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Abstract: This paper deals with estimation of the unknown parameters of the inverted linear exponential distribution (ILED) based on

Type-I hybrid censored (HC) data. The maximum likelihood estimation (MLE) and the related approximate confidence interval (ACI)

are obtained. The general procedure for determining the bootstrap confidence interval (Boot-CI) is described. Furthermore Bayesian

estimators of the unknown parameters based on squared error loss (SEL) function and linear exponential (LINEX) loss function are

obtained. Using Lindley’s approximation and Markov Chain Monte Carlo (MCMC) methods to approximate Bayesian estimators. A

simulation study and one real data set are presented to illustrate the theoretical results.
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1 Introduction

In life time test, the HC scheme one of the most usage as a data which is a mixture of Type-I and Type-II censoring
schemes which were analyzed by several authors like [1], [2] and [3]. It is first introduced by [4]. There are mainly two
types called Type-I and Type-II HC schemes. In the Type-I HC scheme, the experiment is terminated when a pre-specified
number r out of n items has failed or pre-fixed time T on test has been reached. That is, the experiment is terminated at
the random time τ = min(xr;n,T ). Type-I HC scheme had been studied by many authors for example, see, [5], [6], [7],
[8], [9], [10] and [11]. Let x1;n < x2;n < ... < xn;n be the order statistics from a random sample of size n. Assume that r and
T are known in advance and let k denote the number of xi;n’s that are at most T. Then, under the Type-I HC scheme, we
have one of the following two types of observations:

Case I:x1;n < x2;n < ... < xr;n if xr;n ≤ T with r ≤ k ≤ n.
Case II:x1;n < x2;n < ... < xk;n if xk;n < T < xk+1;n with 0 ≤ k ≤ r− 1.

The analysis of Type-I HC scheme from the two-parameters ILED is considered in this article. First, we consider the
MLE of the unknown parameters. The observed Fisher information matrix (FIM) using the missing information principles,
which have been used to obtain ACIs of the unknown parameters, are also evaluated. Furthermore, the procedure of the
boot-CI is introduced. Second, Bayes estimators for the unknown parameters are considered. Lindley’s approximation
and MCMC method are considered to approximate the Bayes estimators. Also, the MCMC method is used to compute
the highest posterior density (HPD) credible intervals. A simulation study to compare the performance of MLEs and the
Bayes estimators are carried out. One real data set is used for illustrative purpose.

The rest of this article is organized as follows. Some statistical properties of ILED are studied in Section 2. The MLE,
FIM and the ACI are introduced in Section 3. In Section 4, two CIs based on the bootstrapping are proposed. The Bayes
estimator of unknown parameters is discussed in Section 5. Analysis of one real data set is introduced in Section 6. In
Section 7, a simulation results for illustrating all the methods are discussed.
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2 Inverted Linear Exponential Distribution

The ILED was first proposed by [12]. [13] introduced the modified Inverse Rayleigh distribution with the same probability
density function (PDF). Also, it can be introduced as a special case from the inverted generalized linear exponential
distribution which was first proposed by [14]. The pdf and the cumulative distribution function (CDF) of the ILED are
given by;

f (x;λ ,θ ) =
1

x2
(λ +

θ

x
)exp[− 1

2x2
(2λ x+θ )] ,λ > 0,θ > 0,x > 0, (1)

and

F(x;λ ,θ ) = exp[− 1

2x2
(2λ x+θ )] ,x > 0. (2)

The survival and hazard rate (HR) functions of the ILED are given by;

S(t;λ ,θ ) = 1− exp[− 1

2t2
(2λ t +θ )] , t > 0, (3)

and

h(t;λ ,θ ) =
1
t2 (λ + θ

t
)exp[− 1

2t2 (2λ t +θ )]

1− exp[− 1
2t2 (2λ t +θ )]

, t > 0. (4)

From Equation (1), special distribution can be obtained:

1.For θ = 0, Equation (1) reduces to the pdf of the inverted exponential distribution [15].
2.For λ = 0, Equation (1) reduces to the pdf of the inverted Rayleigh distribution [16].

Indeed, it is easy to show that the quantile tq of the ILED can be obtained as

tq =
θ

−λ +
√

λ 2 − 2 θ lnq
,0 < q < 1, (5)

and the median of the ILED is obtained when q = 0.5 in Equation (5) as follow

Med =
θ

−λ +
√

λ 2 + 2 θ ln2
. (6)

2.1 HR function and mode

From Equation (4), one can show that

lim
t→0

h(t) = 0, (7)

and

lim
t→∞

h(t) = 0. (8)

Since h(t) > 0 and from Equations (7) and (8), one can see that h(t) is a non-monotonic function.This property makes
the ILED widely applicable in several areas of life such as the active repair times for an airborne communication
transceiver and the exceedances of flood peaks of the Wheaton River, see([12] and [13]). It is easy to show that the HR
has a unimodal shape.

Theorem 4.1.

The HR function of ILED has a unimodal shape.

Proof.

