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Abstract: The dynamics of Steffesen-type methods, using a graphichlfor showing the basins of attraction, is presented. The
study includes as particular cases, Steffesen-type matidits of the Newton, the two-steps, the Chebyshev, theefdatd the super—
Halley iterative methods. The goal is to show that if we ateristing to preserve the convergence properties we mastethat the
derivatives are well approximated in all iterations.
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This paper is dedicated to the memory of Professoris also a zero of the derivativig'(z). A periodic point of
José Sousa Ramos. period n is said to be auperattracting periodic poinof
R(z) if, as a fixed point ofR"(z), is superattracting.

Let ¢ be an attracting fixed point dR(z). Thebasin
1 Introduction of attraction of l is the set
B({) ={zc C : R(2) = { as n— «}. Theimmediate
One of the most important techniques to find the zeros ofoasin of attractiorof an attracting fixed poin{ of R(2),
nonlinear equations is the use of iterative processesjenoted byB*({), is the connected component Bf{)
starting from an initial approximationp, called pivot, containingd . Finally, if 7y is an attracting periodic point
successive approaches (untii some predeterminedf period n of R(z), the basin of attraction of the orbit
convergence criterion is satisfiexf) are computed. orb(zp) is the setB(orb(z)) = u’j‘;cl)RJ(B(zo)), where
Before presenting the iterative methods we arep(z) is the attraction basin afy as a fixed point oR".
interested in, we shall recall some basic notions ofThe Julia setof a rational mapR(z) , denoted by # (R),

complex dynamics. LetR(z) = %, where P(z) and is the closure of the set of repelling periodic points. Its

Q(2) are complex polynomials with no common factors, complement is theFatou set .7 (R). If R(z) has an
be a rational map on the Riemann Sphere_ We Sayzﬁqat attl’act.lng fIXQd pQIntzo, then the basin of attraction
is a fixed pointof R(z) if R(z) = z. For ze C we  B(2) is contained in the Fatou set and (R) = dB(z).

define its orbit as the set Therefore, the chaotic dynamics &z) is contained in
orb(z) = {ZR(2),R%(2),...,R(2),...}, where R means its Julia set.
the k—fold iterate ofR. A periodic pointof periodn is a To approximate nonlinear equations we can use

point z such thatR"(z) = z and R'(z) # z for iterative methods. Newton’s method is the most widely
0 < j < n. Observe that ifzy € C is a periodic point of used B,1,17,18,21,22,24], although there are high-order
periodn > 1, thenz, is a fixed point ofR". Also, recall  variants that for certain problems can be more efficiént [
that a fixed pointzg is respectivelattracting, repellingor 6,5,15,16,19,20]. If we want to maintain the order of the
indifferentin case |R(z)| is less than, greater than or methods but without using derivatives we can consider
equal to 1. A periodic point of perioch is said to be Steffensen-type methods. But, if we are interesting to
attracting, repelling or indifferent if as a fixed point of maintain the convergence properties we must ensure that
R"(z) is respectively attracting, repelling or indifferent. A the derivatives are well approximated in all iteratio®3, [
superattracting fixed poimf R(z) is a fixed point which  13/14]. The use of some parameters, allow us to
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achieve this goal7,8,9]. This is our main motivation in
this work.

On the other hand, higher order methods usually
evaluate first and second derivatives. In this paper, we
also study a modification of these classical third order
iterative methods. The main advantage of the modified
methods is that they do not need evaluate any derivative,
but having the same order and the same convergence
behavior of the original methodsl]] We use first and
second order central divided differences and the user does
not need to know explicitly any derivative.

The structure of this paper is as follows: in Section 2,
we present the methods that we are interesting in. Using a
graphical tool for showing the basins of attraction, we
compare the Steffensen-type methods with the original
methods using derivatives, in Section 3.

2 The iterative methods

We start with some classical iterative methods:

1.Newton
- f(Xn)
Xn+1 = Xn f/(Xn) 5
2.Two-steps
oy f(%n)
n n f/ (Xn) 9
- f(yn)
Xn+1 = Yn f/(Xn) .
3.Chebyshev
B 1 f(Xn)
Xnt1 = Xn (1+ 2|-f (Xn)) 7o)

4 Halley

. 1 (Xn)
Xn+1—Xn <1+%Lf(xn)> f/(xn )

