt)+ηt+1, (18)

where g is a positive function and{ηt} is a
square-integrable martingale difference sequence, the
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second conditional moments of which depend only on the
present state of the processXt . It is known that a large
class of processes (18) diverges with positive probability,
and when properly normalized converges almost surely or
converges in distribution to a normal or a lognormal
distribution (here notice that one sided normal and
lognormal distributions are special cases of a ggd).
Klebaner [9] has found a class of processes such that
when properly normalized converges in distribution to a
ggd. Applications of this result to state dependent random
walks and population size-dependent branching processes
yield new results and reprove some of the known results.
In such a setup usage of generalized Gamma distribution
is properly justified and Lee-Carter model could be a
properly specified special case, if we are sure about its
underlying assumptions. Notice, that beside this random
walk justification, feasible estimation and testing
procedures for ggd are developed, see e.g. Stehlı́k [17]
and references therein.

3.2 The feasibility condition

We consider a deterministic pension scheme where the
total amountU(t) of contributions to the fund follows the
differential equationdU(t) = udt, and the total amount
V(t) of pensions paid by the fund follows the differential
equation dV(t) = vdt, where u and v are positive
constants. These two rates are linked by the so-called
feasibility condition foru/v which will be discussed in
this section. It follows that such a pension scheme is both
of a defined-benefit pension plan type and of a
defined-contribution pension plan type. The retirement
dateT for a member is assumed to be imposed by the law.
Also is assumed that until subscriber death time life
annuities are paid not depending on fund performances.
Many Eastern European countries prefer some form of
compulsory annuitization. The problem of optimal asset
allocation in this case is discussed in [3] under the
assumption of a constant interest rater. We emphasize
that our paper does not deal with an optimal allocation
problem but with the dynamics of feasibility ratio
imposed by a condition on contribution and pension rates
insuring that the model is equally convenient for both the
fund and its members.

We suppose the constant level of the contribution and
the pension rates (u and v respectively). Equating the
expected present value of contributions and pensions then
leads to the equation (3) in [3]:

u
v
=

∫ ∞
T exp(−rs)q(s)ds
∫ T
t0

exp(−rs)q(s)ds
, (19)

where at timet0 the member enters the fund,T is the
(deterministic) retirement age andq is the survival
function. Finally we may recall the Definition 1 from [3],
that a pair of contribution and pension rates
(u,v), u,v > 0 in case of constant interest rate is said to

be feasible if it satisfies (19). But this definition is not
suitable for the case of nonconstantr since it is not true
anymore. Thus we consider the following analogy

Definition 2 A pair of contribution and pension rates
(u,v), u,v> 0 in case of nonconstant interest rate is said
to be feasible if

u
v
=

∫ ∞
T exp(−∫ s

t0
r(u)du)q(s)ds

∫ T
t0

exp(−∫ s
t0

r(u)du)q(s)ds
. (20)

Since lifetime density functions have nonnegative
support and

Eτ
t0

[

∫ τ

t0
I(s≤ T)e−

∫ s
t0

r(u)duds

]

= Eτ
t0

[

∫ τ

t0
g(s)ds

]

=

=

∫ ∞

t0
f (τ)

∫ τ

t0
g(s)dsdτ =

∫ ∞

t0
g(τ)

∫ ∞

τ
f (s)dsdτ =

=

∫ ∞

t0
I(τ ≤ T)e−

∫ τ
t0

r(u)du
∫ ∞

τ
f (s)dsdτ,

this formulation is equivalent to

u
v
=

lim
T→∞

Rf (T)

Rf (T)
−1,

whereRf (T) =
∫ T
t0

e−
∫ τ
t0

r(u)du
(1− F(τ))dτ andF is cdf

related to pdf f . Both integrals are defined properly as
they converge (numerator is less or equal toE(X) and we
consider distribution with existing mean value). It is thus
obvious that ratio is decreasing function ofT bounded by
0 from below (remind here thatr is decreasing function to
zero). Here we giveRf (T) for certain type of lifetime
distributions.

Exponential distribution:Rf (T) =
∫ T
t0

e−
∫ τ
t0

r(u)du−λ τ dτ
Gamma distribution:

Rf (T) =
1

Γ (β )
∫ T
t0

e−
∫ τ
t0

r(u)duΓ (β ,γ τ)dτ
Gompertz-Makeham distribution:The

Gompertz-Makeham law states that the death rate is
the sum of an age-independent component and an
age-dependent component which increases
exponentially with age.

