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Abstract: As is known, the solution of some problems of ecology, geophysics, nuclear physics, the study of some seasonal distribution
of the disease and so on, reduced to solving of integro-differential equations of higher order. Note that solving of these equations
can be reduced to solving system of integro-differential equations of the first order. However, special techniques adapted to solving
of equations of higher order are usually effective. So here is investigated the numerical solution of integro-differential equations of
second order. Prove that there are methods specially adapted to solving of integro-differential equations of second order, which are
more accurate than the methods constructed to solving the system consisted from the integro-differential equations offirst order or
the system consisted from the integral and differential equations. For illustration this result constructed concretemethods, which are
applied to solving model problem.

Keywords: Initial value problem, Volterra integro-differential equation of second order, second derivative multistep method,multistep
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1 Introduction

Consider to solving the following initial value problem:

y′′(x) = F(x,y(x),y′(x),τ(x)),
y(x0) = y0, y′(x0) = y′0,

(1)

hereτ(x) is the known function. Assume that the initial
value problem (1) has a continuous unique solution
defined on the segment[x0, X ]. To find an approximate
solution of problem (1), the segment[x0, X ] is divided
into N equal parts by the step sizeh > 0, but the mesh
point is defined asxi = x0 + ih (i = 0, 1, ..., N). In
addition, we denote the approximate values of the
solution of problem (1) by ym (m = 0, 1, ...) but byy(xm)
the corresponding exact values of the solution of the
problem (1).

It is obvious that by the change of variables, the
problem (1) can be rewritten as follows:

z′(x) = F(x,y(x),z(x),τ(x)), z(x0) = y′0, (2)

y′(x) = z(x), y(x0) = y0. (3)

Thus solving of integro-differential equations of the
second order reduced to solving of integro-differential

equations of the first order. In this case the order of
accuracy for the constructed methods for the finding the
solution of the problem (1) to be the same as the order of
accuracy of methods for constructing to solving of the
problem (2) and (3). In order to construct a more accurate
methods in [1], proposed using of the following method:

k

∑
i=0

αiyn+i = h
k

∑
i=0

βiy
′
n+i + h2

k

∑
i=0

γiy
′′
n+i. (4)

In this paper also considered application of some
modification of method (4) to solving problem (1).

It is easy to see that the properties of the constructed
methods for determined the solution of the problem (1)
depends on the properties of the functionτ(x). Consider a
more wide-spread case when is the following is holds:

τ(x) =
x

∫

x0

K(x, s, y(s), y′(s))ds. (5)

Note that in [2] constructed an efficient method for
solving integral equations of the type (5) based on the use
of forward-jumping methods. By the application of
different methods to solving of equation (5), we can
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construct different methods for solving of the problem
(1). Note that the problem (1) is an initial value problem
for Volterra integro -differential equations of second
order. Now, assume that the functionτ(x) a solution of
the following differential equation:

ak(x)τ(x− kh)+ ak−1(x)τ(x− (k−1)h)+ . . .+

+a1(x)τ(x− h)+ a0(x)τ(x) = b(x), (6)

here, the coefficientsai(x) (i = 0, 1, ..., k) and b(x) are
continuous functions defined in some closed area. Then
by taking into account, the difference equation (6) in the
problem (1), we obtain the initial value problem for a
differential-algebraic equation. Know suppose thatτ(x) is
the solution of the following equation:

k

∑
i=0

ai(x)τ(x− ih) =
k

∑
i=0

bi(x)τ ′(x− ih). (7)

Then taking that in (1), we obtain the differential and
difference problem. To find numerical solutions of
integro-differential equations, Volterra supposed use
quadrature methods (see [3, pp. 50-55], which has been
successfully applied to solving of integro-differential
equations and to present time.

It is known that to construct the quadrature method,
usually the calculation of the integral in the problem (1) is
replaced to the calculation of the integral sum, which is as
follows (see, for example, [3]-[10]):

y′′(x) = f (x, y(x), y′(x))+
n

∑
i=0

aiK(x, xi, yi, y′i)+Rn, (8)

y(x0) = y0, y′(x0) = y′0,

where the coefficients of the quadrature formula
ai (i = 0, 1, ..., n) are real numbers (x = x0 + nh – fixed
point) and Rn is a remainder term of the quadrature
formula. Thus, we receive that for solving initial value
problem of ordinary differential equation, one can use the
finite difference method (4) of the constant coefficients
(see, for example, [11]-[23]).