Due to [17], η(t) = − f ′(t)
f (t) can be written as

η(t) =
1

t3 (λ t +θ )

(

t2 (2 λ t + 3 θ )− (λ t +θ )2
)

, (9)
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where f ′(t) is the first derivative of f(t) with respect to t. The first derivative of η(t) can be obtained as

ή(t) =
1

t4 (λ t +θ )2

(

− 2 λ 2 t4 − (6 λ θ − 2 λ 3) t3 − (3 θ 2 − 7 λ 2 θ ) t2 + 6 λ θ 2 t + 3 θ 3
)

. (10)

Equating (10) by zero, we get

−2 λ 2 t4 − (6 λ θ − 2 λ 3) t3 − (3 θ 2 − 7 λ 2 θ ) t2 + 6 λ θ 2 t + 3 θ 3 = 0.

By solving this equation by mathematica 11, the result is satisfied.
One can show that this distribution is a unimodal distribution, see [12].

a

 

b

 

Fig. 1: a) The pdf of ILED with several parameters and b) The cdf of ILED with several parameters

a

 

b

 

Fig. 2: a) The survival function of ILED with several parameters and b) The HR of ILED with several parameters

3 ML Estimators and FIM

MLE is probably the most widely used method of estimation in statistics. In this section, the MLE based on Type-I HC
scheme from two parameters ILED of λ and θ is considered. Also we construct the ACIs of the parameters of ILED based
on Type-I HC scheme.
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3.1 Point estimation of parameters, survival and HR functions

Let x1;n < x2;n < ... < xn;n be the Type-I HC sample from ILED, then the likelihood function is given by one of the two
cases:

Case I:L1(λ ,θ ) =
n!

(n−r)! ∏r
1 f (xi)(1−F(xr))

(n−r), where xr = (x1, ...,xr) and x1 < ... < xr ≤ T .

Case II:L2(λ ,θ ) =
n!

(n−k)! ∏k
1 f (xi)(1−F(T ))(n−k), where xk = (x1, ...,xk) and x1 < ... < xk ≤ T < xk+1.

We present likelihood functions for case I and case II as follows:

L(λ ,θ ) = n!
(n−R)! ∏R

1 f (xi)(1−F(c))(n−R),

where

R =

{

r, for case I
k, for case II

,and c =

{

xr, for case I
T, for case II

.

Then the likelihood functions for ILED can be written as:

L(λ ,θ ) =
n!

(n−R)!

R

∏
1

1

x3
i

(λ xi +θ )(1− exp[− 1

2c2
(2λ c+θ )])(n−R)

exp[−
R

∑
1

1

2x2
i

(2λ xi +θ )]. (11)

Taking the logarithm of equation(11), we obtain;

l(λ ,θ ) ∝
R

∑
1

log[λ xi +θ ]−
R

∑
1

3 log[xi]−
R

∑
1

1

2x2
i

(2λ xi +θ )+ (n−R)

log[1− exp[− 1

2c2
(2λ c+θ )]]. (12)

By taking the first derivative with respect to λ and θ from (12) and equating by zero, then we get the two normal equations
as follows:

R

∑
1

xi

θ̂ + λ̂xi

−
R

∑
1

1

xi

+(n−R)
exp[−( θ̂

2c2 +
λ̂
c
)]

c(1− exp[−( θ̂
2c2 +

λ̂
c
)])

= 0 (13)

and

R

∑
1

1

θ̂ + λ̂xi

−
R

∑
1

1

2x2
i

+(n−R)
exp[−( θ̂

2c2 +
λ̂
c
)]

2c2(1− exp[−( θ̂
2c2 +

λ̂
c
)])

= 0. (14)

Since (13) and (14) cannot be solved analytically for λ̂ and θ̂ , some numerical methods must be employed. Now, to obtain

the MLEs of S(t) and h(t), we replace λ and θ by the MLEs λ̂ and θ̂ in (3) and (4). Hence;

ŜML(t) = 1− exp[− 1

2t2
(2λ̂ t + θ̂)] , t > 0, (15)

and

ĥML(t) =
1
t2 (λ̂ + θ̂

t
)exp[− 1

2t2 (2λ̂ t + θ̂)]

1− exp[− 1
2t2 (2λ̂ t + θ̂)]

, t > 0. (16)
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3.2 Approximate confidence interval

From the log-likelihood equation (12), we get

∂ 2l(λ ,θ )

∂λ 2
=

R

∑
1

− x2
i

(θ +λ xi)2
− (n−R)

exp[−( θ
2c2 +

λ
c
)]

c2(1− exp[−( θ
2c2 +

λ
c
)])

− (n−R)
exp[−( θ

c2 +
2λ
c
)]

c2(1− exp[−( θ
2c2 +

λ
c
)])2

, (17)

∂ 2l(λ ,θ )

∂θ 2
=

R

∑
1

− 1

(θ +λ xi)2
− (n−R)

exp[−( θ
2c2 +

λ
c
)]

4c4(1− exp[−( θ
2c2 +

λ
c
)])

− (n−R)
exp[−( θ

c2 +
2λ
c
)]

4c4(1− exp[−( θ
,
2c2 + λ

c
)])2

(18)

and

∂ 2l(λ ,θ )

∂λ ∂θ
=

R

∑
1

− xi

(θ +λ xi)2
− (n−R)

exp[−( θ
2c2 +

λ
c
)]