Rf (T) = e
α
β
∫ T
t0

e−
∫ τ
t0

r(u)du−λ τ− α
β eβ τ

dτ

3.3 Feasibility ratio for constant r

First let us consider the Gamma distribution of the form

f (τ|γ) = γβ τβ−1

Γ (β )
e−γτ , for τ > 0, (21)

where γ > 0 is scale parameter andβ > 0 is shape
parameter. Following theorem provides the feasibility
ratio for the Gamma distributed life time.
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Theorem 3 Let τ follow the Gamma distribution (21).
Then the feasibility ratio has the form

u
v
=

(γ + r)β − γβ

A
−1,

where

A= (γ + r)β
(

1−exp(−rT )
Γ (β ,γT)

Γ (β )

)

−

−γβ
(

1− Γ (β ,(γ + r)T)
Γ (β )

)

,

Γ (β , t) :=
∫ +∞
t exp(−s)sβ−1ds is an incomplete Gamma

function. Feasibility ratios forβ = 1 and variousγ ’s are
in Table1.

The next theorem provides the exact feasibility ratio
for τ distributed according to generalized Gamma
distribution.

Theorem 4 Feasibility ratio for Generalized Gamma
Distribution has form

u
v
=

ũ
ṽ
−1,

where

ũ= Γ
(

β +1
α

)

−α
∞

∑
k=0

(−1)k Γ (β +kα +1)

k!(σ r)β+1+kα ,

ṽ= Γ
(

β +1
α

)

−Γ
(

β +1
α

,

(

T
σ

)α)

e−rT−

−α
∞

∑
k=0

(−1)k [Γ (β +kα +1)−Γ (β +kα +1,Tr)]

k!(σ r)β+1+kα .

Table 3 provides the comparison between the exact
and approximative feasibility ratio, where Batt. denotes
[2] approach. We can observe a severe bias for specific
values ofr,α,β ,T. Therefore we recommend the exact
feasibility ratio for its practical assessment and we used
entirely exact formulas in the paper. In the section A1 of
appendix we illustrate inaccuracy of approximative
feasibility ratio when the parameters of Weibull
distribution are estimated by maximum likelihood, which
also justify usage of exact formulas.

Feasibility ratio in the case of a logistic model forτ
The force of mortalityµx+t = p+ s

1+res(x+t) leads tot px =

exp[−(p+ s)t] 1+res(x+t)

1+resx

Theorem 5 The feasibility ratiou
v for the above logistic

model is

u= exp((p+s) (t0−T)) [(p+ r)+ r (p+s+ r)exp(sT)]

v= exp(−r (t0−T)) [(p+ r)+ r (p+s+ r)exp(st0)]−
−exp(p+s) (t0−T) [(p+ r)+ r (p+s+ r)exp(sT)] .

Table 1: u/v for Exponential distribution, constant, oscillatory
and exponentially decreasing rates. ˆr(t) = 1

20e−
t

100 cos( t
100).

r γ T e(−
√

20t√
r ) const.r r̂(t)

0.02 0.013 50 6.2137 0.2377 0.1839
0.02 0.013 30 15.9806 0.5912 0.3918
0.02 0.013 20 34.1186 1.0697 0.6843

0.005 0.013 50 6.213736 0.6851 0.1839
0.01 0.013 50 6.213739 0.4633 0.1839
0.05 0.013 50 6.213762 0.0477 0.1839

0.02 0.02 50 2.7844 0.1565 0.1023
0.02 0.025 50 1.8140 0.1178 0.0723
0.02 0.03 50 1.2615 0.0894 0.0525

Table 2: Feasibility ratios for Gompertz-Makeham distribution. Innonconstant case

c=−
√

20√
r .

r α β λ T r(t) const.r

0.02 0.000007 0.11807 0.0006 50 0.5431 0.235
0.02 0.000314 0.08564 0.0006 50 0.2423 0.115
0.02 0.00062 0.0532 0.0006 50 0.5328 0.213

0.005 0.00062 0.0532 0.0006 50 0.5329 0.426
0.01 0.00062 0.0532 0.0006 50 0.53288 0.340
0.05 0.00062 0.0532 0.0006 50 0.53288 0.054