Method (4) has a general and a specific form when
γi 6= 0 (i = 0,1,2, ...,k), which has been fully investigated
by some authors and applied to solve ordinary differential
equations of the first and second orders (see, for example,
[11]-[30]).

Here, we apply method of type (4) to solve problem
(1). Suppose that the functionK(x, s, y, z) is defined in a
corresponding domain and there have continues
derivatives up top, inclusively.

For constructed a more accurate methods to solving
of ordinary differential equations in [26] investigated the
following method:

k

∑
i=0

αiyn+i = h
k

∑
i=0

(βiy
′
n+i + β̂iyn+i+νi)+

+h2
k

∑
i=0

(γiy
′′
n+i + γ̂iy

′′
n+i+νi

). (9)

And in [27] considered the application of the hybrid
method of the type (9) to solving of integro-differential
equations of first order, from which one can obtained
method (4) as particular case. This method generalized
many known methods applied to solving of ordinary
differential equations of first and second orders.
Therefore, we consider the application of method (9) to
solving of the problem (1).

2 Research and application of the method (9)
for solving of the problem (1)

As is known, if the method (9) for νi = 0 (i= 0, 1, 2, ..., k)
is converges, then its coefficients satisfies some bounders
(see eg. [12], [25]). But now consider the transfer of these
conditions on the coefficients of the method (9).

A. The valuesαi,β ,
i β̂ ,

i γi, γ̂i, νi (i = 0,1,2, ...,k) are
real numbers andαk 6= 0.

B. The polynomials

ρ(λ )≡
k

∑
i=0

αiλ i; β (λ )≡
k

∑
i=0

βiλ i; β̂ (λ )≡
k

∑
i=0

β̂iλ i+νi ;

γ(λ )≡
k

∑
i=0

γiλ i; γ̂(λ )≡
k

∑
i=0

γ̂iλ i+νi

have no common factors different from constant.
C. If β̂i = βi = 0 (i = 0, 1, ..., k), thenρ ′(1) = 0,but

ρ ′′(1) 6= 0. In this casep ≥ 1 is holds. If|β0|+ |β1|+ ...+

|βk|+
∣

∣

∣
β̂0

∣

∣

∣
+
∣

∣

∣
β̂1

∣

∣

∣
+ ...+

∣

∣

∣
β̂k

∣

∣

∣
6= 0, thenρ ′(1) 6= 0 andp≥ 2.

Herep is the degree of the method (9) and defined as:

Definition 1. For a sufficiently smooth functiony(x),
method (9) has the degreep > 0 if the following holds:

k

∑
i=0

αiy(x+ ih)− h
k

∑
i=0

(βiy
′
n+i + β̂iy

′
n+i+νi

)−

−h2
k

∑
i=0

(γiy
′′
n+i + γ̂iy

′
n+i+νi

) = O(hp+1), h → 0.

Validity of the condition A is obviously, since the
solution of (1) y(x) - is the real function. A condition
αk 6= 0 due to the fact that the method (9) apply to the
determination of the values ofyn+k and because its
coefficient the quantityαk must be different from zero.
Naturally, if divided the equality (9) to αk, then we can be
putαk = 1.

Consider to investigation of the condition B and
suppose that the condition B is not holds. Then there exist
the functionϕ(λ ) 6=const, which is a common factor for
polynomialsρ(λ ); β (λ ); β̂ (λ ); γ̂(λ ) andγ(λ ).
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Let’s consider the following shift operator:

E iy(x) = y(x+ ih) (i = 0, 1, ..., k; E0y(x) = y(x)),

E i+νiy(x) = y(x+(i+νi)h) (|νi|< 1; i = 0, 1, ..., k).

After applying the shift operator to method (9), we
have:

ρ(E)yn = h(β (E)+ β̂(E))y′n + h2(γ(E)+ γ̂(E))y′′n , (10)

but after using the suppose from the condition B and
ϕ(λ ) 6= 0 in the equality (10), receive the following:

ρ1(E)yn − h(β1(E)+ β̂1(E))y
′
n −

− h2(γ1(E)+ γ̂1(E))y
′′
n = 0, (11)

where

ρ1(λ ) = ρ(λ )/ϕ(λ ), β1(λ ) = β (λ )/ϕ(λ ),
β̂1(λ ) = β̂ (λ )/ϕ(λ ), γ1(λ ) = γ(λ )/ϕ(λ ),
γ̂1(λ ) = γ̂(λ )/ϕ(λ ).

