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Abstract: SIFT (Scale Invariant Feature Transform) points are scale-space extreme points, representing local minutiae structure
features in the Gaussian scale space. SIFT intensity, as a novel no-reference metric, is feasible to assess various common distortions
without the access to reference images. The metric introduces image preprocessing: neighborhood enhancement through contrast
enhancement of adjacent pixels to reduce false SIFT points triggered by random signals; double-size image magnification through
linear interpolation to amplify distortion effects to improve its sensitivity to image quality. SIFT intensity is defined as the number of
SIFT points in a unit region and is calculated based on the first octave of thedifference-of-Gaussian scale space. Experimental results
demonstrate that SIFT intensity is superior to existing classic no-reference metrics and can be used to assess different distortions.
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1 Introduction

People often need some metrics to assess image quality in
the fields of image preprocessing, fusion, transmission,
etc. Image quality metrics can be categorized into two
groups: subjective metrics and objective metrics.
Subjective metrics are simple and accurate. But they can
not work without human’s participations. Furthermore, it
is infeasible in the case that there are a mass of images.
Therefore, it is indispensable to attach more importance
to objective metrics.

Objective metrics are divided into three categories:
full-reference (FR) metrics, reduced-reference (RF)
metrics and no-reference (NR) metrics. FR metrics are
based on the following assumptions: the reference image
is an image with the highest quality and is available to
access. A test image quality is assessed by calculating the
similarity between the test image and its reference image.
Common FR metrics include root mean square error
(RMSE), peak signal to noise ratio (PNSR), mutual
information (MI), etc. In recent years, a multitude of
efforts have been made to develop new objective
image/video quality metrics that consider human visual
system (HVS) (actually, HVS is also widely investigated

in RF and NR metrics besides FR metrics). There are a
variety of HVS models, each of which can model parts of
human vision (e.g. spatial resolution, temporal motion,
color fidelity, color resolution, contrast and orientation
sensitivity, frequency selectivity) [1,2,3,4,5,6]. By
integrating with some HVS characteristics, the
performance of some present metrics can be improved.
For instances, in [5], visual signal-to-noise ratio (VSNR),
based on near-threshold and supra threshold properties of
human vision, is presented to quantify the visual fidelity
of natural images. In [6], sparse coding statistical models
of natural images are used to simulate HVS. Based on the
models, a sparse correlation coefficient (SCC) between
two visual signals of images in a cortical visual space is
investigated to assess image quality. Under the
assumption that human visual system is highly adapted
for extracting structural information, Structural Similarity
(SSIM) has been growingly developed as a category to
estimate image quality via the measurement of the
retention of structural information in a distorted image
with regard to its reference image [7,8,9]. In [7], Wang,
et al. develop a structural similarity index for image
quality measurement, modeling image degradation as the
loss of structural information. It has proved that SSIM is
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more efficient than MSE or PSNR. In [8], Santiago et al.
propose image quality assessment based on local variance
to improve SSIM’s performance. In [9], modified versions
of (G-)SSIM and MS-(G-)SSIM, called four-component
(G-)SSIM and four-component MS-(G-)SSIM, classify
image local regions according to edge and smoothness
properties, determine the weights of SSIM scores by
region types, and apply weighted SSIM scores to assess
blurred and noisy images.

RF metrics only need access partial reference
information instead of full reference images. Partial
reference information should have been extracted in
advance or is available through an ancillary data channel
[11,12,13,14]. Reference features are extracted from the
reference image/video sequence and these are then
compared with the same features extracted from the
distorted images to obtain RR quality. The challenging
task in the design of a RR metric is the selection of the
smallest set of features that can support quality
assessment effectively. In [12], a hybrid image quality
metric (HIQM) combines five structural features:
blocking, blur, edge-based image activity, gradient-based
image activity and intensity masking. The metric makes a
similarity assessment between the test image and the
reference image to assess JPEG coded images. In [13],
the differences of wavelet coefficients between two
images based on coefficient histograms are used to assess
distorted images. In [14], the Circular-ELM (C-ELM), an
augmented version of the basic Extreme Learning
Machine (ELM), defines a meaningful feature-based
representation of the visual signal and handles the actual
mapping of visual signals into quality scores.