0.005 0.000007 0.11807 0.0006 50 8.90776 2.896
0.01 0.000007 0.11807 0.0006 50 8.90776 1.417
0.05 0.000007 0.11807 0.0006 50 8.90778 0.086

0.02 0.000007 0.11807 0.001 50 7.9660 0.537
0.02 0.000007 0.11807 0.002 50 6.1380 0.498
0.02 0.000007 0.11807 0.01 50 1.5232 0.2869

Feasibility ratio for Gompertz-Makeham distribution is
given in [3]. Some special cases are shown in Table2.
Tables 1 and 2 show in particular that non-oscillatory
decreasing deterministic interest rates increase feasibility
ratio in comparison withu/v for constant interest rate
(which makes investment in pension fund less attractive
for individual person). The difference for
Gompertz-Makeham distribution (Table2) is lower.
However, notice that oscillatory decreasing interest rate
r(t) = 0.05e−t/100cos(t/100) decreases feasibility ratio
with respect tou/v for constant interest rate. In section
3.5 the case of stochastic interest rate is discussed.
Therein we will see that size of volatility is crucial for
expected feasibility ratioE(u/v) to be grater (lower) in
comparison withu/v for constant interest rate.

3.4 Feasibility ratio for r following 2nd order
ODE

We compare [3] results for the case of distribution

q(t0, t) = exp
{

−l(t − t0)+e
t0−m

b

(

1−e
t−t0

b

)}

and parametersλ = 0.01, m= 88.18, b= 10.5.
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Table 3: Values of feasibility ratio for different values of
parameters and Weibull distribution

r α β T Series Batt.

0.02 0.01 1.5 50 0.274725 0.258447
0.02 0.01 1.5 30 0.697062 0.627378
0.02 0.01 1.5 20 1.26771 1.09244

0.02 0.01 1.3 50 0.277487 0.270992
0.02 0.01 1.7 50 0.273807 0.244817
0.02 0.01 1.9 50 0.27415 0.230378

0.02 0.005 1.5 50 0.42889 0.397525
0.02 0.008 1.5 50 0.330223 0.308385
0.02 0.02 1.5 50 0.103901 0.0912553

0.01 0.01 1.5 50 0.512524 0.461475
0.03 0.01 1.5 50 0.155897 0.148266
0.04 0.01 1.5 50 0.0912556 0.087176

0.02 0.1 1.5 50 1,77×10−6 0.0400618
0.02 0.01 4 50 0.298932 0.0787496
0.02 0.06 1.8 50 7,42×10−5 0.076965
0.02 0.01 10 50 0.339487 -0.12023

Figure 3: Behavior of v/u
for r(t) = 1

1+t2
Figure 4: Behavior ofv/u

Thus we obtain the following ratio

v
u
=

∫ T
t0 q(t0, t)e

∫ t
t0

r(s)dsdt
∫∞
T q(t0, t)e

∫ t
t0

r(s)dsdt
=

∫∞
t0 q(t0, t)e

∫ t
t0

r(s)dsdt
∫∞
T q(t0, t)e

∫ t
t0

r(s)dsdt
−1

since, even for the simplest case,r(t) = exp(ct) the
integrals are not in explicit form.

As we can see from Figure3, the choice of
r(t) = 1

1+t2
does not change substantially behavior ofv/u

in comparison with [3], the similar happens for
r(t) = exp(−10t). However, slowly decreasingr(t) leads
to a substantial differences ofv/u in comparison with [3]
(see e.g. Figure4 for r(t) = 1

1+
√

t
). Both Figures3 and4

are computed from the numerical solution ofv/u. Notice
that all 3 interest rates considered here are from
Kiguradze classes as a solutions of specific deterministic
part of generalized Parker equation with nonconstant
coefficients.