Obviously, if we denote the order of difference equation
(11) by k1, then we havek1 ≤ k− 1. It is not difficult to
understand that the difference equations (10) and (11) are
equivalent, and because in order to difference equation
(11) has a unique solution, it is necessary tok1 ≤ k − 1
initial data. Therefore, for given thek1 initial data, finite
difference equation (10) of orderk, will be has a unique
solution. However, from the theory of difference
equations it is known that if the number of initial data is
less than the order of the linear finite difference equations
with constant coefficients, then the number of solutions of
this difference equation has not any solution. This fact
implies that the sets of the roots of the polynomialsρ(λ ),
σ(λ ), γ(λ ), ϑ̂(λ ) andγ̂(λ ) are disjoint. Now consider to
satisfying the condition C. For this aim passing the limit
in (9) ash → 0 then we have

ρ(1)y(x) = 0 (x = x0+ nh). (12)

This result implies that

ρ(1) = 0.

By taking condition (12) into account in equation (10),
we obtain:

ρ1(E)(y j+1− y j) − hβ (E)y′j − hβ̂(E)y′j −

− h2γ(E)y′′j − h2γ̂(E)y′′j = 0, (13)

whereρ1(λ ) = ρ(λ )/(λ −1).
By using Lagrange’s theorem, we can write:

y j+1− y j = hy′j +O(h2).

By using this fact that in (13), we have:

(ρ1(E)−β (E) − β̂ (E))y′j − hγ(E)y′′j −

− hγ̂(E)y′′j = O(h), h → 0. (14)

By passing the limit ash → 0, we have:

ρ1(1) = β (1)+ β̂(1). (15)

Thus, it is a necessary condition for the convergence of
method (9) is ρ(1) = 0. However, ifβ (λ )≡ 0 andβ̂(λ )≡
0, thenρ(1) = ρ ′(1) = 0 is a necessary condition for the
convergence of method (9).

Consider the following expansions:

ρ(λ ) = ρ(1)+ρ ′(1)(λ −1)+
1
2

ρ ′′(1)(λ −1)2+

+O((λ −1)3),

β (λ ) = β (1)+β ′(1)(λ −1)+O((λ −1)2),

γ(λ ) = γ(1)+ γ ′(1)(λ −1)+O((λ −1)2),

yi+1− yi = hy′i +
h2

2
y′′i +O(h3).

These expansions are subject to conditions (15), and
due to the expansions in (10), we have:

1
2

ρ ′′(1)

(

y j+2− y j+1

h
− y j+1− y j

h

)

− (β ′(1)+ β̂ ′(1))×

×(y′j+1− y′j)− h(γ(1)+ γ̂(1))y′′j = O(h2), h → 0. (16)

Summarising the asymptotic equality (16) in terms of
j from 0 ton, we have:

(ρ ′′(1)−2(β ′(1)+ β̂ ′(1)))(y′n+1− y′0) = 2(γ(1)+ γ̂(1))×

×
n

∑
j=0

hy′′j −
h
2

ρ ′′(1)(y′′n+1− y′′0)+O(h), h → 0.

By passing the limit ash → 0, we obtain:

(ρ ′′(1)−2(β ′(1)+ β̂ ′(1)))(y′(x)− y′0) =

= 2(γ(1)+ γ̂(1))
x

∫

x0

F(s,y(s),y′(s),τ(s))ds.

From the problem (1) one can write

y′(x) = y′0+

x
∫

x0

F(s,y(s), y′(s), τ(s))ds.

By comparing these equations and utilising the fact
that the solution of the problem (1) is unique, we have:

ρ ′′(1) = 2(β ′(1)+ β̂ ′(1))+2(γ(1)+ γ̂(1)).