NR metrics are not relative to reference images. From
the view of applications, NR metrics are more adaptable
to different conditions. Common NR metrics include
variance metric, auto-correlation metric, frequency
threshold metric, histogram threshold metric, histogram
frequency metric, generalized block-edge impairment
metrics, etc. [15,16,17,18,19,20,21,22,23,24].
Distortions can be mainly classified into noise, blur,
blocking artifact (including blocking blur). Many NR
metrics can only measure some types of distortions,
especially feasible for blocking or blur [15,16,17,18,19,
20,21,22]. In [23], a natural scene statistics (NSS) model
of contourlet coefficients adopts an image-dependent
threshold to assess different distortions, but its accuracy
still need to be further improved and it needs a training
database to determine proper related parameters of the
approach. In [24], under the assumption that the images
are affected by a single distortion, SA-based
(structural-activity based) framework is proposed to
assess different distortions with the prior knowledge of
the distortion, but the framework also need a training
database and is sensitive to the chosen SA indicator and
SA weights. In [25], anisotropy entropy is proposed to
assess noise, blur and blocking artifact. But for the
images affected by small-scale smoothing, large noise or
blocking artifact, the metric doesn’t work well. Although

its improved algorithm can improve assessments on
blocking artifact, its deficiencies aren’t yet completely
overcome. An ideal NR metric can be applied to assess
various distortions without the prior knowledge of image
distortion types. In the latest years, more efforts are made
on the improved metrics based on traditional basic
metrics through intelligent training on a sample database
[23,24,26]. On the other hand, we still need to probe into
novel basic NR metrics to provide more accurate and
reliable assessment under certain application conditions.

In fact, NR metrics are often used in the case that each
one of the images to be assessed is mainly corrupted by a
distortion. So, under the assumption that each test image
is affected by a distortion (the distortion types in test
images may be different from each other), this paper
proposes a novel NR metric through SIFT intensity to
evaluate different distortions without the prior knowledge
of distortion types and the training database. SIFT points
are scale-space extreme points, widely used in image
registration, but rarely in NR assessment. The richer the
image textures are, the more SIFT points the image has.
After proper preprocessing, the number of SIFT points
changes with distortions, reflecting image quality. The
rest of this paper is organized as follows. Section 2
introduces SIFT technology, investigates the relationship
between the number of SIFT points and the octave in
scale space, and introduces a concept of SIFT intensity.
Section 3 discusses image preprocessing and proves into
the relationships between SIFT intensity and distortions,
such as noise, blur and blocking artifact. In Section 4,
experiments are carried out to verify the performance of
SIFT intensity compared with some classic basic NR
metrics, including spatial frequency (SF), generalized
block-edge impairment metric (GBIM), entropy,
anisotropy entropy (AE). Finally, conclusions and
discussions are given in Section 5.

2 SIFT intensity

2.1 SIFT technology

SIFT (Scale Invariant Feature Transform) are insensitive
to light, rotation, scale, noise, etc., representing image
minutiae structure features. To efficiently detect stable
keypoints in scale space, Lowe proposed scale-space
extrema in the difference-of-Gaussian scale space
D(x,y,σ) [27], which can be computed from the
difference of two adjacent Gaussian-scale images
separated by a multiplicative constant factork:

D(x,y,σ) = (G(x,y,kσ)−G(x,y,σ))∗ I(x,y)

= L(x,y,kσ)−L(x,y,σ) (1)

where ∗ is the convolution operation andL(x,y,σ)
represents the Gaussian-scale-space image.L(x,y,σ) is
produced from the convolution of a variable-scale
Gaussian functionG(x,y,σ) and an input imageI(x,y) .

c© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 4, 1925-1934 (2014) /www.naturalspublishing.com/Journals.asp 1927

Fig. 1: Gaussian scale space and difference-of-Gaussian
scale space

To detect more scale-space extreme points, Gaussian
pyramid and difference-of-Gaussian pyramid are built,
consisting of some octaves, each of which is further
composed of some levels. In order to get more features, a
test image is commonly twice magnified in size
(double-size magnification) by linear interpolation as the
first level of the first octave. The magnified image is
repeatedly convolved with Gaussian functions, producing
a set of scale-space images as shown on the left of dotted
line in Fig.1. Adjacent Gaussian images are subtracted to
produce difference-of-Gaussian images on the right of
dotted line. Then, the magnified image is down-sampled
by 2 as the first level of the second octave. And Gaussian
images and DOG images in the second octave are
constructed similarly to those in the first octave. Above
processings are repeated until image size is lower than a
certain threshold. More details about SIFT are discussed
in [27].