3.5 Feasibility ratio for r following SDE

In this section we study feasibility ratio forr following
SDE. Notice that in such cases feasibility ratio is also
random variable. We are interested in both SDE of 1st and
2nd order which are treated separately in sections 3.5.1
and 3.5.2. The reason is better comparison of different
features of feasibility ratios for interest rates following 1st
and 2nd order SDE. Let us recall that 1st order SDE
interest rates are widespread in insurance and
finance,however, it is well known fact that they are not
capturing oscillations and long-term behavior
satisfactorily. Also in the case of 1st order SDE interest
rates we know explicit solution, however, in the case of
2nd order SDE interest rate we must rely on numerical
methods. Unlike the scalar homogeneous linear
equations, it is generally not possible to solve linear SDE
explicitly for even when all of the involved matrices are
constant (see e.g. [4]). Here we consider only one
realization of E(u/v). For numerical solution of interest
rate we have used strong numerical scheme of
EulerMaruyama (Euler()) from The MAPLE Stochastic
Package (version 5.1 by S. Cyganowski). This type of
scheme is of strong order of convergencep= 1, i.e. mean
of the error sup0≤tn≤T E[|Xn−X(tn)|] | ≤ K(∆ t)p, with ∆ t
being the maximum time increment of the discretization.
Such convergence is sufficient for our purposes. It is in
fact the strong stochastic Taylor scheme of order 0.5. For
simulations we have used numerical approximations of
integrals in feasibility ratio quotient. Several
computations have been made also in software R [15].

3.5.1 Exponential life time distribution and SDE of 1st
order

Here we consider exponential life time distribution, thus
we have Rf (T) =

∫ T
0 e−λ τ−∫ τ

0 r(u)dudτ, where r is
deterministic or stochastic process (both plotted on Figure
10), respectively:

r(t) = 0.05eµ t ,

rt = 0.05e(µ−
σ2
2 )t+σWt , (22)

with σ = 0.1, µ =−0.1. The following Table4 compares
u/v andE(u/v) for both cases.

Figures compare case ofT = 20 (see Figure5) with
case ofT = 50 (see Figure6). In both cases we have
λ = 0.15. The pattern of decreasingu/v for increasingT
is well visible also for stochastic interest rate. This
justifies the fact (observed for a constant interest rate by
[3] that given the age of the member, when the retirement
age T increases, the fund can afford to pay a higher
pension ratev to the member.
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Table 4: Values of feasibility ratiosu/v and E(u/v) for
deterministic and stochastic rate

λ T u
v for determ.r(t) E(u/v) for rt

0.05 20 0.4597413456 0.1856195632
0.1 20 0.120974967 0.1196360311
0.15 20 0.039603543 0.038107873

0.1 50 0.005229213 0.03090041290
0.15 50 0.000407282 0.004006664665

Figure 5: Histogram forT =
20,λ = 0.15

Figure 6: Histogram forT =
50,λ = 0.15

3.5.2 Exponential life time distribution and SDE of 2nd
order

Here we consider exponential life time distribution,
deterministic interest rate

r(t) = max

(

0,0.05e−
1
10 cos

(√
19

10
t

))

, (23)

and stochastic interest rater i
t , respectively, wherer i

t solves
modified Parker equation

dpt = (α1 pt +α0 rt )dt +σ(t)Φα3(rt ) dWt

drt = pt dt, (24)

with α0 =α1 =−0.2,σ = 0.1, µ =0, γ =1, hereα3 = 0.1
for i = 0 andα3 = 1 for i = 1.Solution of 2nd order SDE is
compared with the deterministic solution and their match
can be seen at Figure9.

The following figure compares case ofT = 20 (see
Figure11) with case ofT = 50 (see Figure12). In both
cases we haveλ = 0.15. The pattern of decreasingu/v
for increasingT is well visible also for stochastic interest
rate.

Table 5 compares feasibility ratios for deterministic
and five different stochastic rates (Where not stated
explicitly, we considerα3 = 1,γ = 1. Volatility σ is
written in brackets.) Notice thatE(u/v) is closer tou/v
for r1

t (than for r0
t ) since process has a regularized

volatility part by the multiplication of higher exponent of
rt . Also notice that E(u/v) for slow(fast) diffusion
γ = 4

3 > 1 (γ = 1
3 < 1) provides less (more) convenient,

i.e. greater (lower) values of expected feasibility ratio

Figure 7: Comparison of 2nd
order SDE (α3 = 1) with
normal diffusion (red line:γ =
1) and slow diffusion (black
line:γ = 4/3)

Figure 8: Oscillating interest
rate

Figure 9: 2nd order SDE with
α3 = 1

Figure 10: Geometric
Brownian Motion

Figure 11: Histogram forT =
20,λ = 0.15

Figure 12: Histogram forT =
50,λ = 0.15

than r1
t at the same value of volatility (for graphical

comparison see Figure7). Also higher volatility increases
expected feasibility ratio thus making pension fund less
attractive for the individual investment. Figure8 shows
deterministic (red line) and stochastic (black line)
oscillating interest rate.