2c3(1− exp[−( θ
2c2 +

λ
c
)])

− (n−R)
exp[−( θ

c2 +
2λ
c
)]

2c3(1− exp[−( θ
2c2 +

λ
c
)])2

. (19)

Then, the asymptotic variance-covariance matrix of the estimators of the parameters λ and θ is obtained by inverting
the FIM (given by taking the expectation of equations (17), (18) and (19)) in which elements are negatives. In the present
situation, it seems appropriate to approximate the expected values by their MLEs. Accordingly, the approximate variance-
covariance matrix is given as [see, [18]];

(

σ̂λ λ σ̂λ θ

σ̂λ θ σ̂θθ

)

=

(

− ∂ 2l(λ ,θ)

∂λ 2 − ∂ 2l(λ ,θ)
∂λ ∂θ

− ∂ 2l(λ ,θ)
∂λ ∂θ − ∂ 2l(λ ,θ)

∂θ 2

)−1

(λ̂ ,θ̂)

. (20)

The ACIs for the parameters λ and θ are, respectively given as:

λ̂ ± z α
2

√

σ̂λ λ and θ̂ ± z α
2

√
σ̂θθ ,

where z α
2

is the percentile of the standard normal distribution with right tail probability α
2

.

4 Bootstrap Confidence Intervals

In this section, we introduce the following two parametric boot-CIs for λ and θ , as follow:

1.The percentile bootstrap (Boot-p) proposed by [19], and
2.The bootstrap-t method (Boot-t) proposed by [20].

There are many articles was proposed boot-CI, see [21].

4.1 Boot-p method

1.From the original sample x = x1;n,x2;n, ...,xR;n, compute the MLEs of λ̂ and θ̂ from (13) and (14).
2.Get a bootstrap sample x∗ = x∗1;n,x

∗
2;n, ...,x

∗
R;n by resampling with replacement. Obtain the bootstrap estimate of λ and

θ say, λ̂ ∗ and θ̂ ∗ using the bootstrap sample as in step 1.
3.Repeat step 2 B times representing B bootstrap MLEs of λ and θ based on B different bootstrap samples.

4.Arrange all λ̂ ∗’s and θ̂ ∗’s, in order to obtain the bootstrap sample ϕ
[1]
l , ...,ϕ

[B]
l , l = 1,2, where ϕ1 = λ̂ ∗,ϕ2 = θ̂ ∗.

5.Let G(z) = P(ϕl ≤ z) be the cdf of ϕl . Define ϕlBoot−p = G−1(z) for given z. The approximate bootstrap 100(1−α)
CI of ϕl is given by [ϕlBoot−p(

α
2
),ϕlBoot−p(1− α

2
)].
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4.2 Boot-t method

1.From the original sample x = x1;n,x2;n, ...,xR;n, compute the MLEs of λ̂ and θ̂ from (13) and (14).
2.Get a bootstrap sample x∗ = x∗1;n,x

∗
2;n, ...,x

∗
R;n by resampling with replacement. Obtain the bootstrap estimate of λ and

θ say, λ̂ ∗ and θ̂ ∗ using the bootstrap sample as in step 1.

3.Construct the following statistics T ∗
1 = λ̂ ∗−λ̂√

var(λ̂ ∗)
and T ∗

2 = θ̂∗−θ̂√
var(θ̂∗)

, where var(λ̂ ∗) and var(θ̂ ∗) are obtained using

the FIM.
4.Repeat step 2 and 3 B times.

5.Let G(z) = P(T ∗
l ≤ z), l = 1,2, be the cdf of T ∗

l .Define λ̂Boot−t = λ̂ +

√

var(λ̂)G−1(z) and

θ̂Boot−t = θ̂ +
√

var(θ̂ )G−1(z) for given z.The approximate bootstrap 100(1 − α) CI of λ and θ is given by

[λBoot−t(
α
2
),λBoot−t(1− α

2
)]. and [θBoot−t(

α
2
),θBoot−t(1− α

2
)].

5 Bayes Estimates

In this section, similarly as in [22] it is assumed that λ and θ have the following independent gamma priors:
{

π1(λ ) ∝ λ a1−1 exp[−b1λ ],
π2(θ ) ∝ θ a2−1 exp[−b2θ ].

(21)

All parameters a1,b1,a2,b2 are chosen to be known and non-negative. The joint prior distribution of λ and θ is given
by

π(λ ,θ ) ∝ π1(λ )π2(θ ) ∝ λ a1−1θ a2−1 exp[−b1λ ]exp[−b2θ ]. (22)

Now, the posterior density function is given by:

π∗(λ ,θ |x) ∝
1

K
L(λ ,θ )π(λ ,θ ) =

1

K
(1− exp[− 1

2c2
(2λ c+θ )])(n−R)

R

∏
1

1

x3
i

(λ xi +θ )θ a2−1 exp[−b1λ − b2θ ]λ a1−1 exp[−
R

∑
1

1

2x2
i

(2λ xi +θ )]. (23)

where K =
∫ ∞

0

∫ ∞
0 L(λ ,θ )π(λ ,θ )dλ dθ . For any function u(λ ,θ ) of λ and θ , the Bayes estimates is given by

û(λ ,θ ) =
1

K

∫ ∞

0

∫ ∞

0
u(λ ,θ )L(λ ,θ )π(λ ,θ )dλ dθ , (24)

We observe that the equation (24) cannot be solved explicitly, so two different procedures are introduced (Lindley
approximation and MCMC method).

