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Abstract: Reversible data hiding is a technique to hide arbitrary data, without influencing the original images. In 2011, Zhang proposed
a reversible data hiding scheme for encrypted images, by using a spatial correlation of the decrypted original image. Later, Honget al.
proposed an improved scheme by using side-match techniques, and modifying the correlation calculation function. In this paper, we
propose an improved reversible data hiding scheme for encrypted images with lower bit error rates with the same PSNR (Peak Signal-
to-Noise Ratio), by introducing a lattice pattern to confinepixels to be used for embedding, and modifying the correlation calculation
function, which extracts more information from neighbor pixels. In the proposed scheme, it is possible to hide more data, because the
error probability becomes zero for smaller block sizes, than with previous schemes.
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1 Introduction

Reversible data hiding is a technique to hide arbitrary
data, without influencing the original audio and image
files [1],[2]. The reversibility is important in certain
applications, such as military and medical ones. They are
required to conserve original images, to make a correct
decision that is based on the original images. Today, many
reversible data hiding schemes have been proposed. The
differences between two consecutive pixels are used to
generate a new least significant bit plane that embeds
additional hidden information in difference expansion
schemes [3]. Celik et al., proposed another method to
hide data, using a lossless data compression for the
creation of a space to store additional information [4]. Ni
et al., proposed a reversible data hiding method using a
histogram shift that exploits the zero and peak points of
the histogram of original images to embed hidden data in
the image [5]. In 2010, Luoet al., proposed a reversible
image watermarking, using interpolation techniques that
exploit the interpolation-error, the difference between
interpolation value and the corresponding pixel value [6].

There is another line of research for reversible data
hiding for encrypted images. In 2011, Zhang proposed a
reversible data hiding scheme. This is applied for

encrypted messages by a homomorphic encryption
scheme [7]. In this scheme, for data hiding, the encrypted
image pixels are divided into several groups ofs2 pixels
where s is the number of pixels on the horizontal or
vertical line of a group, and using a data hiding key, the
pixels in a group are pseudo-randomly partitioned into
two subsets,S0 andS1. In Zhang’s scheme, the three least
significant bits of pixels inS0 or S1 are inverted,
according to the hidden bit.

In order to reconstruct the hidden data that is
embedded in the original image, the data hider who
knows the data hiding key should separates2 pixel groups
into two pixel setsS0 andS1, after firstly decrypting the
encrypted image. Then, the data hider generates two
hypothesis groupsH0 andH1. Depending on hidden data,
one hypothesis is the same as the corresponding block in
the original image, and the other is false, as every pixel in
the block is distorted. Thus, it is decided which group has
the lower deviation, in terms of the spatial correlation
value. Because every pixel in the false hypothesis has its
three least significant bits inverted, the difference between
the spatial correlation values that is used to reconstruct
the original data is not high enough. In turn, the error
probability is also not small.
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Later, Zhanget al. [8] modified the original Zhang’s
scheme, by using pseudo-random sequence modulation to
hide embedded data. Honget al. [9] proposed an
improved scheme by modifying the correlation
calculation function, and using the side math techniques.
Honget al. [10] modified the scheme in [9], in order to be
able to apply cartoon images, which have more flat area.
Recently, Maet al. [11] proposed another approach for
reversible data hiding, which reserves room for data
hiding before encryption. Karim and Wong [12] proposed
a reversible data hiding scheme in the encryption domain,
which applies entropy encoding to cipher-text. Zhanget
al. [13] suggested another method to estimate some
information, before applying encryption, which embeds
and extracts hidden data without inducing any errors in
the original images. In addition, Zhang also proposed a
separable reversible data hiding for encrypted images,
which allows to extract hidden data without decryption
[18] and Zhanget al. also proposed a new efficient
reversible data hiding based on lossless compression of
encrypted images [19].