4 Impact of interest rates on pensions: Real
data illustration

In this section we illustrate the impact of both constant
and non-constant interest rates on pensions with the real
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Table 5: Values of expected feasibility ratioE(u/v) for various volatilitiesσ
λ T r(t) r1

t (0.1) r1
t (0.2) r0

t (0.01)

0.05 20 0.5334 0.4180 0.5028 0.3965
0.1 20 0.1570 0.1491 0.1810 0.3546
0.15 20 0.0531 0.4931 0.7539 0.6541

0.05 50 0.0533 0.0291 0.0431 0.0413
0.1 50 0.0057 0.0727 0.1701 0.2368
0.15 50 0.0005 0.3434 0.5972 0.2245

λ T r0
t (0.1) γ = 4

3 ,(0.1) γ = 1
3 (0.1) oscil (0.1)

0.05 20 0.5561 0.5059 0.1458 0.4828
0.1 20 0.6320 0.3357 0.2000 0.1399
0.15 20 1.0007 0.6268 0.4347 0.2578
0.05 50 0.0459 0.0675 0.0068 0.0308
0.1 50 0.6095 0.1127 0.1078 0.0001
0.15 50 0.4095 0.4013 0.3074 0.1665

data from Slovakia. In the World Bank formulation, the
first pillar is a mandatory pension scheme operated under
public management. The second pillar is a fully funded
mandatory scheme financed by employees contributions.
In many countries, this is a defined contribution system
managed by private companies. We consider the problem
of pension membership from an individual perspective: a
person can be involved in two pillars, namely a state
pension pillar(obligatory) and another based on a pension
fund (voluntary). This situation is typical for many
Eastern European countries. While conditions in the state
pension pillar are given by law there is more freedom in
the pillar based on a private pension fund. We use the
interest rate defined in section 2 and illustrate its effects
on pensions. The recent development of pension funds
not only in Slovakia is well described,e.g. in Whitehouse
[21]. We consider two closed groups of Slovakian people
(opposite with respect to their incomes),all entering
pension fund in the year 1993. The salaries are taken from
[18](see Labour Market,III.3-10,Structure of average
gross nominal monthly wage of employees in the
economy of the Slovak Republic) and are shown in Table
6.

In order to avoid the situation that pensions from the
first pillar become inadequate (to guarantee an acceptable
state of living) people are recommended to join also the
second pillar. Of course, some caution is necessary when
a person considers whether to choose the first pillar solely
or to prefer a mix of both pillars. In what followst px
means the probability of a person agedx to survive the
next t years. We suppose that people with monthly wage
given in Table6 obey mortality published in Statistical
Yearbook of Slovak Republic (2009). It is well-known
(see,e.g. [14]) that Weibull, Gompertz-Makeham, logistic
(and also Gamma) distributions fit the life data in
Slovakia well.In order to find out the parameters of these
distributions the method of moments was used. If a
person belongs to the first pillar only, the contribution rate
is 18% of his (her) salary. If, however, he (she) chooses
both the state and private pillar,the rate becomes 9% for
each of these two pillars.

Table 6: Month Mean Brutto Salary, 1993-2009
Year Max Salary Min Salary
1993 9882 4579
1994 11592 5179
1995 13537 5975
1996 19377 6326
1997 24824 5639
1998 24 233 6208
1999 26 862 6421
2000 30 021 6785
2001 31 825 7262
2002 34 041 8533
2003 34443 8840
2004 39452 9446
2005 42544 10199
2006 45349 10947
2007 51154 12945
2008 57186 14614
2009 60736 15428

In what follows we concentrate on the second pillar
only. We suppose that after reaching the retirement age of
62 years (given by law) the member of the second pillar
buys a life annuity. We compute his (her) monthly
pension under different assumptions on life time
distributions as well as on interest rates,both constant and
stochastic. Using the equation of equivalence we have

17

∑
t=1

0,95×0.09×Xt+1992× (1+ rt)
17−t

t p45=

=
∞

∑
t=0

0,95× v×P× (1+ rt)
−t

t p62,

where the contribution rateu = 0.09 (given by law),
Xt+1992 is salary in yeart + 1992, P stands for pension,
0.95 stands for 5% costs which is the standard actuarial
practice and we assume that people entered into the fund
at the age 45 years. We recall that in Slovakia only defined
contribution plans exist and the contribution rate is given
by law.