5.1 Lindley’s approximation

[23] introduced a manner to approximate the ratio of two integrals such as in (24). Now we can write (24) as:

E(u|x) =
∫ ∞

0

∫ ∞
0 u(λ ,θ )eρ(λ ,θ)+l(λ ,θ)dλ dθ

∫ ∞
0

∫ ∞
0 exp[ρ(λ ,θ )+ l(λ ,θ )]dλ dθ

, (25)

where ρ(λ ,θ ) = log[π(λ ,θ )] and l(λ ,θ ) is given by (12). Based on Lindley approximation E(u|x) can be approximated
as:

E(u|x) = u(λ̂ , θ̂ )+ 1
2
[(ûλ λ +2ûλ ρ̂λ )σ̂λ λ +(ûλ θ +2ûθ ρ̂λ )σ̂λ θ +(ûλ θ +2ûλ ρ̂θ )σ̂λ θ +(ûθθ +2ûθ ρ̂θ )σ̂θθ ]+

1
2
[(ûλ σ̂λ λ +

ûθ σ̂λ θ )(l̂λ λ λ σ̂λ λ + l̂λ θλ σ̂λ θ + l̂θλ λ σ̂θλ + l̂θθλ σ̂θθ )+ (ûλ σ̂θλ + ûθ σ̂θθ )(l̂θλ λ σ̂λ θ + l̂λ θθ σ̂λ θ + l̂θλ θ σ̂θλ + l̂θθθ σ̂θθ )],

where λ̂ and θ̂ are the MLEs of λ and θ and uλ λ is the second derivative of u(λ ,θ ) w.r.t. λ . Also ûλ λ is the value of uλ λ

at (λ̂ , θ̂ ) and σ̂λ λ is given by (20).
Now, we use two loss functions to determine the Bayes estimates based on Lindley’s approximation.
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5.1.1 Bayes estimate based on Lindley’s approximation under LINEX loss function

1.For estimating λ , set u(λ ,θ ) = exp[−aλ ], hence

λ̂BL =−1

a
log[E(exp[−aλ ]|x)]. (26)

2.For estimating θ , set u(λ ,θ ) = exp[−aθ ], hence

θ̂BL =−1

a
log[E(exp[−aθ ]|x)]. (27)

3.For estimating h(λ ,θ ), set u(λ ,θ ) = exp[−ah(λ ,θ )], hence

ĥBL =−1

a
log[E(exp[−ah(λ ,θ )]|x)]. (28)

4.For estimating S(λ ,θ ), set u(λ ,θ ) = exp[−aS(λ ,θ )], hence

ŜBL =−1

a
log[E(exp[−aS(λ ,θ )]|x)]. (29)

5.1.2 Bayes estimate based on Lindley’s approximation under SEL function

1.For estimating λ , set u(λ ,θ ) = λ , hence

λ̂BL = E(λ |x). (30)

2.For estimating θ , set u(λ ,θ ) = θ , hence

θ̂BL = E(θ |x). (31)

3.For estimating h(λ ,θ ), set u(λ ,θ ) = h(λ ,θ ), hence

ĥBL = E(h(λ ,θ )|x). (32)

4.For estimating S(λ ,θ ), set u(λ ,θ ) = S(λ ,θ ), hence

ŜBL = E(S(λ ,θ )|x). (33)

Now, we introduce the importance sampling technique.

5.2 Importance sampling

The MCMC with the importance sampling technique to draw samples from the posterior density function is proposed; and
in turn computes the Bayes estimates, and also construct HPD credible interval. This procedure was proposed in several
articles, see, [7], [24], [25] and [26]. HPD credible interval is also proposed by [27]. From Equation (23) the posterior
density function of λ and θ can be written as:

π∗(λ ,θ |x) = gλ (a
∗
1,b

∗
1)gθ (a

∗
2,b

∗
2)g3(λ ,θ ),

where gλ (a
∗
1,b

∗
1) is a Gamma density function with the shape and scale parameters a∗1 = a1 +R and b∗1 = b1 +∑R

1
1
xi

and

gθ (a
∗
2,b

∗
2) is a Gamma density function with the shape and scale parameters a∗2 = a2+R and b∗2 = b2 +∑R

1
1

2x2
i

. Moreover,

g3(λ ,θ ) = [(1− exp[− 1
2c2 (2λ c+θ )])(n−R)∏R

1
1

λ θx3
i

(λ xi +θ )],

which is a function of λ and θ . Now, the following scheme is introduced to generate (λ ,θ ) from the posterior density
function and compute the Bayes estimates and the corresponding credible intervals.