Here, we will focus on Zhang’s original scheme [7]
and its improvement by Honget al. [9]. In the reversible
data hiding schemes by Zhang and Honget al., depending
on block sizes, the probability of occurrence of errors is
not zero, where the error is defined as the difference
between the hidden information and reconstructed
information. Since error in the reconstruction of hidden
data will induce distortion of the original image, this
means that in a strict sense it is not reversible, for those
sizes. However, by increasing the size of blocks,
eventually we can obtain error-free size, real reversible
data hiding. Increasing the block size means reducing the
size of hidden data. Therefore, it is an important issue to
reduce the size of error-free data, for a given image.

In this paper, we propose a reversible data hiding
scheme for encrypted images, by improving Zhang’s and
Honget al.’s schemes. We improve the previous schemes
in two aspects. First, only pixels over the lattice pattern
are able to change their values and they are divided into
two subsets, as in Zhang’s scheme for extracting hidden
bits, and reconstructing the original image. Half of the
pixels that are only over the lattice are selected, by using
a pseudo random number generator, and can be modified
to hide information. Among the five pixels
(left/right/up/down/center), only the center pixel can be
changed for hiding data. Using this, it is also possible to
reduce the error probability in the reconstruction stage,
which utilizes the deviation between the spatial
correlation values. Second, we try to modify the
fluctuation function to extract more information, in order
to reduce error probability.

The remainder of this paper is organized as follows:
In Section 2, the previous schemes are reviewed. Then,
Section 3 explains the proposed schemes. In Section 4,
the proposed scheme is analyzed, and finally the paper is
concluded in Section 5.

Fig. 1: Proposed reversible data hiding scheme.

2 Background Knowledge

In this section, the previous data hiding schemes for
encrypted images proposed by Zhang and Honget al. are
reviewed [7], [9]. There are two users at data hiding stage
in previous schemes, the data owner and data hider, as in
Fig. 1. They can be distinct, and do not need to share any
information.

2.1 Reversible Data Hiding for Encrypted
Images by Zhang

At the first step, it is assumed that a user who owns the
original image encrypts the image, using a secret key.
Note that the encryption scheme should satisfy the
homomorphic property, that is, the result of an operation
in a cipher-text should be the same as the cipher-text of
the result of the same operation in the corresponding
plain-text. The well-known homomorphic encryption
schemes are synchronous stream ciphers. Even though
there exist other homomorphic encryption schemes, many
of them are impractical [14,15,16,17]. The synchronous
stream ciphers exploit the XOR operation between a
given message, and the same length of the secret key. This
secret key is generated by a pseudo random number
generator.

After an encrypted image is given, the data hider
(another user) is able to hide the data into the encrypted
image, due to the homomorphic property. For data hiding,
firstly the data hider divides the image pixels into blocks
of s2 pixels for an integers, as presented in Fig.2. For
every block of s2 pixels in Fig. 2, only one bit of
information can be hidden. To hide a secure bit in the
block, a block with s2 pixels is partitioned into two
subsetsS0 and S1, which can be constructed by random
selection of half of pixels in the block, by using a
pseudo-random number generator with the data hiding
key, as presented in the center and right parts of Fig.3. If
the secret bit isi (i = 0 or 1), then the three least
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Fig. 2: An image which is possibly encrypted is partitioned into
s×sblocks. Each block will be used to contain one bit of hidden
information.

Fig. 3: Data embedding for encrypted images in Zhang and Hong
et al.’s schemes.

significant bits of every pixel in the subsetSi are inverted,
while the pixels in the subsetS1−i remain unchanged.

In Zhang’s scheme, the encryption can be carried out
both before and after data embedding, due to the
homomorphic property. However, the decryption should
be carried out before the reconstruction of the embedded
data, as it is unable to compute the correct spatial
correlation between adjacent pixels, due to the
randomized pixels after the encryption.