2.2 Relationship between the number of SIFT
points and the octave in the Gaussian scale
space

For three common types of distortions: noise, blur and
blocking artifact, noise is inevitable, which may be
brought about when shot and transferred; blur is often
caused by different focuses, which can be simulated by
regional image smoothing; blocking is mainly caused by
compression, in which quantization introduces
quantization errors.

In the implementation of SIFT, the scales are
represented as different octaves and levels through
down-sampling and Gaussian smoothing. The smallest
scale is corresponding to the first level of first octave and
the largest scale is corresponding to the last level of last
octave in Gaussian pyramid. To keep the scale’s
continuity,k in equation (1) is defined as

k = 2
1/m (2)

wherem is the number of SIFT scale levels in each octave
of the difference-of-Gaussian pyramid. Supposing thatm
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Fig. 2: Relationship between the number of SIFT points
and the octave in the Gaussian scale space

is a predefined constant,m+ 2 levels in a octave of the
difference-of-Gaussian pyramid should be constructed
because there is no SIFT point in the first and last level.
And m+3 levels in a octave of Gaussian pyramid should
be constructed to buildm + 2 levels in a octave of
difference-of-Gaussian pyramid.

Standard images, including Lena, Peppers, Baboon
and Barbara, are chosen as test images to investigate the
effects of different distortions in different octaves. We
choose the number of SIFT points as image feature to
depict distortion’s effect. Because the experiments on the
test images show similar results, we only show the results
of Lena image to keep the paper concise. Here,
difference-of-Gaussian pyramid is composed of six
octaves (each octave consisting of 5 levels andm equal to
3). As shown in Fig.2, Fig. 2(a) indicates that the number
of SIFT points in the first octave nearly accounts for 77%
of the total SIFT points and drops down quickly with the
octave increasing.

Fig.2(b) shows the relationship between the number of
SIFT points and noise in different octaves. In experiments,
different Gaussian noise, whose mean is zero and variance
changes from 0.00001 to 0.1, is added to the test image.
Because noise is random signal, experimental result is the
average of 10 experiments to ensure its validity. Distinctly,
although the number of SIFT points in the first octave can’t
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assess image quality, SIFT feature in the first octave is the
most active among different octaves.

Fig. 2(c) shows the relationship between the number
of SIFT points and blur in different octaves. Image
smoothing will result in the loss of image minutiae,
making the image blurry. The greater the smoothing scale
is, the blurrier the image is. It can be used for the
simulations of multi-focus images. The Gaussian filtering
sliding window is a kind of common image smoothing,
whose pixels’ weights in the smoothing window comply
with two-dimensional Gaussian distribution. Gaussian
filtering windows (n × n , n ranging from 1 to 10) are
chosen to probe into the relationship between the number
of SIFT points and smoothing. It can be seen that the
number of SIFT points in the first octave drops down with
the smoothing scale increasing and can be used to assess
blur distortion.

Fig. 2(d) shows the relationship between SIFT points
and blocking artifact in different octaves. Image
compression can effectively reduce required storage space
and bandwidth in data storage and communication. Block
compression algorithms, such as block-based discrete
cosine transform (BDCT) and block-based discrete
wavelet transform (BDWT), has a high compression
efficiency and low computational complexity. They are
core compression algorithms in most image/video
compression standards, such as JPEG, JPEG 2000,
MPEG, H.263. Due to separate processes of different
image blocks at encoder and decoder sides, quantization
error will be superposed, destroy correlations and
continuities among image blocks and cause blocking
artifact. Image compression experiments choose BDCT
compression.The quantization matrix isL × α, whereL
refers to a luminance quantization matrix for JPEG, as
shown in Table1, andα is a coefficient ranging from 0.2
to 2. So, the relationship between the number of SIFT
points and blocking artifact is transformed into the
relationship between the number of SIFT points andα .
Similarly to Fig 2(b), although SIFT features in the first
octave can’t assess blocking artifact, SIFT feature in the
first octave is still the most active among different
octaves.

The experiments show that distortions play different
effects in different scale space and the number of SIFT
points in the first octave is the most sensitive to different
distortions. So, SIFT detection is based on double-size
images convolved with different Gaussian scale
smoothing in this paper.