1.Set the initial values of λ and θ say λ0 and θ0.
2.Set j=1.
3.Generate λ j from gλ (a

∗
1,b

∗
1)∼ gamma(a1 +R,b1 +∑R

1
1
xi
).
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4.Generate θ j from gθ (a
∗
2,b

∗
2)∼ gamma(a2+R,b2 +∑R

1
1

2x2
i

).

5.Compute S(t) and h(t), replacing λ and θ by λ j and θ j in equations (3) and (4).
6.Compute g3(λ1,θ1).
7.Repeat steps 1-5 N times and obtain (λ1,θ1), ...,(λN ,θN) and g3(λ j,θ j), j = 1, ...,N.

8.The Bayes estimates of u(λ ,θ ) can be approximated as:

ûMC ≈
1
N ∑N

1 u(λ j,θ j)g3(λ j,θ j)
1
N ∑N

1 g3(λ j,θ j)
. (34)

9.The idea developed in [27] is used to construct the HPD credible interval. The procedure to evaluate the HPD credible
interval of the unknown parameter is given in several articles see, [9] and [25].

Now, two loss functions to determine the Bayes estimates based on MCMC method from (34) are used.

5.2.1 Bayes estimate based on MCMC method under LINEX loss function

1.For estimating λ , set u(λ j,θ j) = exp[−aλ j], hence

λ̂BG =−1

a
log[

1
N ∑N

1 u(λ j,θ j)g3(λ j,θ j)
1
N ∑N

1 g3(λ j,θ j)
]. (35)

2.For estimating θ , set u(λ j,θ j) = exp[−aθ j], hence

θ̂BL =−1

a
log[

1
N ∑N

1 u(λ j,θ j)g3(λ j,θ j)
1
N ∑N

1 g3(λ j,θ j)
]. (36)

3.For estimating h(λ ,θ ), set u(λ j,θ j) = exp[−ah(λ j,θ j)], hence

ĥBL =−1

a
log[

1
N ∑N

1 u(λ j,θ j)g3(λ j,θ j)
1
N ∑N

1 g3(λ j,θ j)
]. (37)

4.For estimating S(λ ,θ ), set u(λ j,θ j) = exp[−aS(λ j,θ j)], hence

ŜBL =−1

a
log[

1
N ∑N

1 u(λ j,θ j)g3(λ j,θ j)
1
N ∑N

1 g3(λ j,θ j)
]. (38)

5.2.2 Bayes estimate based on MCMC method under SEL function

1.For estimate of λ , u(λ j,θ j) = λ j,

λ̂BL =
1
N ∑N

1 u(λ j,θ j)g3(λ j,θ j)
1
N ∑N

1 g3(λ j,θ j)
. (39)

2.For estimating θ , set u(λ j,θ j) = θ j, hence

θ̂BL =
1
N ∑N

1 u(λ j,θ j)g3(λ j,θ j)
1
N ∑N

1 g3(λ j,θ j)
. (40)

3.For estimating h(λ ,θ ), set u(λ j,θ j) = h(λ j,θ j), hence

ĥBL =
1
N ∑N

1 u(λ j,θ j)g3(λ j,θ j)
1
N ∑N

1 g3(λ j,θ j)
. (41)

4.For estimating of S(λ ,θ ), set u(λ j,θ j) = S(λ j,θ j), hence

ŜBL =
1
N ∑N

1 u(λ j,θ j)g3(λ j,θ j)
1
N ∑N

1 g3(λ j,θ j)
. (42)

c© 2021 NSP

Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. Lett. 8, No. 3, 191-204 (2021) / www.naturalspublishing.com/Journals.asp 199

 

Fig. 3: Empirical and fitted distribution function for the completed data set.

Table 1: Estimates of λ and θ for different methods under the non-informative priors

R T Estimate MLE Boot-p Boot-t Lindley Lindley MCMC MCMC

(SEL) (LINEX) (SEL) (LINEX)

0.0001 1 -1 0.0001 1 -1

48 0.88 λ 0.4617 0.3964 0.4809 0.5013 0.5013 0.4942 0.5079 0.2679 0.2679 0.2676 0.2681

θ 0.1098 0.1774 0.1252 0.0823 0.0823 0.0796 0.085 0.176 0.176 0.1759 0.1761

0.95 λ 0.4723 0.4041 0.4109 0.5151 0.5151 0.5082 0.5214 0.2682 0.2682 0.268 0.2685

θ 0.1037 0.173 0.1292 0.0739 0.0739 0.0715 0.0766 0.1762 0.1762 0.1761 0.1763

55 1.15 λ 0.4322 0.3672 0.3718 0.4632 0.4632 0.4563 0.4697 0.2888 0.2888 0.2887 0.2889

θ 0.1275 0.1985 0.1542 0.1055 0.1055 0.1027 0.1085 0.1979 0.1979 0.1979 0.198

1.51 λ 0.4424 0.3726 0.3812 0.4759 0.4759 0.4692 0.4822 0.2889 0.2889 0.2888 0.289

θ 0.1213 0.1999 0.1453 0.0975 0.0975 0.0949 0.1003 0.198 0.198 0.1979 0.198

6 Real Data Analysis

The data set, which was originally reported by [28], is the survival times (in days) of guinea pigs injected with different
doses of tubercle bacilli. This data is analyzed by several articles see, [29] and [30]. We have created four artificially HC
data sets from the survival times data set (after we divided each data point by 100), using the following censoring schemes:

Scheme 1:R = 48, T = 0.88.
Scheme 2:R = 48, T = 0.95.
Scheme 3:R = 55, T = 1.15.
Scheme 4:R = 55, T = 1.51.