In order to reconstruct the hidden data, the data
reconstructor should use the same data hiding key, to
obtain exactly the same subsetsS0 andS1, after the image
is decrypted. However, the data reconstructor cannot
directly know the hidden information, even though he or
she knows the data hiding key. Instead, he or she has to
estimate the hidden information. For the estimation of the
hidden data, he or she constructs two hypothesis groups
H0 and H1, in which the three least significant bits of
every pixel inSi (i = 0,1) are inverted. If a hidden bit isi,
then no pixel inHi is inverted (i.e., true hypothesis), while
every pixel in H1−i is inverted (i.e., false hypothesis).
According to the hidden bit, one ofH0 or H1 is
considered as correct. In order to decide a true hypothesis,
the following fluctuation function is used to estimate the
spatial correlation values for pixels in each hypothesis.

Fig. 4: Example of the side-match technique. The side pixels of
the left and bottom blocks are used to reconstruct the targetblock
(center).
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∑
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∣

∣
.

(1)

The fluctuation function in (1) accumulates the
differences between the center pixel and the average of
the four neighboring bits (up/down/left/right), except for
the outermost pixels of the image. The fluctuation values
for H0 and H1 are denoted asf0 and f1. Then, the
hypothesis with a smaller value is considered as a correct
hypothesis. That is, iffi < f1−i , theni is considered as a
hidden value. Finally, the original image can be
recovered, by restoring the inverted bits.

2.2 Hong et al.’s Improvement: Side-Match

While the four borders of each block are not inverted, and
do not join the calculation of block smoothness in Zhang’s
scheme, Honget al.proposed a data hiding scheme which
can exploit the four border blocks of each block [9]. Hong
et al.changes the fluctuation function as

fH =
s2

∑
u=1

s1−1

∑
v=1

|pu,v− pu,v+1|+
s2−1

∑
u=1

s1

∑
v=1

|pu,v− pu+1,v|.

(2)

This fluctuation function accumulates differences
between the center pixel and horizontal or vertical pixels.
As in Zhang’s scheme, three LSB of pixels in the setsS0
and S1 of each blocks are inverted, according to hidden
bits in the data embedding phase. For reconstruction, two
hypothesis groupH0 and H1 are generated, in order to
extract the hidden bit, and reconstruct the original images.
For each hypothesis groupsH0 and H1, an initial
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Fig. 5: Proposed lattice patterns.

calculation to evaluate the fluctuation values denoted by
fH0 and fH1 is carried out using (2). Then, the difference
Am,n = | fH0 − fH1 | for m,n is calculated, and sorted in
descending order. Then, the reconstruction process is
started, according to the order of the sorted valuesAm,n.
For reconstructing each block, if there are already
reconstructed blocks among four surrounding blocks, side
pixels in the other blocks are used to reconstruct the given
block. This is called the side-match technique [9]. Before
reconstruction, pixels in a block can have slightly
different information from the original image. Once
reconstruction is completed, if the block is correctly
reconstructed, we have the exact information to be used
for reconstructing adjacent blocks.

3 Improved Reversible Data Hiding Method
for Encrypted Images

In this section, we propose an improved reversible data
hiding scheme for encrypted images. Improvements take
place according to two points. Firstly, we confine pixels
that can be changed during the data embedding process in
a specified location, called a lattice. Secondly, we modify
the fluctuation function, to extract more information
between the two hypothesis sets.

3.1 Introduction of the Lattice

In the previous schemes by Zhang and Honget al., at the
reconstruction stage, one is a true hypothesis, whose
pixels are the same as the original image, and the other is
a false hypothesis, whose pixels have the three least
significant bits (LSB) inverted. That is, all neighboring
pixels in the false hypothesis are changed, and therefore,
for calculating fluctuation functions in (1) or (2), the
comparative information with the center pixels does not
reflect the original image, but the fluctuated image from
the embedding process.