2.3 SIFT intensity

SIFT points, in the first octaves of the
difference-of-Gaussian scale space, reflect image
minutiae: scale-space structural information of adjacent
pixels (extreme points in scale space). As human visual
system is sensitive for structural information, structural
information has been widely used to assess image quality

Table 1: Luminance quantization matrix for JPEG

luminance quantization table

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
79 92 95 98 112 100 103 99

in various metrics [7,8,9]. The more SIFT points are, the
more structural information and higher quality the image
has. So, SIFT intensity is introduced to assess image
quality in this paper. It is defined as the number of SIFT
points in a unit region, represented as:

s = 1/w
w

∑
i=1

si (3)

It describes the minutiae in certain regions, whose size
and number depend on actual applications. If image size
is not large, the entire image is chosen as a unit to
calculate SIFT intensity andw is equal to 1. Otherwise,
the image can be divided into several equal regions, SIFT
points are detected respectively, andw is equal to the
actual number of the regions. In this way, computational
efficiency can be improved and required memory space
be reduced. Furthermore, each pixel based on local region
can be assessed to get local quality, which can be used in
image local processing.

3 Image quality assessment through SIFT
intensity

We hope the metric can accurately assess noise, blur and
blocking, even though the distortion type is unknown in
advance. Because noise assessment is the most difficult
among these factors, noise assessment is a crucial
problem for the metric. We still take Lena image as an
example. Because its size is not large (512× 512), SIFT
intensity is calculated based on the whole image. All the
experiments are carried out similarly to section 2.2. In the
experiments for investigating the relationship between
SIFT intensity and noise, the mean of noise is zero and
the variance of noise changes from 0 to 0.1; in the
experiments for investigating the relationship between
SIFT intensity and smoothing, the Gaussian smoothing
window scalen changes from 1 to 10; in the experiments
for investigating the relationship between SIFT intensity
and compression, the BDCT quantization coefficientα
changes from 0.2 to 3.
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3.1 Image preprocessing and relationship
between SIFT intensity and noise

SIFT points are scale-space extreme points instead of
gray extreme points. Noise, as random signal, can not
only destroy original image minutiae, but also cause some
false SIFT points, sometimes leading to the increase of
SIFT intensity.

Because noise signals of adjacent pixels are unrelated
to each other, a neighborhood enhancement filter can
increase gray difference between adjacent pixels, causing
a lot of noise-gray extreme points and reducing false
SIFT points. Although neighborhood enhancement can
also destroy the texture relationships of original images,
the number of the original SIFT points are slightly
suppressed from the view of statistics compared with that
of false SIFT points caused by noise, due to the strong
correlation of original image pixels.

In the paper, image enhancement adopts a Laplacian
operator to enhance isolated points and thin lines,
represented as in equation (4),

Hl =





1 1 1
1 −8 1
1 1 1



 (4)

Laplacian operator is a second-derivative operator, which
is sensitive to isolated points and thin lines. The enhanced
image is implemented throughI(x,y)−η × Il(x,y) (η is a
fitting parameter, andIl(x,y) is produced from the
convolution of Hl and an image I(x,y)), so the
enhancement matrix is represented as:

H =





0 0 0
0 1 0
0 0 0



−η ×





1 1 1
1 −8 1
1 1 1



 (5)

Through experiments over the LIVE database [28],
enhancement matrixH as equation (6) (η=0.09) can
achieve satisfying results, making SIFT intensity
accurately depict image quality:

H =





−0.09−0.09−0.09
−0.09 1.72 −0.09
−0.09−0.09−0.09



 (6)

The relationship between SIFT intensity and noise is
shown in Fig.3. Fig. 3(a) shows the relationship between
SIFT intensity and noise only with double-size
magnification preprocessing. It can be seen that SIFT
intensity experiences a course of increasing, decreasing
and increasing. With noise variance less than 0.003, SIFT
intensity increases quickly with noise; with noise variance
in the scope [0.003 0.03], SIFT intensity gradually
decreases; with noise variance greater than 0.03, SIFT
intensity increases again. So the metric can’t accurately
assess noise in this case. Fig.3(b) shows the relationship
between SIFT intensity and noise with neighborhood
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Fig. 3: Relationship between SIFT intensity and noise (a)
The images only with double-size magnification (b) The
images with neighborhood enhancement and double-size
magnification

enhancement and double-size magnification
preprocessing. SIFT intensity gradually decreases with
the noise increasing in variance scope [0 0.03] and nearly
keeps steady in variance scope [0.03 0.1]. Because noise
variance is usually lower than 0.03, SIFT intensity can
assess the image corrupted by noise.

