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2 Departamento de TFG/TFM, Universidad Internacional de La Rioja (UNIR), Logroño, La Rioja, Spain

Received: 24 Jan. 2015, Revised: 25 Apr. 2015, Accepted: 26 Apr. 2015
Published online: 1 Sep. 2015

Abstract: The dynamics of Steffesen-type methods, using a graphical tool for showing the basins of attraction, is presented. The
study includes as particular cases, Steffesen-type modifications of the Newton, the two-steps, the Chebyshev, the Halley and the super–
Halley iterative methods. The goal is to show that if we are interesting to preserve the convergence properties we must ensure that the
derivatives are well approximated in all iterations.
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1 Introduction

One of the most important techniques to find the zeros of
nonlinear equations is the use of iterative processes,
starting from an initial approximationx0, called pivot,
successive approaches (until some predetermined
convergence criterion is satisfied)xn are computed.

Before presenting the iterative methods we are
interested in, we shall recall some basic notions of
complex dynamics. LetR(z) = P(z)

Q(z) , where P(z) and

Q(z) are complex polynomials with no common factors,
be a rational map on the Riemann sphere. We say thatz0
is a fixed pointof R(z) if R(z0) = z0 . For z ∈ C we
define its orbit as the set
orb(z) = {z,R(z),R2(z), . . . ,Rk(z), . . .} , where Rk means
the k–fold iterate ofR. A periodic pointof period n is a
point z0 such that Rn(z0) = z0 and Rj(z0) 6= z0 for
0 < j < n. Observe that ifz0 ∈ C is a periodic point of
period n ≥ 1, thenz0 is a fixed point ofRn . Also, recall
that a fixed pointz0 is respectivelyattracting, repellingor
indifferent in case |R′(z0)| is less than, greater than or
equal to 1. A periodic point of periodn is said to be
attracting, repelling or indifferent if as a fixed point of
Rn(z) is respectively attracting, repelling or indifferent. A
superattracting fixed pointof R(z) is a fixed point which

is also a zero of the derivativeR′(z) . A periodic point of
period n is said to be asuperattracting periodic pointof
R(z) if, as a fixed point ofRn(z) , is superattracting.

Let ζ be an attracting fixed point ofR(z) . Thebasin
of attraction of ζ is the set
B(ζ ) = {z∈ C : Rn(z)→ ζ as n→ ∞} . The immediate
basin of attractionof an attracting fixed pointζ of R(z) ,
denoted byB∗(ζ ) , is the connected component ofB(ζ )
containingζ . Finally, if z0 is an attracting periodic point
of period n of R(z) , the basin of attraction of the orbit
orb(z0) is the set B(orb(z0)) = ∪n−1

j=0Rj(B(z0)) , where
B(z0) is the attraction basin ofz0 as a fixed point ofRn .
TheJulia setof a rational mapR(z) , denoted byJ (R) ,
is the closure of the set of repelling periodic points. Its
complement is theFatou set F (R) . If R(z) has an
attracting fixed pointz0 , then the basin of attraction
B(z0) is contained in the Fatou set andJ (R) = ∂B(z0) .
Therefore, the chaotic dynamics ofR(z) is contained in
its Julia set.

To approximate nonlinear equations we can use
iterative methods. Newton’s method is the most widely
used [3,1,17,18,21,22,24], although there are high-order
variants that for certain problems can be more efficient [2,
6,5,15,16,19,20]. If we want to maintain the order of the
methods but without using derivatives we can consider
Steffensen-type methods. But, if we are interesting to
maintain the convergence properties we must ensure that
the derivatives are well approximated in all iterations [23,
13,14]. The use of some parametersαn allow us to
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achieve this goal [7,8,9]. This is our main motivation in
this work.

On the other hand, higher order methods usually
evaluate first and second derivatives. In this paper, we
also study a modification of these classical third order
iterative methods. The main advantage of the modified
methods is that they do not need evaluate any derivative,
but having the same order and the same convergence
behavior of the original methods [4]. We use first and
second order central divided differences and the user does
not need to know explicitly any derivative.

The structure of this paper is as follows: in Section 2,
we present the methods that we are interesting in. Using a
graphical tool for showing the basins of attraction, we
compare the Steffensen-type methods with the original
methods using derivatives, in Section 3.