The proposed lattice patterns are demonstrated in
Fig. 5. As presented in Fig.5, depending on the sizes of
blocks, the pattern can be divided into two types, for odd
and even patterns. Considering Fig.5, it is easy to see that
the proposed lattices can be represented as a matrix,
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Fig. 6: Performance comparison between previous schemes and
lattice with the fluctuation function by Zhang.

L = [l i, j ] (0≤ i, j ≤ s−1), where, for evensand Pattern 1
of odds,

l i, j =











1, if i ≡ 0 mod 2 andj ≡ 0 mod 2 or
i ≡ 1 mod 2 andj ≡ 1 mod 2

0, otherwise

and, for Pattern 2 of odds,

l i, j =











1, if i ≡ 0 mod 2 andj ≡ 1 mod 2 or
i ≡ 1 mod 2 andj ≡ 0 mod 2

0, otherwise.

Then, letP be a matrix of pixels in as×sblock. Then, the
pixels over the lattices can be represented by

B= [bi, j ] = P◦L = [pi, j × l i, j ] (3)

where, 0≤ i, j ≤ s− 1 and ◦ means the Hadamard
product, element-wise product of matrices. Also, define
the complementary matrix of B as C = [ci, j ]
(0≤ i, j ≤ s−1), that is,

B+C= P andB◦C= 0 (4)

where,0 means the all-zero matrix. That is, ifbi, j is equal
to the pixel located in coordinate(i, j) in the given block,
ci, j = 0 andci−1, j ,ci+1, j ,ci, j−1, andci, j+1 are equal to the
corresponding pixels in the block.

Before explaining the modified fluctuation function, it
is worthwhile checking the effect of the lattice. Figs.6
and 7 show the effect of directly introducing the lattice
when we use the fluctuation function proposed by Zhang
for the original Zhang’s scheme and side-match by Hong
et al., respectively. By introducing the lattice, it is

c© 2015 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.9, No. 5, 2627-2636 (2015) /www.naturalspublishing.com/Journals.asp 2631

6 8 10 12 14 16 18
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

0.022

B
it 

E
rr

or
 R

at
e

Size of Blocks

 Zhang
 Side-match
 Lattice

Fig. 7: Performance comparison between previous schemes and
lattice with the fluctuation function by Honget al.

possible to obtain better BER performance than in
Zhang’s scheme, and comparable BER performance to
Hong et al.’s side-match technique, even though we do
not modify the fluctuation function as in [7] and [9] to
optimize the BER performance. Note that the PSNR
(Peak Signal-to-Noise Ratio) of the case of using the
lattice is 40.9 dB, while that of the previous schemes is
37.9 dB, since only half of the pixels participate in the
embedding process, due to the constraint of the lattice.
That is, the lattice shows almost the same BER
performance with better PSNR characteristics than that of
Honget al.’s scheme.

In Fig. 8, one reason for better performance with the
lattice pattern is demonstrated. For a given block (in this
example, 6× 6 blocks), every side pixel is unchanged,
even for pixels on edges of the block. For example, for
‘A’, ‘B’, ‘C’, and ‘D’ pixels, four neighbor pixels can be
unchanged, even if the pixels are not located in the same
block. Therefore, it is always possible to compare the
center pixels with the pixels from original images. Note
that one of the advantages of the proposed scheme is that
it will show clear difference between true and false
hypotheses in a cartoon image with more flat color area
because every neighboring pixel is never changed, and
thus cartoon images also can be applied by the proposed
scheme [10].

In contrast to this, not only in Zhang’s scheme, but
also in Honget al.’s scheme, all neighboring and center
pixels in false hypothesis have their lower three bits
inverted during the embedding process. This change can
randomly cancel each other out, when the fluctuation
functions in (1) or (2) accumulate differences between a
center and its neighbors.

Fig. 8: Example of lattice with the side-match technique.

The remaining question is which fluctuation function
should be used to reconstruct the embedded information,
Zhang’s in (1), Honget al.’s in (2), or another one.