In most cases, we don’t know distortion types in
advance. In order to make SIFT intensity more
extensively adaptive and sensitive, image assessment
based on SIFT intensity in the following experiments
introduces neighborhood enhancement and double-size
magnification preprocessing.

3.2 Relationship between SIFT intensity and
smoothing

Fig. 4 represents the relationship between SIFT intensity
and smoothing after the preprocessing of neighborhood
enhancement and double-size magnification. Because
each image when shot is inevitably subject to random
outside interferences, small-scale smoothing may play a
role of a noise filter, which can improve image quality. So
as shown in Fig.4, whenn is equal to 2, SIFT intensity
increases. Then it successively drops down to below 40.
Experiments also show that SIFT intensity is sensitive
when n ∈ [1 10] and is close to zero whenn > 10.
According to the trend of SIFT intensity, it can assess
images corrupted by smoothing.

3.3 Relationship between SIFT intensity and
blocking artifact

Fig. 5 shows the relationship between SIFT intensity and
blocking artifact after the preprocessing of neighborhood
enhancement and double-size magnification. It can be
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Fig. 4: Relationship between SIFT intensity and
smoothing
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Fig. 5: Relationship between SIFT intensity and
compression coefficients

seen that SIFT intensity decreases gradually from
maximum 1300 to minimum below 100 withα
increasing. The more obvious the blocking artifact is, the
lower the SIFT intensity is. So, SIFT intensity can assess
images corrupted by blocking artifact.

3.4 Image quality assessment through SIFT
intensity

According to above analyses, the higher SIFT intensity is,
the higher image quality is. According to Fig.3,4,5, we
can infer that SIFT intensity can assess noise, blur and
blocking artifact even without the prior knowledge of
distortion types. To make the metric concise, sensitive
and reliable, image assessment through SIFT intensity is
summarized as follows:

(1) to preprocess images by neighborhood
enhancement and double-size magnification (four times
as large as the acreage of original image);

(2) to calculate image SIFT intensity;
(3) to assess image quality according to SIFT intensity.

The unit region in SIFT intensity is chosen according
to actual applications. It can be a image or a local region.
Image magnification can make SIFT intensity more
sensitive to distortions, improving image assessment. But
it doesn’t work well for high noise and large smoothing
scales, such as the Gaussian noise whose mean is zero
and variance is greater than 0.1, the smoothing window
whose scalen is greater than 10. In these cases, SIFT
intensity is usually fixed within a certain small scope. In
the cases, SIFT intensity of the original image with
neighborhood enhancement preprocessing except
double-size magnification can properly assess the noise
with its variance ranging from 0.1 to 0.4 (its mean is zero)
as well as the smoothing scale ranging from 10 to 15, but
its sensitivity will be weakened.

4 Experiments

In this section, experiments are carried out to explore the
performances of SIFT intensity. Because our goal is to
investigate a novel basic NR metric, we choose some
existing classic basic NR metrics for comparison to
investigate the relationship between each metric and
subjective assessment, as well as the relationships
between each metric and distortion scale. The chosen
metrics include SF, GBIM [18], entropy and AE [25],
instead of the ones which are partly improved based on a
basic metric, intelligently trained through a sample
database, or designed based on multiple basic metrics.

4.1 Comparison of NR metrics based on
subjective assessment

The experiments were performed on the LIVE database
[28]. This database contains 29 high-resolution
24bits/pixel RGB color images as reference and five types
of corresponding distorted images: JPEG, JPEG2000,
White Noisy (WN), Gaussian blurred (Gblur) and
Fast-Fading (FF) Rayleigh channel noisy images.
Subjective quality scores are given in terms of the
realigned difference mean opinion score (DMOS) on a
scale of 0-100 with a large DMOS indicating poor visual
quality. Although we only probe into the assessment of
images distorted by noise, blur and blocking artifact in
section 3, SIFT intensity can work well for above five
distortions.

The relationship between predicted quality rating and
DMOS (or MOS (mean opinion score), acquired
according to DMOS [29]) can have nonlinear quality
rating compression at the extremes of the test range. So,
we establish the nonlinear mapping via the logistic
function [29]

q = ax3+bx2+ cx+d (7)

where x is the objective quality score calculated by
quality metrics,q is the predicted subjective quality score,
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and a ,b ,c are the parameters. This function must be
constrained to be monotonic in the range of possible
values for x. We employ three statistics for evaluation
after several runs of the metric: Pearson Correlation linear
correlation coefficient (CC), Root-Mean Squared Error
(RMSE) and Outlier Ratios (OR).