Table7 provides the estimation of pension at age 62
for 45 years old male for Weibull, Gamma, Logistic and
Makeham life time distributions. Since Makeham does
not have an explicit expressions for moments, we have
employed [7] and obtained (from empirical data):
λ = 0.,α = 0.116e− 3,β = 0.84e− 1. We employ both
constant and non-constant interest rate. It follows from
this table that the ratiov/u is approximately 3 for Weibull
and similarly for Gamma but it is too high for the logistic
model. Comparing the results obtained by using the
mortality from Statistical Yearbook with the results from
above mentioned distributions (with parameters obtained
by the method of moments) confirmed that the logistic
distribution is not suitable. As to the rest it is difficult to
say which model outperforms the others.
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Table 7: Estimation of pension at age 62 for 45 years old male,
r(t) = 0.05exp(−t/10)

distribution r v Pmax Pmin

Weibul 0.005 0.271543 3056.08 842.30
γ̂ = 0.033 0.01 0.301346 3298.08 913.12
β̂ = 1.548 0.02 0.369141 3827.27 1069.53

r(t) 0.244068 2292.01 620.108
Gamma 0.005 0.217238 3056.07 842.30

γ̂ = 0.084 0.01 0.243699 3298.09 913.12
β̂ = 2.297 0.02 0.303896 3827.27 1069.54

r(t) 0.192834 2179.20 589.59
Logistic 0.005 0.416747 3056.08 842.30

µ̂ = 27.35 0.01 0.460883 3298.08 913.12
σ̂ = 9.948 0.02 0.561155 3827.27 1069.53

r(t) 0.37605 2331.00 630.657
Makeham 0.02 0.1580 3855.45 1021.24

0.01 0.1311 3310.29 872.22
0.05 0.1193 3062.15 804.80
r(t) 0.1085 2400.89 649.566

Taking into account that the minimal pension in
Slovakia is approximately 7500 Slovakian crowns we
come to the conclusion that people from the lowest
income group should stay in the first pay-as-you-go)
pillar exclusively because the benefit from the second
pillar is smaller than the loss from leaving the first pillar.
On the other hand people with the highest incomes are
recommended to become members of both the first and
second pillars. Being the member of the second pillar
only is not possible because of the law.

Table 8 illustrates impact of volatility and different
stochastic rates on pension. Thereinrt is given by (22),
ro(t) is defined by (23), ro

t := max(0, r∗t ) wherer∗t solves
(5) with parameters
α0 = −1/5, α1 = −1/5, γ = 1, α3 = 1,
ros := max(0, r∗∗t ), ros

t := max(0, r∗∗∗t ) where oscillatory
decreasing interest ratesr∗∗t , r∗∗∗t solve (4) and (5)
respectively, both with parameters
α0 =−1/5, α1 =−1/50, γ = 1, α3 = 1. We computedv
from lifetime distribution and deterministicr (constant or
following ODE). The same value ofv was used also for
stochastic interest rate. It is clear that for all cases of
stochastic interest rates both decrease ofα1 and increase
of volatility have negative impact on value of the pension
in comparison with deterministic interest rate.

5 Conclusions

Owing to turbulence of financial markets many
economists as well as financial analysts agree that the
assumption of constant interest rate is not realistic. The
main novelty of the paper is that force of interest follows
2nd order quasilinear stochastic differential equation,
which generalizes model introduced in [13]. As a side

Table 8: Estimation of pension at age 62 for 45 years old male,
r(t)= 0.05exp(−t/10), rt , ro

t . Weibull distr. withγ̂ = 0.033, β̂ =
1.548.

r v Pmax Pmin

r(t) 0.244068 2292.01 620.108
rt , σ = 0.01 0.244068 2955.73 781.066
rt , σ = 0.2 0.244068 2945.23 777.05

ro(t) 0.244133 2435.95 653.254
ro
t , σ = 0.01 0.244133 3048.93 817.513
ro
t , σ = 0.2 0.244133 3000.40 793.98

ros(t) 0.0954801 2825.47 752.75
ros
t , σ = 0.01 0.0954801 3576.71 945.19
ros
t , σ = 0.2 0.0954801 3030.76 825.81