3.2 Modifying Fluctuation Functions

For a given pixel, we can use at least four adjacent pixels
(up, down, left, and right), to evaluate the spatial
correlation. Therefore, we can categorize the possible
information from the four neighboring pixels, as follows

1.Difference between a pixel and average of four
neighbors,|pi, j −

pi−1, j+pi, j−1+pi+1, j+pi, j+1
4 |

2.Difference between a pixel and up, down, left, or right
pixel, |pi, j − pi−1, j |, |pi, j − pi+1, j |, |pi, j − pi, j−1|, or
|pi, j − pi, j+1|

3.Difference between a pixel and average of up-down
neighbors or left-right neighbors,|pi, j −

pi−1, j+pi+1, j
2 |

or |pi, j −
pi, j−1+pi, j+1

2 |

Zhang used the information 1) [7] as in (1), and Hong
et al.proposed the sum of two differences in 2), down and
right pixels to fit their side-match scheme as in (2), since
the left and right differences (also, the up and down
differences) will contribute the same values. For the
proposed lattice patterns, we can use every item of
information in 1), 2), and 3) at the same time.

Let us briefly analyze the characteristics of the three
types of differences, as in the above list. Firstly, note that
the first and third differences use the average values
around center pixels (possibly inverted for the three least
significant bits). However, the second one directly uses
the difference between the center pixel and its neighbor. It
is easy to see that if at a gradually varied area of the
original image, the average values contain proper
information for the reconstruction, while at a drastically
varied area, the average values can show noisy
information for the reconstruction.
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The main idea of improvement from the previous
schemes starts from the effort to maximize the utilization
of the neighbor pixels. In the stage of extracting hidden
bits at the previous schemes, the difference between the
spatial correlation values ofH0 andH1 can be calculated
from the fluctuation function in (1). Since this difference
is not so high, the probability of error to extract hidden
bits from the original image is not small. To overcome it,
the following fluctuation function is used for the proposed
scheme:

f =
s−1

∑
i=0

s−1

∑
j=0

[

∣

∣

∣
bi, j − ci, j−1

∣

∣

∣
+
∣

∣

∣
bi, j − ci, j+1

∣

∣

∣

+
∣

∣

∣
bi, j − ci+1, j

∣

∣

∣
+
∣

∣

∣
bi, j − ci−1, j

∣

∣

∣

+
∣

∣

∣
bi, j −

ci−1, j + ci+1, j + ci, j−1+ ci, j+1

4

∣

∣

∣

+min

{

∣

∣

∣
bi, j −

ci−1, j + ci+1, j

2

∣

∣

∣
,
∣

∣

∣
bi, j −

ci, j−1+ ci, j+1

2

∣

∣

∣

}]

(5)

whereB andC are defined in (3) and (4). Note that for
i = 0 (or i = s−1),c−1, j (0≤ j ≤ s−1) (orcs, j ) are pixels
in the neighboring, left (or right) blocks. Similarly, forj =
0 (or j = s− 1), ci,−1 (0 ≤ i ≤ s− 1) (or ci,s) are pixels
in the neighboring, up (or down) blocks. Therefore, while
in the same block, left and right differences (the first and
second terms in (5)) have the same values, in the edges of
the blocks, the values can be different, and for this reason,
we will use both left and right differences. This is similar
to up and down differences.

In addition, note that the pixels in the other blocks are
never in the lattice, as depicted in Fig.8. Therefore, we do
not need to carry out the initial calculation, for the
difference Au,v between fluctuation values and sorting
results of the initial calculation as in Honget al.’s scheme
[9].

3.3 Refined Data Hiding Method

The proposed reversible data hiding for encrypted images
is based on the lattice pattern as shown in Fig.5. The
block size can be either even or odd. For odd block sizes,
there are two distinct patterns, which should be
alternately used for each consecutive block, so as to
ensure that surrounding pixels of the center pixels are
always unchanged. In contrast to this, for even size, only
one pattern is enough to ensure the surrounding pixels of
the center pixels are always unchanged.