First, we would like to check whether the ILED fits this data or not. The calculated value of the Kolomogorov-Smirnov
test is 0.1509 for the ILED and this value is smaller than their corresponding values expected at 5% significance level,
which is 0.160278 at n = 72. We have just plotted the empirical distribution function, and the fitted distribution function
in figure 3. Observe that the ILED can be a good model for this data.

For computing the MLEs, use the numerical methods and also compute the 95% ACIs using the observed FIM. The
SEL function and LINEX loss function are considered to compute the Bayes estimates in all cases. For comparison
purposes, the informative and the non-informative priors were assumed. The Bayes estimates in all cases are obtained by
using importance samples of size N = 20000. In all the cases λ = 0.37 , θ = 0.1668 and a=−1, 0.0001, 1 are considered.
First, the non-informative priors are considered.

Second, we would like to see the effect of the hyper parameters on the sensitivity of the Bayesian estimation and the
HPD credible interval, so, the following two different hyper parameters are obtained by the same method in [31]:

1.For the prior variance (Vp) = 0.1, a1 = 1.71231,a2 = 0.8628,b1 = 4.138,b2 = 2.937,
2.For the prior variance (Vp) = 4, a1 = 0.04281,a2 = 0.02157,b1 = 0.10345,b2 = 0.07343,
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Table 2: The 95% ACI, bootstrap CI and the HPD credible interval under the non-informative priors

R T ACI Boot-p CI Boot-t CI HPD

48 0.88 λ (0.2195,0.704) (0.0831,0.5842) (0.4773,0.4862) (0.6405,0.7405)

θ (0,0.2637) (0.007,0.5472) (0.1177,0.139) (0.4207,0.4846)

0.95 λ (0.232,0.7126) (0.0721,0.5815) (0.3942,0.4229) (0.6399,0.7405)

θ (0,0.2549) (0.0065,0.5759) (0.118,0.1491) (0.4203,0.4864)

55 1.15 λ (0.1965,0.668) (0.0645,0.5578) (0.356,0.3826) (0.7211,0.8479)

θ (0,0.2825) (0.012,0.5951) (0.1413,0.1804) (0.4942,0.5811)

1.51 λ (0.2084,0.6764) (0.0701,0.5745) (0.3661,0.3912) (0.7208,0.8479)

θ (0,0.2737) (0.0142,0.6209) (0.1341,0.1648) (0.494,0.5811)

Table 3: Estimates of λ and θ for different methods under informative priors

R T (Vp) Lindley Lindley MCMC HPD MCMC

(SEL) (LINEX) (SEL) (LINEX)

0.0001 1 -1 0.0001 1 -1

48 0.88 0.1 λ 0.456 0.456 0.4485 0.4637 0.2691 (0.6336,0.7299) 0.2691 0.2688 0.2693

θ 0.116 0.116 0.1129 0.119 0.1767 (0.4189,0.4835) 0.1767 0.1766 0.1768

0.95 λ 0.4664 0.4664 0.4589 0.4839 0.2694 (0.6323,0.7299) 0.2694 0.2692 0.2696

θ 0.1099 0.1099 0.1069 0.1128 0.1769 (0.4179,0.4835) 0.1769 0.1768 0.177

55 1.15 0.1 λ 0.4313 0.4314 0.4241 0.4385 0.289 (0.7121,0.8339) 0.289 0.2889 2891

θ 0.1308 0.1308 0.1277 0.1339 0.1981 (0.4913,0.5765) 0.1981 0.1981 0.1982

1.51 λ 0.441 0.441 0.4339 0.4481 0.2891 (0.7121,0.8339) 0.2891 0.289 0.2892

θ 0.1248 0.1248 0.1217 0.1278 0.1982 (0.4913,0.5765) 0.1982 0.1981 0.1982

48 0.88 4 λ 0.5002 0.5002 0.4931 0.5068 0.2679 (0.6406,0.7402) 0.2679 0.2676 0.2681

θ 0.0831 0.0831 0.0805 0.0859 0.1759 (0.4208,0.4863) 0.1759 0.1758 0.1761

0.95 λ 0.5139 0.5139 0.507 0.5202 0.2682 (0.6397,0.7402) 0.2682 0.2679 0.2684

θ 0.0748 0.0748 0.0724 0.0775 0.1762 (0.4203,0.4863) 0.1762 0.1761 0.1763

55 1.15 4 λ 0.4624 0.4624 0.4555 0.469 0.2888 (0.7209,0.8476) 0.2888 0.2887 0.2889

θ 0.1062 0.1062 0.1033 0.1091 0.1979 (0.4941,0.581) 0.1979 0.1979 0.198

1.51 λ 0.4751 0.4751 0.4683 0.4814 0.2889 (0.7206,0.8476) 0.2889 0.2888 0.289

θ 0.0982 0.0982 0.0955 0.101 0.198 (0.4939,0.581) 0.198 0.1979 0.198

7 Numerical Experiments

In this section, we carry out a simulation study to compare the performance of MLEs and Bayes estimators. We estimate
the unknown parameters using the MLE, bootstrap estimate, Bayes estimators obtained by Lindley approximations and
MCMC technique. The performances of different estimators with mean square errors (MSE) are compared.