Figure 13: Fit of empirical life time data by Logistic, Gamma
and Weibull

result we obtain Kiguradze characterization of smooth
solutions of deterministic part of Parker’s stochastic
differential equation. This allows interest rate to mimic
oscillatory behavior and improve its long-term properties.
The last mentioned case modifies the classical models and
brings the novelty in the study of several actuarial
problems. As far as we know, analogous classification for
stochastic differential equations (systems) has not been
done yet. Such a classification is important for initial
values problems in theory of ODEs. Also we demonstrate
that the unique classification obtained by Kiguradze can
be well employed to classify deterministic part of
stochastic differential equations. From our numerical
experiments this classification plays a significant role in
analogous classification for stochastic interest rates
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Beside that we also pay attention to different types of
mortality and present an analytical study in the case of a
generalized Gamma or Gompertz-Makeham distributions
modeling the death time. We derive the feasibility ratios
for these life time models. We show that decreasing
deterministic interest rate increases feasibility ratio in
comparison withu/v for constant interest rate which
makes investment in pension fund less attractive for
individual person. We show that for the case of stochastic
interest rate the size of volatility is decisive factor
whether expected feasibility ratioE(u/v) is grater or
lower in comparison withu/v for constant interest rate.
The pattern of decreasingu/v for increasingT is well
visible also for non-constant (both deterministic and
stochastic) interest rates. This justifies the fact that given
the age of the member, when the retirement ageT
increases, the fund can afford to pay a higher pension rate
v to the member. We also observed thatE(u/v) for
slow(fast) diffusion γ = 4

3 > 1(γ = 1
3 < 1) provides

less(more) convenient, i.e. grater(lower) values of
expected feasibility ratio thanr1

t at the same value of
volatility. Also it is visible, that stochastic part of interest
rate has higher influence on feasibility ratios for
γ 6= 1,α3 6= 1 (i.e. not Parker’s case).

Finally, in section 4 we illustrate the impact of both
constant and non-constant interest rates on pensions with
the real data from Slovakia. For a fixed contribution rate
which is linked to income, we illustrated the implied
pension rate taking account of constant interest rates, an
interest rate following the suggested 2nd order differential
equation and the different mortality laws. The results
obtained for a real data agree with our intuitive
expectation that being the member of both pension
schemes is good for a person belonging to higher income
group but it can be too risky for people with low salaries.
It is clear that for all cases of stochastic interest rates both
decrease ofα1 and increase of volatility have negative
impact on value of the pension in comparison with
deterministic interest rate.
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Appendix

Appendix A: On accuracy of feasibility ratio

In this section we illustrate accuracy of the feasibility
ratio with respect to the maximum likelihood estimation
(MLE) of the parameters of Weibull distribution. Table9

compares the exact solution (given in section 3) and the
approximative solution given by [2]. The simulation study
is conducted and Weibull distribution with known shape
and scale parameters (shape= 1,2,10, scale= 0.1,1,10)
is simulated. Then we estimate parameters by MLE from
the simulated data. We have computed the corresponding
exact feasibility ratios based on true shape and scale
parameters (i.e. those, used in the simulation), the exact
feasibility ratios based on estimated parameters and
finally the approximated feasibility ratios given by [2]
with estimated parameters. We can conclude that the
results edited in the Table9 support the exact approach
conducted in this paper.

Appendix B: Proofs

Proof of Theorem 3
The direct computation leads to

P(τ ≥ T) =
γβ

Γ (β )

∫ ∞

T
τβ−1e−γτ dτ =

=
1

Γ (β )

∫ ∞

γT
ξ β−1e−ξ dξ =

Γ (β ,γT)
Γ (β )

,

Eτ
0[e

−rτ ] =
1

Γ (β )

(

γ
r + γ

)β ∫ ∞

0
ξ β−1e−ξ dξ =

(

γ
r + γ

)β
,

Eτ
0[e

−rτ |τ<T ] =
γβ

Γ (β )

∫ T

0
τβ−1e−(γ+r)τdτ =

=

(

γ
γ + r

)β
− γβ

Γ (β )

∫ ∞

T
τβ−1e−(γ+r)τdτ =

=

(

γ
γ + r

)β
− γβ

Γ (β )

∫ ∞

T(γ+r)

(

ξ
γ + r

)β−1

e−ξ dξ
γ + r

=

=

(

γ
γ + r

)β
−
(

γ
γ + r

)β Γ (β ,T(γ + r))
Γ (β )

.

Using summarization we get (3).
�

Proof of Theorem 4
The density function has form

f (t) =
α
( t

σ
)β e−(

t
σ )

α

Γ
(

β+1
α

)

σ
, α,β ,σ > 0.