According reference images, all the images from the
LIVE database are classified into 29 objects. To validate
the proposed metric, we demonstrate the performance by
running 15 times and choosing 25 images each time.
Table 2 gives the mean and standard deviation (SD) of
each criterion on the testing data for 15 runs against the
MOS. SIFT intensity has the highest CC, the smallest
RMSE and OR with relatively small SD. It can be seen
that SIFT intensity is the most consistent with subjective
assessment, orderly followed by AE, SF, GBIM and
Entropy. Furthermore, under the assumption that the
images are mainly corrupted by a single distortion, the
mapping in equation (7) is not necessary and SIFT
intensity can assess image quality even without the prior
knowledge of image distortion types.

4.2 Comparisons of NR metrics on
different-scale distortions

The experiments were performed on the Million Gallery
[30], which includes natural images, bird/beast images,
natural scenery images, cultural wonder images, etc. We
randomly choose 15 natural scenery images and the
images are resized to 500× 500. They are processed by
noise-adding with noise’s varianceσ from 0 to 0.1 (noise
mean is 0), window smoothing with smoothing scalen
from 1 to 10 and BDCT compressing with compression
coefficient α from 0.2 to 2 (as in section 3.3). Here
noise’s variance σ , smoothing windows n and
compression coefficientα are seen as distortion scale.
And each image is taken as a unit to calculate SIFT
intensity, after enhanced through neighborhood
enhancement filter and twice magnified through linear
interpolation. For smoothing and compressing, the
assessment of each image is the result over one
experiment. For noise, the assessment of each image is an
average over ten experiments to ensure experimental
accuracy. Experiment results are the averages over 15
images. The comparison results are demonstrated in Table
3,4,5,6, which show the assessment results for SF, GBIM,
Entropy, AE and SIFT intensity with the distortions
increasing. Final statistical results over 15 images are
demonstrated in Table6, which shows the mean and
standard deviation (SD) of Pearson rank order correlation
coefficient (ROCC) according to the relationship between
predicted quality rating and distortion scale. Pearson rank
order correlation coefficient can describe nonlinear
correlation relationship and the coefficient ranges from -1
to 1. In the light of the fact that a NR metric can be
viewed as a excellent metric as long as the metric

monotonously changes with distortion increasing, the
positive linear correlation relationship is unnecessary.
What’s more, from Fig, 3,4,5, we can find that the
relationships between SIFT intensity and distortions are
nonlinear. So, ROCC is more feasible to validate SIFT
intensity. And we adopt the absolute value of ROCC in
Table6.

From Table 3,4,5, we can directly view the
performances of above five NR metrics. SF can, as a
whole, accurately assess smoothing (blur) and is not fit
for noise and blocking artifact. When smoothing scalen
=2, SF is lower than original SF, which is not often
consistent with actual applications because a small scale
filter is generally beneficial to image quality. GBIM can
assess image blocking artifact, not fit for noise and
smoothing. Entropy can assess large-scale smoothing, not
fit for noise, small-scale smoothing and blocking artifact.
AE is, as a whole, superior to SF, Entropy and GBIM. But
it still doesn’t perform well for small noise, small-scale
smoothing and blocking artifact. SIFT intensity works
well for noise, smoothing and blocking artifact. It drops
down with distortions increasing. When noise’s variance
is less than 0.0001, SIFT intensity is near to that of
reference image. In the case, subjective assessment is also
difficult to give an accurate judge. Therefore, the problem
doesn’t actually affect the approach’s performances.
When smoothing scale is 2, the increase of SIFT intensity
is in line with the objective reality, which is because
images, when shot from CCD devices, will be inevitably
subject to outside interferences and a small window
smoothing will help improve image quality.

From Table 6, we can view the statistical
performances of above five NR metrics. If ROCC is near
to 1, it indicates a high correlation. So, we choose ROCC
to validate SIFT intensity. According to the mean and SD
of ROCC, SIFT intensity keeps the highest performances
with the scale of white noise, Gaussian smoothing and
compression changing. SF is insufficient in the
assessments of white noise and compression (blocking
artifacts), GBIM insufficient in the assessments of white
noise and Gaussian smoothing, Entropy insufficient in the
assessments of all the three chosen distortions, and AE
insufficient in the assessment of compression.