7.1 Case I for Type-I HC scheme

The comparison between the estimates is taking place according to the following steps:

1.For given the hyper parameters a1,b1,a2,b2, generate random values of λ and θ from the gamma distributions.
2.For given values of n (and r) with the initial value of λ and θ given in step (1), we generate random samples from the

inverse CDF of a distribution and then ordered them.
3.The MLEs of λ and θ are then obtained by solving numerically the two nonlinear equations (13) and (14) with R = r.
4.The MLEs of the hazard function and the survival function are obtained from the equation (15) and (16) with t=0.4.
5.The Bayes estimates of λ , θ , hazard function and the survival function are computed by using Lindley’s approximation

forms under SEL function, given by (30)- (33) and under LINEX loss function, given by (26)- (29).
6.The Bayes estimates of λ , θ , hazard function and the survival function are computed by applying the Monte Carlo

integration technique with 11000 observations under SEL function, given by (39)- (42) and under LINEX loss
function, given by (35)- (38).

7.The quantities ( ˆ̂ϑ −ϑ)2 are computed where ϑ̂ stands for an estimate of ϑ (MLE or Boot or Bayes).
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Table 4: Estimates of λ and the corresponding mean square error(in the bracket) for case I

n r MLEs MCMC(SEL) MCMC(LINEX) Lindley(SEL) Lindley(LINEX)

30 16 0.4945 0.6454 0.6477 0.6172 0.6191

(0.16693) (0.02849) (0.02881) (0.2647) (0.27764)

20 0.5269 0.6323 0.6341 0.6713 0.6732

(0.11315) (0.02276) (0.02295) (0.20532) (0.19728)

80 40 0.5631 0.6112 0.612 0.6223 0.6241

(0.0509) (0.01157) (0.0116) (0.05646) (0.05642)

45 0.5729 0.6082 0.6089 0.6263 0.6279

(0.04624) (0.01112) (0.01113) (0.0482) (0.04821)

Table 5: Estimates of θ and the corresponding mean square error(in the bracket) for case I

n r MLEs MCMC(SEL) MCMC(LINEX) Lindley(SEL) Lindley(LINEX)

30 16 0.9262 0.7606 0.6651 0.7898 0.798

(0.42432) (0.08344) (0.08565) (0.52957) (0.53977)

20 0.8704 0.7846 0.7881 0.7333 0.7392

(0.29659) (0.7834) (0.08007) (0.40718) (0.44032)

80 40 0.7544 0.7135 0.715 0.6861 0.6894

(0.09901) (0.03027) (0.03058) (0.09863) (0.09954)

45 0.7613 0.7379 0.7392 0.7087 0.712

(0.08891) (0.0285) (0.0288) (0.09397) (0.09494)

Table 6: Estimates of h(t) and the corresponding mean square error(in the bracket) for case I

n r MLEs MCMC(SEL) MCMC(LINEX) Lindley(SEL) Lindley(LINEX)

30 16 0.3462 0.3843 0.3858 0.3797 0.3812

(0.04344) (0.03319) (0.03342) (0.0316) (0.03182)

20 0.3544 0.3707 0.372 0.3784 0.3797

(0.03907) (0.03261) (0.0328) (0.03125) (0.03148)

80 40 0.3822 0.392 0.3926 0.397 0.3977

(0.01795) (0.01573) (0.01578) (0.01433) (0.01483)

45 0.3674 0.3748 0.3753 0.3796 0.3803

(0.01666) (0.01577) (0.01581) (0.01458) (0.01461)

Table 7: Estimates of S(t) and the corresponding mean square error(in the bracket) for case I

n r MLEs MCMC(SEL) MCMC(LINEX) Lindley(SEL) Lindley(LINEX)

30 16 0.9742 0.9688 0.9688 0.9639 0.9639

(0.00045) (0.00042) (0.00042) (0.00079) (0.00079)

20 0.9738 0.9712 0.9712 0.964 0.964

(0.00041) (0.00037) (0.00037) (0.00076) (0.00076)

80 40 0.9729 0.9713 0.9713 0.9682 0.9682

(0.00019) (0.00016) (0.00016) (0.00024) (0.00024)

45 0.9744 0.9733 0.9733 0.9702 0.9702

(0.00017) (0.00015) (0.00015) (0.00021) (0.00021)

Steps 1-7 were repeated at least 1000 times for informative prior and for different sample sizes n and r at T=5. In all
cases a1 = 1,a2 = 0.2,b1 = 0.5,b2 = 0.1, λ = 0.613811 and θ = 0.674349. The mean square error of the estimates were
estimated by:

MSE(ϑ̂) = ∑1000
1

( ˆ̂ϑ−ϑ )2

1000

c© 2021 NSP

Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


202 M. A. W. Mahmoud, H. M. M. Radwan: Estimating the unknown parameters of inverted...

Table 8: Estimates of λ and the corresponding mean square error(in the bracket) for case II

n T MLEs MCMC(SEL) MCMC(LINEX) Lindley(SEL) Lindley(LINEX)

30 2 0.4219 0.6258 0.627 0.5471 0.541

(0.11518) (0.01817) (0.0183) (0.24488) (0.44665)

3 0.6469 0.6854 0.6868 0.7963 0.7981

(0.05022) (0.02255) (0.02285) (0.144) (0.13717)

80 4.5 0.576 0.7685 0.7687 0.6179 0.619

(0.02826) (0.03313) (0.03321) (0.02796) (0.02802)

5 0.5952 0.7676 0.7679 0.6348 0.6359

(0.02511) (0.03261) (0.03269) (0.02838) (0.02848)

Table 9: Estimates of θ and the corresponding mean square error(in the bracket) for case II

n T MLEs MCMC(SEL) MCMC(LINEX) Lindley(SEL) Lindley(LINEX)

30 2 1.0571 0.9233 0.9262 0.9104 0.9142

(0.48474) (0.16112) (0.16364) (0.62039) (0.59468)

3 0.7754 0.8922 0.895 0.6283 0.6321

(0.20916) (0.13734) (0.13961) (0.30258) (0.37306)

80 4.5 0.7606 1.0802 1.0807 0.7171 0.7196

(0.06616) (0.19923) (0.19964) (0.06511) (0.06565)

5 0.728 1.069 1.0694 0.6875 0.6899

(0.05688) (0.19093) (0.1913) (0.06415) (0.06454)

Table 10: Estimates of h(t) and the corresponding mean square error(in the bracket) for case II

n T MLEs MCMC(SEL) MCMC(LINEX) Lindley(SEL) Lindley(LINEX)

30 2 0.3242 0.2931 0.2936 0.3656 0.367

(0.04623) (0.0407) (0.04073) (0.03893) (0.03918)

3 0.3433 0.2748 0.2752 0.3622 0.3634

(0.03662) (0.04008) (0.04009) (0.02439) (0.02454)

80 4.5 0.3642 0.1246 0.1246 0.3816 0.3822

(0.01526) (0.07261) (0.07261) (0.01351) (0.01355)

5 0.3748 0.1281 0.1281 0.3905 0.3911

(0.0152) (0.07086) (0.07086) (0.01409) (0.01414)

Table 11: Estimates of S(t) and the corresponding mean square error(in the bracket) for case II

n T MLEs MCMC(SEL) MCMC(LINEX) Lindley(SEL) Lindley(LINEX)

30 2 0.9776 0.9796 0.9796 0.9674 0.9674

(0.0004) (0.00032) (0.00032) (0.00108) (0.00106)

3 0.9736 0.981 0.981 0.9643 0.9643

(0.00039) (0.00028) (0.00028) (0.0007) (0.00071)

80 4.5 0.975 0.9938 0.9938 0.971 0.971

(0.00015) (0.00041) (0.00041) (0.00018) (0.00018)

5 0.9737 0.9935 0.9935 0.9696 0.9696

(0.00016) (0.00041) (0.00041) (0.0002) (0.0002)

7.2 Case II for Type-I HC scheme

The same steps in Case-I are considered with replacing steps 2 and 3 by:

1.For given values of n (and T) with the initial value of λ and θ given in step (1), we generate random samples from the
inverse CDF of a distribution and then ordered them.

2.The MLEs of λ and θ are then obtained by solving numerically the two nonlinear equations (13) and (14) with R = k.

c© 2021 NSP

Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. Lett. 8, No. 3, 191-204 (2021) / www.naturalspublishing.com/Journals.asp 203

8 Conclusion

In this paper, Bayes estimation of the unknown parameters of the ILED, when the data are collected under the Type-I HC
scheme, are considered. Gamma priors are used for both the unknown parameters to calculate Bayes estimators under the
assumptions of SEL and LINEX loss functions. We found that when both parameters are unknown, the Bayes estimates
cannot be obtained in explicit form. So, Lindley approximations and the MCMC technique are used to compute the
approximate Bayes estimates.

Under the real data analysis, it is observed that:

1.It is easy to observe from Table 2 that the Boot-t and HPD credible intervals of λ and θ are better than the
corresponding boot-p and ACIs in terms of average confidence lengths obtained.

2.It is clear from Tables 1, 2 and 3 that the Bayes estimates and the HPD credible intervals of λ and θ are relatively
insensitive to the specification of the hyper parameters (a1,a2,b1,b2).

Furthermore, we observe the following from the simulation study:

1.Tables (4-7) showed that the mean square errors decrease at almost by increasing r when n and T are kept fixed .
2.From Tables (8-11) we noted that the mean square errors decrease at almost by increasing T with n and r are kept

fixed.
3.In general, the mean squared error values of all estimates decreases as n increases
4.The Bayes estimates of the two parameters λ and θ using MCMC method are generally better than their MLEs and

Bayes estimates using Lindley approximation based on the mean square error for all cases.
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