It follows that if γ̂(1)+ γ(1)+ β̂ ′(1)+β ′(1) = 0, then
ρ ′′(1) = 0. Thus, by using the substitutionz(x) = y′(x) in
asymptotic equality (14), we have:

(ρ1(E)−β (E)− β̂(E))z j−
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−h(γ̂(E)+ γ(E))z′j = O(h). (17)

It is easy to see that from the conditionρ ′(1) = 0,
consequent thatλ = 1 is a double root of the polynomial
ρ(λ ). However, asymptotic relation (17) can be regarded
as approximations of the difference method

k−1

∑
i=0

(ᾱizn+i + α̂izn+i+νi) = h
k

∑
i=0

(γiz
′
n+i + γ̂iz

′
n+i+νi

),

which for β (1) + β̂ (1) = 0 or ρ ′(1) = 0 is unstable.
Therefore,

β (1)+ β̂(1) 6= 0.

Thus, we have proved that if method (9) is converge,
thenβ (1)+ β̂ (1) 6= 0. Now, we show that if method (9)
converges, thenp ≥ 2. Indeed, if method (9) is converge,
then

ρ(1) = 0, ρ ′(1) = β (1)+ β̂(1),
1
2

ρ ′′(1) = β ′(1)+ β̂ ′(1)+ γ(1)+ γ̂(1)

from which it follows thatp ≥ 2.
Obviously, for the using of the method (9) need to

construction of methods for calculating the values of the
quantity y′(x). For example, when applying the method
(4) to solving of some problems for computing the values
y′j ( j = 1, 2, ...) usually use method, which is determined
by the following formula:

k

∑
i=0

αiy
′
n+i = h

k

∑
i=0

βiy
′′
n+i, (18)

This method fundamentally investigated by many
authors (see eg. [11]-[30]). Take into account that the
degree of stability of the type (18) satisfies the condition
p ≤ 2

[

k
/

2
]

+ 2. Here to construction a more accurate
methods of the type (18) proposed to use hybrid methods.
In one variant, these methods can be written as:

k

∑
i=0

αiy
′
n+i = h

k

∑
i=0

βiy
′′
n+i + h

k

∑
i=0

β̂iy
′′
n+i+νi

(19)

(|νi|< 1, i = 0,1, . . . ,k) .

It is known that there are stable methods of the type of
(19) having the degreep ≥ 2k+2. Thus we see that for the
numerical solution of the problem (1) can used the method
(19) and (4). It can be shown that the method constructing
by this method has the degreepmax = 2k+ 2. In order to
construct a more accurate method here supposed to use
formula (9). Note that the method (4) can be applied to the
following problem

y′ = f (x,y)+

x
∫

x0

K(x,s,y(s))ds, (20)

y(x0) = y0, x0 ≤ s ≤ x ≤ X .

3 The application of second derivative
multistep methods to solving problem (20)

Obviously, to apply method (4) to solve problem (20), we
need to determine the values of the quantityy′′n+k. For
using method (4), suppose that the quantities
y′′0, y′′1, . . . ,y

′′
k−1 are known. Then,y′′(x) can be determined

from the initial value problem for the integro-differential
equation of first order. In that case from the (20) we can
write the following:

y′′(x) = g(x, y, y′)+ a(x)+

x
∫

x0

K′
x(x, s, y(s))ds, (21)

whereg(x, y, y′) = f ′x + f ′y · y′ but a(x) = K(x, x, y(x)).
Some authors reduce problem (20) to the following:

y′ = f (x,y)+ϑ(x), y(x0) = y0, (22)

ϑ(x) =

x
∫

x0

K(x, s, y(s))ds. (23)

If the functionϑ(x) is known, then problem (20) can
be rewritten as problem (22). But problem (22) is the
initial value problem for ordinary differential equations,
which has been fundamentally investigated by many
authors (see, for example, [11]-[30]). By continuing this
method, problem (22) can also be reduced to the
following:

y′′ = F(x,y,y′), y(x0) = y0, y′(x0) = y′0, (24)

whereF(x, y, z) = g(x, y, z)+ϑ ′(x), buty′0 is defined from
an integro-differential equation of the first order.