The proposed scheme allows only pixels on the
specified lattice to be possibly changed, when the data
embedding process is carried out. The number of pixels
on the lattice can be determined for a given block sizes.
For odd Pattern 1 or Pattern 2 in Fig.5, the number of
pixels on the lattices is given ass

2+1
2 , which is an odd

number, ors2−1
2 , which is an even number, respectively.

For an even block sizes in Fig. 5, the number of pixels on
the lattice is clearlys

2

2 , which is an even number.
For the data hiding, using the data hiding key, random

numbers are generated using a pseudo-random number
generator; and based on the random numbers, (almost)
half of the pixels on the lattice are selected as Set 0, and
the remaining pixels are considered as Set 1. In particular,
since the number of pixels on the lattice for odd pattern 1
is odd, we have to selects

2−1
4 pixels as Set 0, and the

remainings2+3
4 pixels are considered as Set 1. Similar to

Zhang’s scheme, depending on the hidden bit, some least
significant bits of every pixel in Set 0 or Set 1 are
modified.

Here, in contrast to previous schemes, we can modify
more than three bits in a small portion of pixels over the
lattice, while maintaining the same PSNR, compared to
previous schemes. Since a lesser number of pixels is
changed, and thus the proposed scheme has a larger
PSNR than that of the previous schemes due to the lattice,
we have room to insert more information into the
encrypted images.

Generally, in order to hide a bit of data, the center
pixel is bitwise exclusive-ORed by a pre-specified
intensity valueI . Otherwise, the center pixel is added by
the pre-specified intensity valueI , as follows:

p′i, j = pi, j ⊕ I (6)

where,⊕ is the bitwise XOR. Note that ifI = 7, then it is
the same as Zhang’s proposition, except that only pixels in
the lattice can be changed. Increasing the intensityI will
lead to reducing BER, at the cost of reducing PSNR for
a given image. In the proposed scheme, we will consider
only I = 7 or I = 15.

3.4 Reconstruction of Hidden Data

In order to reconstruct hidden data, a user should use the
same data hiding key to generate the same subsetsS0 and
S1. Then, two hypothesis setsH0 and H1 are generated,
where forHi , every pixel inSi is changed, and the other
pixels do not change. Then, using the fluctuation function
defined in (5), the fluctuation valuesf0 and f1, which
correspond toH0 andH1 are calculated, respectively.

If fi < f1−i , then i is considered as the hidden data.
For pixels in the four edges of blocks, the side-match
technique is also used to evaluate the corresponding
fluctuation function. However, note that because of the
lattice structure presented in Fig.8, the initial calculation
of fluctuation function and sorting in descending order, as
in Hong et al.’s scheme is no longer necessary. We can
directly use adjacent pixels to evaluate the corresponding
fluctuation values, without worrying about the correctness
of values.
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Fig. 9: Samples images: Lena, Baboon, Sailboat, and Peppers
from left.

4 Performance Analysis

4.1 PSNR of the Proposed Scheme

The PSNRs of the proposed scheme are calculated in this
subsection. As the pixels to be changed will be influenced
by the amount of intensity valueI , the energy of average
error can be calculated as [7]

E =

{

21, if I = 7
85, if I = 15.

In the scheme using the proposed lattice, for odds, at
least(s2 + 3)/4 or (s2 − 1)/4 pixels are changed among
s2 pixels. Thus, the PSNR can be calculated, as follows:

PSNR= 10log10
4×2552s2

Ẽ(s2+3)

= 54.15dB+10log10

( s2

s2+3

)

−10log10Ẽ (7)

or

PSNR= 10log10
4×2552s2

Ẽ(s2−1)

= 54.15dB+10log10

( s2

s2−1

)

−10log10Ẽ (8)

where,Ẽ is the energy of average error when we use both
I = 7 andI = 15 at the same time, which is given as