Based on above analyses, it can be inferred that SIFT
intensity can perform well in the assessments of different
distortions and is superior to SF, GBIM, Entropy and AE.

5 Conclusions and discussions

Under the assumption that images are mainly affected by
a single distortion, SIFT intensity can accurately assess
the distortions without the prior knowledge of distortion
type and the training database. Experiments show that the
metric can accurately assess different distortions,
decreasing with noise, blur and blocking artifact
increasing. Compared with SF, GBIM, entropy, AE, etc.,
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Table 2: Performance of metrics on subjective assessment

SF GBIM Entropy AE SIFT intensity

CC
mean 0.3725 0.3848 0.1523 0.8214 0.9412
SD 0.1868 0.1491 0.1036 0.0315 0.0217

RMSE
mean 26.15 25.72 25.36 10.61 6.821
SD 6.218 5.016 8.083 0.986 0.892

OR
mean 0.7586 0.7137 0.7664 0.5131 0.3108
SD 0.1621 0.1391 0.1643 0.0905 0.0912

Table 3: Relationship between image quality assessment and noise’svarianceσ (noise’s mean is 0)

0 0.0001 0.001 0.005 0.007 0.01 0.015 0.02 0.03 0.05 0.1

SF 7.6763 7.7034 7.7245 7.7911 7.8564 7.8421 7.7539 7.8873 8.0638 8.4236 7.5227
GBIM 2.6558 2.6600 2.6554 2.6424 2.6414 2.6386 2.6406 2.6459 2.6414 2.6414 2.6420

Entropy 5.1609 5.2906 5.2448 5.3181 5.3421 5.3662 5.3878 5.3969 5.3939 5.3410 5.1153
AE 0.0037 0.0038 0.0036 0.0029 0.0026 0.0023 0.0020 0.0018 0.0016 0.0014 0.0010

SIFT Intensity 1330 1341.8 1306.4 981.8 864.4 767.9 692.7 635.8598.20 581.9 603.2

Table 4: Relationship between image quality assessment and smoothing scalen

1 2 3 4 5 6 7 10

SF 7.6763 6.4420 5.2036 4.6241 4.0523 3.7483 3.4201 0.0112
GBIM 2.6558 2.6727 2.6635 2.5321 2.4673 2.4224 2.3907 2.6899

Entropy 5.1609 5.2678 5.3178 5.2968 5.3040 5.3026 5.2987 4.9258
AE 0.0037 0.0032 0.0026 0.0021 0.0016 0.0013 0.0009952 0.000497

SIFT intensity 1330 1568 1156 567 215 72 13 2

Table 5: Relationship between image quality assessment and compression coefficientα

0.2 0.3 0.5 0.7 1.0 1.2 1.5 2.0 2.5 3.0

SF 6.8150 6.5527 6.2710 6.0062 5.7944 5.6966 5.7825 6.2903 6.7015 7.1465
GBIM 1.7102 1.4397 1.0801 0.8020 0.5937 0.4573 0.3158 0.2040 0.1359 0.0965

Entropy 5.1696 5.0966 5.1015 5.0873 5.0155 5.0211 4.9795 4.9496 4.9568 4.9342
AE 0.0034 0.0033 0.0030 0.0028 0.0025 0.0025 0.0023 0.0023 0.0024 0.0034

SIFT Intensity 1297 1161 861 611 423 348 224 127 69 52

Table 6: ROCC correlation relationship between the metric and distortion scale

SF GBIM Entropy AE SIFT intensity

White noise
Mean of ROCC 0.0486 0.1192 0.1709 0.8690 0.8718
SD of of ROCC 0.0589 0.0278 0.1091 0.0621 0.0623

Gaussian Smoothing
Mean of ROCC 0.9708 0.0728 0.12076 0.9683 0.9292
SD of of ROCC 0.0521 0.0821 0.1325 0.0561 0.0621

Compression
Mean of ROCC 0.1325 0.8963 0.2606 0.2859 0.9587
SD of of ROCC 0.1034 0.0584 0.1462 0.1627 0.0607
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this metric is more stable, adaptive and in line with
human subjective judgment and distortion scale.

In the future, there are a number of issues that deserve
further investigation: (a) further application research of
SIFT intensity; (b) development of SIFT intensity to
extend its assessment to multiple distortions,happening
simultaneously; (c) development of the metric to provide
online image/video quality assessment in video
surveillance systems.
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