Suppose that the quantityϑ ′
n is known. Then, to

determine the quantityϑ ′
n+1, we propose the following:

ϑ ′
n+1 = ϑ ′

n+Kn+1−Kn + hϑ ′′(ξn+1)− ha′(ξn+1)−

− hK′
x(ξn+1,s,y(s))

∣

∣

s=ξn+1
+

ξn+1
∫

xn

K′
x(xn,s,y(s))ds+

+

xn+1
∫

ξn+1

K′
x(xn+1,s,y(s))ds. (25)

After simplifying equation (25), we have (see, for
example, [22]):

k

∑
i=0

liϑ ′
n+i = h

k

∑
i=0

βian+i+

+ h
k

∑
i=0

k

∑
j=0

γ( j)
i K′

x(xn+i, xn+ j, yn+ j). (26)
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Thus, to use the method defined by formula (4), it is
necessary to calculate the quantitiesy′n+k. For this purpose,
we suggest the following method:

k

∑
i=0

α ′
i y

′
n+i = h

k

∑
i=0

β ′
i y′′n+i. (27)

This method is identical to the classicalk-step method
with constant coefficients. It is known that if method (27)
is stable, then the following holds (see [11]):

p ≤ 2
[

k
/

2
]

+2,

wherep is the degree andk is the order of method (27).
Consequently, the degree of method (27) is bounded. To
construct methods with a higher degree, scientists have
used hybrid methods (see, for example, [7], [31]-[33]).
For the construction of a stable method of type (27) with
a high degree, we propose the following (see [29]):

k

∑
i=0

α ′
i y

′
n+i = h

k

∑
i=0

β ′
i y′′n+i + h

k

∑
i=0

γ ′i y
′′
n+i+li (28)

(|li|< 1; i = 0,1,2, ...,k) .

Note that to construct methods to determine the
quantityy′n+k, one can use problem (20). In this case, it is
usually recommended to use ordinary multistep methods
with constant coefficients. However, to construct a stable
method with a high degree, it is necessary to use hybrid
methods or other methods. For example, to use a method
of type (28), one can construct a stable method with
degreep = 4k+2 (see [26]).

We remark that to apply method (4) to solve problem
(20), the first replace of problem (20) to the problem (24),
and then, we define the solution of problem (20) by using
the solution of problem (24). However, the degrees of the
methods constructed in this way are bounded, as
p ≤ 2k + 2 (see, for example, [12], [25], or [23]).
Therefore, to construct methods with a high degree, we
recommend using hybrid methods.

For the simplicity let us consider the case whenk = 1.
Then one can be constructed the following method:

y′n+1 = y′n +h(y′′n+1/2−q+y′′n+1/2+q)/2 (q =
√

3/6). (29)

This method is stable and has the degreep = 4. In this
case the stable method with the degreep=6 can be written
as:

y′n+1 = y′n + h(y′′n+1+ y′′n)/12+

+ 5h(y′′n+1/2−α + y′′n+1/2+α)/12 (α =
√

5/10). (30)

The application of these methods to solving problem
(20) recommended algorithm constructed in [16].

In solving many practical problems, one is faced with
the initial value problem for Volterra integro-differential
equations with a degenerate kernel. Applying degenerate
kernel to solving integro-differential equations by

multistep method one can be find in [33]. For simplicity,
consider the caseK(x, s, y) = a(x)b(s, y). Then, from
(20) we have:

y′ = f (x,y)+ a(x)

x
∫

x0

b(s,y(s))ds, (31)

y(x0) = y0, x0 ≤ s ≤ x ≤ X .

By using the above mentioned method, one can derive
the following from (31):

y′′ = g(x,y,y′)+ a′(x)ϑ(x)+ a(x)ϑ ′(x), (32)

y(x0) = y0, y′(x0) = y′0,

ϑ ′(x) = b(x,y(x)), ϑ(x0) = 0. (33)

Thus, we change solving of the problem (1) by the
solving of the problem (32) and the problem (33). It is
known that finding the solution of the problem (32) and
(33) is not difficult, because there are many methods for
solving ordinary differential equations.