Ẽ = 21× (1− x)+85×x (9)

where,x is the portion of pixels over the lattices that use
I = 15 for data embedding. For evens, s2/4 pixels are
changed amongs2 pixels. Thus, the PSNR can be given as

PSNR= 10log10
4×2552s2

Ẽs2

= 54.15dB−10log10Ẽ. (10)

To meet the same PSNR 37.9 dB of the previous
schemes, we can determine the portionx, the ratio of the
number of blocks usingI = 15 over the total number of
blocks in Set 0 or Set 1. For evens, from (10), we have

PSNR= 54.15−10log10Ẽ = 37.9

Table 1: Portion of pixels to useI = 15 to meet overall PSNR
37.9 dB for odd block sizes.

s Pattern 1 Pattern 2
x # of pixels x # of pixels

7 0.293 3 0.345 4
9 0.307 6 0.339 6
11 0.315 9 0.336 10
13 0.319 13 0.335 14
15 0.322 18 0.334 18
17 0.324 23 0.333 23
19 0.325 29 0.333 29
21 0.326 35 0.332 36

Fig. 10: Comparison of BER performance for all images.

Fig. 11: Comparison of BER performance in log scale for Lena.

and in turn,Ẽ = 42.17= 64x+ 21. Thus, the portion is
given asx= 0.33. For odds, from (7) and (8), depending
on s, for Pattern 1,x ranges over 0.293 to 0.326; and for
Pattern 2,x ranges over 0.345 to 0.332 froms= 7 tos=21,
as presented in Table1. The selection of pixels forI =
15 instead ofI = 7 can be carried out by using the same
pseudo-random number generator for separation of Set 0
and Set 1 in the embedding process.
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Fig. 12: Comparison of BER performance in log scale for
Baboon.

Fig. 13: Comparison of BER performance in log scale for
Sailboat.

4.2 Comparison of BER Performance

In order to compare the BER performance of the
proposed scheme and previous schemes, we use 4 sample
images, as in Fig.9: Lena, Baboon, Sailboat, and Peppers,
whose sizes are 512×512. For fair comparison, we try to
keep the same PSNR, 37.9 dB for every scheme. That is,
for the proposed schemes, we use bothI = 7 andI = 15.
The number of pixels that useI = 15 is 33% ofs2/4
pixels, and they are randomly selected. The overall results
are presented in Fig.10. Except for Baboon, the BER
performance for all the other images converges to zero
with a certain length of block size. In order to distinguish
their performance, we present four results of BER
performance in log scale, as in Figs.11–14. The results in
Figs.11–14 are obtained by averaging the BERs from 20
distinct data hiding keys. Non-zero BER means that it is
not reversible, because error in the reconstruction will
destroy the original image, when the embedded data is
extracted. Conversely, fast convergence to zero BER

Fig. 14: Comparison of BER performance in log scale for
Peppers.

means that the block size can be smaller than the others,
for the use of reversible data hiding.

Except for Sailboat, the proposed scheme shows
better BER performance than the previous schemes by
Zhang and Honget al.. For the case of Sailboat, the BER
performance is almost matched. However, considering the
simplified reconstruction in the proposed scheme, the
proposed scheme still has an advantage over the previous
scheme.

5 Conclusions

In this paper, we proposed a reversible data hiding scheme,
with lower error probability than the previous scheme. In
the proposed scheme, the encrypted image can be obtained
without any distortion after the hidden data is successfully
extracted.

We proposed a new reversible data hiding scheme for
encrypted images, which is improved over Zhang’s and
Hong et al.’s schemes in two points: introducing the
lattice, and modifying the fluctuation function. Because
of the lattice structure, we can simplify the reconstruction
of hidden information. That is, in the proposed scheme,
the initial calculation and sorting process are not
necessary contrary to Honget al.’s scheme. In the results,
it is also possible to reduce the error probability in the
reconstruction stage, which utilizes the deviation between
the spatial correlation values.
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