5.Super Halley

g

. 1+:_l Lt(Xn) f(Xn) Fig. 1: Basins of attraction fop(z) = 2 — 1. Left Steffensen’s
xn+1 = Xn 21—Li(%n) ) ' (xn)’ method, middle Newton's method and modified
Steffensen’s method.
where F0 7 ()
X X
Li(X) = —————.
f ( ) f/(X)Z
We denote by[,-; f] and [-,-,-; f] the first and the

second divided differences of the functién
Our modify Steffensen-type methods associated to the
above schemes write:

2 Modify Steffensen-Two-steps

1.Modify Steffensen

f(Xn)
Xn, Xn + 0n f (Xn); f]

3

Xn+1 = Xn— [

Vi = X — f(%n)
T Xy — an F (%), Xn =+ On f (Xn); T
f(yn)

X = R T T () X £ O T (X); Tl

(@© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math

_\O |

Fig. 2: Basins of attraction fop(z) = 2 — 1. Left Two-Steps  Fig. 3: Basins of attraction fop(z) = 22 — 1. Left Chebyshev-
Steffensen’s method, middle two-steps Newton’s method andSteffensen’s method, middle Chebyshev's method and right

right modified two-step Steffensen’s method. modified Chebyshev-Steffensen’s method.
3.Modify Steffensen-Chebyshev 5Modify Steffensen-Super Halley
1 f(xn) %
Xn+1 = Xn— (1+ 5% (Xn)> ik — Y 1‘ t (%) f(*n)
2 [Xn — anf(Xn),Xn + anf (Xn); f] Xn4+1=Xn 1+21—i”f(xn) By — G T (%) X £ 0T O 1]
4 Modify Steffensen-Halle
fy y where
1 f(Xn)
X1 — X : f(X)[X0 — o f (Xn), Xn, Xn + An f (Xn); f
e <1+%«$f(xn)> X0 —anf (Xn), X + anf (Xn); f] Z5(X) = (0l — T (o). X, o + n (30 ): ]

Xa — anf (Xn), X0 + anf (Xn); f]?
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Fig. 4: Basins of attraction forp(z) = 22 — 1. Left Halley- Fig. 5: Basins of attraction forp(z) = 22 — 1. Left Halley-
Steffensen’s method, middle Halley’s method and right fiedi ~ Steffensen, middle super-Halley and right modified super-
Halley-Steffensen’s method. Halley-Steffensen’s method.

These methods depend, in each iteration, of some
parametersr,. These parameters are a control of the good
approximation to the derivatives. In order to control the
accuracy and stability in practice, g can be computed  wheretol, is related with the computer precision airud,
such that is a free parameter for the user.

tol
tole << TU <|lanf (xn)|| < toly, The classical Steffensen-type methods aige- 1.
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3 A comparison of the basins of attraction [8] S. Amat and S. Busquier, On a Steffensen’s type method
and its behavior for semismooth equations. Appl. Math.

In this section we compare the dynamics of the above __ Comput. 177 (2006), no. 2, 819-823. ,
methods to introduce the benefits of using the parameterd®] S: Amat and S. Busquier, Convergence and numerical
an. In the experiments we have takisl, — 10-6 analysis of a family of two-step Steffensen’s methods.
' . L Comput. Math. Appl. 49 (2005), no. 1, 13-22.
. we apprOXImate the roo.ts of polynomials. We use [10] S. Amat, S. Busquier and S.Plaza, On the dynamics of a
different colored painting regions of convergence of each

. . family of third-order iterative functions. ANZIAM J. 48
root and dark violet is used for no convergence. (2007), no. 3, 343-359.

We include only the examples fqi(z) = 22 — 1 but [11] S. Amat, S. Busquier and S.Plaza, Dynamics of a family

similar conclusions are optained for other examp|§5- . of third-order iterative methods that do not require using
The clear conclusion is that the good approximation  second derivatives. Appl. Math. Comput. 154 (2004), no. 3,
of the derivatives (for instance using the parametg)ss 735-746.
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regions of no convergence. [13] A. Cordero, J. L. Hueso, E. Martinez, and J. R. Torregro
See our worksJ0,11,12] for studies related with the A family of derivative-free methods with high order of
dynamics of iterative methods. convergence and its application to nonsmooth equations,

Abstract and Applied Analysis, vol. 2012, Article 1D
836901, 15 pages, 2012.
) [14] F. Chicharro, A. Cordero, J.M. Gutiérrez and J.R.
4 Conclusions Torregrosa, Complex dynamics of derivative-free methods
for nonlinear equations. Appl. Math. Comput. 219 (2013),

We have presented by means of the basins of attraction, _N0-12,7023-7035.
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