Remarks. Note that the application to solving of the
problem (1) of the methods of the type (9) are more
effective than the methods of the type (8) or type (4).
Efficiency of this method contained its accuracy and its
region of stability, etc. For example, from formula (9) can
be obtained methods having the degreep ≤ 10. To this
end, consider finding the values of the coefficient method
(9) for the case, whenk = 1, which are solutions of the
following system of nonlinear algebraic equations:

β1+β0+ β̂1+ β̂0 = 1,
γ1+ γ0+ γ̂1+ γ̂0+β1+ l1β̂1+ l0β̂0 = 1/2,
2(γ1+ l1γ̂1+ l0γ̂0)+β1+ l2

1β̂1+ l2
0β̂0 = 1/3,

3(γ1+ l2
1γ̂1+ l2

0γ̂0)+β1+ l3
1β̂1+ l3

0β̂0 = 1/4,
4(γ1+ l3

1γ̂1+ l3
0γ̂0)+β1+ l4

1β̂1+ l4
0β̂0 = 1/5,

5(γ1+ l4
1γ̂1+ l4

0γ̂0)+β1+ l5
1β̂1+ l5

0β̂0 = 1/6,
6(γ1+ l5

1γ̂1+ l5
0γ̂0)+β1+ l6

1β̂1+ l6
0β̂0 = 1/7,

7(γ1+ l6
1γ̂1+ l6

0γ̂0)+β1+ l7
1β̂1+ l7

0β̂0 = 1/8,
8(γ1+ l7

1γ̂1+ l7
0γ̂0)+β1+ l8

1β̂1+ l8
0β̂0 = 1/9,

9(γ1+ l8
1γ̂1+ l8

0γ̂0)+β1+ l9
1β̂1+ l9

0β̂0 = 1/10.

(34)

Whereli = i+νi (i = 0, 1, 2, ..., k).
Here one can be fined any methods of the above

mentioned type in the following:
Variant I.

β1 = 0.12215347920; β0 = 0.15666106539;
γ̂1 = 0.00094817261; γ̂0 =−0.00000719154;
γ1 =−0.00434946344;γ0 = 0.00748767300;
β̂1 = 0.34229328053; β̂0 = 0.37889217490;
l1 = 0.71344424622; l0 = 0.34194466714.

(35)
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Variant II.

β1 = 0.18129750970; β0 = 0.29905999407;
γ̂0 =−0.00010121840;γ1 =−0.00947560581;
γ0 = 0.03028505823; β̂0 = 0.51964249631;
l1 = 0.64494897427; l0 = 0.57328482896.

(36)

To find the coefficients of methods (35) and (36) we
used the system (34). When constructing method (35) in
(34) the number of equations and unknowns coincide. A
method for constructing (35) the number of unknowns is
equal to 8, and the number of equations equals 10. In this
case the system of (36) has several solutions one of them
is a method (36). To illustrate the advantages of hybrid
methods, we consider the application of the next method,
which is identity with the method (29):

yn+1 = yn + h(y′n+1/2−α + y′n+1/2+α)/2 (α =

√
3

6
) (37)

to solving of the following problems:

1. y′ =
x
∫

0
cossds, 0≤ x ≤ 2, y(0) =−1.

The exact solution for which is:y(x) =−cosx.

2. y′ =
x
∫

0
xscoss2ds, 0≤ x ≤ 2, y(0) =−1/4.

The exact solution can be written as following form:
y(x) =−cos(x2)/4.

The obtained results, place in the following table.

Table 1 Results for Example 1 and 2.

Number of
example

Step size Variable x Error of the
method (37)

I
h = 0,125 0.125

1.00
2.00

0.23E-08
0.17E-06
0.52E-06

h = 0,25 0.25
1.00
2.00

0.238E-07
0.41E-06
0.12E-05

II
h = 0,125 0.125

1.00
2.00

0.24E-09
0.14E-05
0.2E-04

h = 1
/

32 0.03
1.00
2.00

0.37E-14
0.42E-08
0.79E-07

4 Perspective

Here are suggested some ways for the finding of the
numerical solution of Volterra integro-differential
equation of second order. Remark that there are some
works devoted to the study of integro-differential
equations of second order. Naturally, that the

integro-differential equation of the second order can be
studied as a separate object, or jointly with the
integro-differential equation of the first order. With a
simple comparison, it is shown that the study of
integro-differential equation as a single object is the more
promising. Another promising direction is the scheme
which is using the hybrid method of the type (9) and (19).
Therefore, the construction of algorithms for investigation
of hybrid methods may be considered of current interest.
We want remark that the advantages of hybrid method
also has shown in [34] by application their to solving
another problem. It is known that in solving some
practical problems, we are encountered with problems
whose solution is oscillation function (see for example
[35]). For solving these problems one can be used
forward-jumping methods (see for example [2])
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