So the direct substitution givesP(t ≥T)=
∫ ∞
T f (t)dt. We

use substitutionz= e−(
t
σ )

α
, thent = σ α

√

− ln(z) and dt =
σ α
√

− ln(z)
zln(z)α dz. So direct substitution gives us

P(t ≥ T) =
α

Γ
(

β+1
α

)

σ

∫ 0

c1

z(− ln(z))
β
α σ α
√

− ln(z)
zln(z)α

dz=

c© 2015 NSP
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Table 9: Comparison for f.r. for Weibull distribution: exact,
estimated and [2]

α β exact Battocchio MLE (exact)

0,1 1 0,03829 0,03829 0,02064
0,1 2 1,7×10−5 -11,483 0,000018236
0,1 10 −1,7×10−14 -0,8545 −1,37×10−13

1 1 6,72×10−14 7,17×10−14 2,42×10−12

1 2 0 10−9 3,40×10−11

1 10 6,6×10−9 −2,4×10−9 2,57×10−9

10 1 0 0 −3,30×10−12

10 2 −1,11×10−16 0 6,26×10−11

10 10 1,27×10−11 0 8,867×10−11

α̂ 0,1 0,09 0,1 1,16 1,01 1,01 9,57 9,82 10,05
β̂ 1,13 2,1 10,0 1,01 2,3 10,2 1,10 1,95 9,48

=
1

Γ
(

β+1
α

)

∫ c1

0
[− ln(z)]

β−α+1
α dz,

where c1 = e−(
T
σ )

α
. Further we use integration by parts.

Denote ask = β−α+1
α and I(k) =

∫ c1
0 [− ln(z)]kdz. Then

we have

I(k) = (−1)k
(

ln(z)kz|c1
0 −k

∫ c1

0
ln(z)k−1dz

)

.

We obtain recurrence relation

I(k) = (−1)kc1 ln(c1)
k−1+kI(k−1).

The solution of this difference equation has form

I(k) = Γ (k+1,− ln(c1))

(We know thatI(0) = c1). So, finally

P(t ≥ T) =
Γ (k+1,− ln(c1))

Γ
(

β+1
α

) =
Γ
[

β+1
α ,
(

T
σ
)α]

Γ
(

β+1
α

) .

Now we considerE[e−rt ].

E[e−rt ] =
∫ ∞

0

α
( t

σ
)β e−(

t
σ )

α
e−rt

Γ
(

β+1
α

)

σ
dt =

=
α

(σ r)β+1Γ ( β+1
α )

∫ ∞

0
zβ e−ze−(

z
rσ )

α
dz,

But

e−(
z
σ )

α
=

∞

∑
k=0

(−1)k
( z

rσ
)kα

k!
,

so

E[e−rt ] =
α

(σ r)β+1Γ ( β+1
α )

∫ ∞

0
zβ e−z

∞

∑
k=0

(−1)k
(

z
rσ
)kα

k!
dz=

=
α

Γ ( β+1
α )

∞

∑
k=0

(−1)k

k!(σ r)β+1+kα

∫ ∞

0
zβ+kα e−zdz=

=
α

Γ ( β+1
α )

∞

∑
k=0

(−1)k Γ (β +kα +1)

k!(σ r)β+1+kα .

ForE[e−rt |t < T] we use similar procedure.

E[e−rt |t < T] =
∫ T

0

α
( t

σ
)β e−(

t
σ )

α
e−rt

Γ
(

β+1
α

)

σ
dt =

=
α

Γ ( β+1
α )

∞

∑
k=0

(−1)k

k!(σ r)β+1+kα

∫ Tr

0
zβ+kα e−zdz=

=
α

Γ ( β+1
α )

∞

∑
k=0

L(k)

{

1
Γ (β +kα +1)

∫ Tr

0
zβ+kαe−zdz

}

=

=
α

Γ ( β+1
α )

∞

∑
k=0

L(k)

{

1− 1
Γ (β +kα +1)

∫ ∞

Tr
zβ+kα e−zdz

}

,

whereL(k) = (−1)k Γ (β+kα+1)
k!(σ r)β+1+kα . Thus finally we have

α
Γ ( β+1

α )

∞

∑
k=0

(−1)k [Γ (β +kα +1)−Γ (β +kα +1,Tr)]

k!(σ r)β+1+kα .
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