2 The iterative methods

We start with some classical iterative methods:

1.Newton

xn+1 = xn−
f (xn)

f ′(xn)
,

2.Two-steps

yn = xn−
f (xn)

f ′(xn)
,

xn+1 = yn−
f (yn)

f ′(xn)
.

3.Chebyshev

xn+1 = xn−

(

1+
1
2

L f (xn)

)

f (xn)

f ′(xn)
,

4.Halley

xn+1 = xn−

(

1

1+ 1
2L f (xn)

)

f (xn)

f ′(xn)
,

5.Super Halley

xn+1 = xn−

(

1+
1
2

L f (xn)

1−L f (xn)

)

f (xn)

f ′(xn)
,

where

L f (x) =
f (x) f ′′(x)

f ′(x)2 .

We denote by[·, ·; f ] and [·, ·, ·; f ] the first and the
second divided differences of the functionf .

Our modify Steffensen-type methods associated to the
above schemes write:

1.Modify Steffensen

xn+1 = xn−
f (xn)

[xn,xn+αn f (xn); f ]
,

Fig. 1: Basins of attraction forp(z) = z3 − 1. Left Steffensen’s
method, middle Newton’s method and right modified
Steffensen’s method.

2.Modify Steffensen-Two-steps

yn = xn−
f (xn)

[xn−αn f (xn),xn+αn f (xn); f ]
,

xn+1 = yn−
f (yn)

[xn−αn f (xn),xn+αn f (xn); f ]
.
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Fig. 2: Basins of attraction forp(z) = z3 − 1. Left Two-Steps
Steffensen’s method, middle two-steps Newton’s method and
right modified two-step Steffensen’s method.

3.Modify Steffensen-Chebyshev

xn+1 = xn−

(

1+
1
2
L f (xn)

)

f (xn)

[xn−αn f (xn),xn+αn f (xn); f ]
,

4.Modify Steffensen-Halley

xn+1 = xn−

(

1

1+ 1
2L f (xn)

)

f (xn)

[xn−αn f (xn),xn+αn f (xn); f ]
,

Fig. 3: Basins of attraction forp(z) = z3 − 1. Left Chebyshev-
Steffensen’s method, middle Chebyshev’s method and right
modified Chebyshev-Steffensen’s method.

5.Modify Steffensen-Super Halley

xn+1 = xn−

(

1+
1
2

L f (xn)

1−L f (xn)

)

f (xn)

[xn−αn f (xn),xn+αn f (xn); f ]
,

where

L f (x) =
f (x)[xn−αn f (xn),xn,xn+αn f (xn); f ]

[xn−αn f (xn),xn+αn f (xn); f ]2
.
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Fig. 4: Basins of attraction forp(z) = z3 − 1. Left Halley-
Steffensen’s method, middle Halley’s method and right modified
Halley-Steffensen’s method.

These methods depend, in each iteration, of some
parametersαn. These parameters are a control of the good
approximation to the derivatives. In order to control the
accuracy and stability in practice, theαn can be computed
such that

tolc <<
tolu
2

≤ ||αn f (xn)|| ≤ tolu,

Fig. 5: Basins of attraction forp(z) = z3 − 1. Left Halley-
Steffensen, middle super-Halley and right modified super-
Halley-Steffensen’s method.

wheretolc is related with the computer precision andtolu
is a free parameter for the user.

The classical Steffensen-type methods useαn = 1.
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3 A comparison of the basins of attraction

In this section we compare the dynamics of the above
methods to introduce the benefits of using the parameters
αn. In the experiments we have takentolu = 10−6.

We approximate the roots of polynomials. We use
different colored painting regions of convergence of each
root and dark violet is used for no convergence.

We include only the examples forp(z) = z3 − 1 but
similar conclusions are obtained for other examples.

The clear conclusion is that the good approximation
of the derivatives (for instance using the parametersαn) is
crucial to remain the characteristic of the basins of
attraction. The classical Steffensen-type methods
(αn = 1) have smaller basins of attraction and great
regions of no convergence.

See our works [10,11,12] for studies related with the
dynamics of iterative methods.

4 Conclusions

We have presented by means of the basins of attraction,
the dynamics of Steffesen-type methods, in which we
have included some particular well-known cases such as
Steffesen-type modifications of the Newton, the
Two-steps, the Chebyshev, the Halley and the
super–Halley iterative methods. We have shown that if the
derivatives are well approximated in all iterations, using
an adequate value of the parameterαn, the convergence
properties are preserved.
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