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Abstract: Class-oriented concept lattices are systems of conceptual clustkerd atass-oriented concepts, which are partially ordered
by a subconcept-superconcept hierarchy. The hierarchicatwteuepresents a structured information obtained automatically from
the input data table. This paper presents the correspondent relatioveehematroids and class-oriented concept lattices. Under
isomorphism, it presents necessary and sufficient conditions to disabscontexts to be compatible by matroid theory. The paper
also contains illustrative examples.
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1 Introduction relation between the category of simple matroids and the
category of class-oriented concept lattices. Afterwards,

Formal concept analysis (FCA) is a method of we.deal with some properties of class-oriented concept

exploratory data analysis that aims at the extraction ofldttices for sub-contexts. ,

natural clusters from object-attribute data tables. ktse Section 2 presents preliminaries. Section 3 presents the

both the individual objects and the individual attributes a Main results and illustrative examples. Section 4 presents

distinct entities for which there is no further information conclusions and an outline of future research.

available except for the relationship saying which objects

have which attributes. There are many types of binary

relations between objects have been studiet 2]]. 2 Preliminaries

Equivalence relation on objects is one of them. The

importance of equivalence relation on objects in som

different ways has been appeared @B[4)). ®We assume that a data set is given in terms of a formal

context (or say, a binary table) akg. For simplicity, in
d the clust truct a hi hv ord qf Shis paper, we only consider a finite set of objects and a
an € clusters can construct a hierarcny order and 10Mmgia get of attributes, finite matroids and finite lattices.

a Iattlce. One of the clu_sters, which 1S relative to The results may not be true for the infinite cases.
class-oriented concepts, is naturally interpreted as

human-perceived concepts in a traditional sen3&y).
As a branch of mathematics, matroid theory borrows .
extensively from the terminology of linear algebra and 2.1 Lattice theory
graph theory. It has been studied in many ways such as
lattice theory and geometry approacl,{{,8,9,10,11]). For the looking in detail at the relations between
Based on its abundant theoretical contents, matroid theorglass-oriented concept lattices and matroids, lattices
has been already applied in many other fiel@s7[11, 12, especially geometric lattices will play an important role.
13,14)), especially, in the fields relative to FCA (ct5)). Thus, it starts by reviewing those aspects of lattice theory
This paper uses matroid theory to study on All the knowledge about lattice theory are referred@p [
class-oriented concept lattices. Under isomorphism, we17].
present necessary and sufficient conditions to discuss the
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If two latticesL; andL, are isomorphic, then it will be
denoted byt; = L, in this paper.
Definition 2.1.1.A finite latticeL is semimodular if for all
X,y € L: xandy coverxAy=-xVy coversx andy. A finite
lattice isgeometric if it is semimodular and every point is
the join of atoms.

Lemma 2.1.1.Semimodular lattices are characterized by:
(1) L is semimodular if and only if it satisfies the
Jordan-Dedekind chain condition and its height function
h satisfies for alk,y,

(2) h(x) +h(y) > h(xAy) +h(xVy).

2.2 Class-oriented formal concept lattice

In this paper, all the knowledge about FCA come from

universe, namely, a family of pairwise disjoint subsets
whose union is the universe. A new family of subsets,
denoted byo(U/ =y), can be obtained frod / =y by
adding the empty set @ and making it closed under set
union, which is a subsystem ofY2and the basis is
U/ =y. The following properties hold:

(ED)AL,AceolU/=y)=ANAecolU/=y);

(E2) A1, Az € O'(U/ Eu) = AUAy € O'(U/ EU).

Definition 2.2.3. A pair (A,B),ACU,BCV, is called a
class-oriented concept if Ac g(U/ =y ) andB = A*. The
set of objectsA is called theextension of the concept
(A,B), and the set of attributésis called thentension.

For two class-oriented concept;,B1) and (A2, By),
we say that

(A1,B1) < (Ap,Bp) ifand only if A C Ay (F1)

The family of all class-oriented concepts forms a

[16]; that about class-oriented concept lattices come fromcOmplete lattice calledclass-oriented concept lattice
[1,5]. In this section, we review some basic definitions of Which is denoted by#(U/ =y) in this paper. It gives a
FCA and class-oriented concept lattices to be used in thidierarchical structure of the elementsaU/ =y) and

paper.

Definition 2.2.1.An object-attribute data table describing
which objects have which attributes can be identified with
a triplet(U,V,1) whereU is a non-empty set (of objects),
V is a non-empty set (of attributes), ahd- U xV is an
(object-attribute) relation. In FCA(U,V,I) is called a
formal context.

their corresponding attributes. The meeand the joinv
are defined by

(A1,B1) A (A2,B2) = (A1 N A2), (AL N A2)"), (A1, B1) v
(A2,B2) = (ALUA2), (B1NB2))

2.3 Matroid theory

Objects and attributes correspond to table rows and

columns, respectively, arld,y) € | indicates that object
has attributey (table entry corresponding to row and
columny containsx; if (x,y) ¢ | the table entry contains
blank symbol). Based on the binary relatibhwe can

All the knowledge about matroid theory come fro1].
We only write out some of them.

Definition 2.3.1. A matroid M is a finite setS and a
collection .# of subsets ofS (called independent sets)

associate a set of attributes with an object. An objecty,-h that (i1)-(i3) are satisfied.

x € U has the set of attributesd = {y € V|xly} C V.
Similarly, an attributey is possessed by the set of objects:
ly={xeV|xly} CU.

For eachAC U andB C V, it denotes by

A" = {y e V]| for eachx € A: (x,y) € I} and
B*={xeU|foreachye B: (x,y) € 1}.

By the above definition, it has

A'={yeV|ACIly}=Nx and
XeA
B*={xeUBCxl}=Nly.
yeB

Definition 2.2.2. Two objects may be viewed as being
equivalent if they have the same description. An
equivalence relation can be defined by for
x,X eU,x=y X < xl =xI.

For an objectx € U, the set of objects that are
equivalent tox is called anequivalence class of x and
defined by=y x = {X e UX =y x} = {X e U|x =y
X} =x=y=[x.

The family of all equivalence classes is commonly
known as the quotient set and
U/ =u= {[¥|x € U}. It defines a partition of the

(i1)0e s.

(i2) If X € & andY C X, thenY € .4.

(i3) If X,Y are members of7 with |X| = |Y|+1,
there existx € X\ 'Y such tha¥ Ux € .7.

By the closure axioms (seé][ p.8,Theorem 4), a
matroid M is uniquely determined by the family of
closed sets oM. Thus, in this paper, we also write a
matroid(S,.#) as(S,.%#).

Lemma2.3.1LetM = (S..%) be amatroid. Theh(M) =
(Z,Q) is a geometric lattice.

The correspondence between a geometric lattice
and the matroidM(L) on the set of atoms oL is a
bijection between the set of finite geometric lattices and
the set of simple matroids. (The definition M(L) is
referred to §], p.52).

Based on the correspondence betweeand M(L),
for convenient, in what follows, we only use simple
matroids to discuss, and besides, a simple matroid is often

is denoted bysimply to be said a matroid.
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3 Relations and applications Evidently, it has[xi] U [x] U [x3] # [x] U [x;] for any
i,j € {1,2,3}. This brings the height af8(Up/ =y,) to

This section will look in detail at the relationships be 3 which is a contradiction to the construction of

between class-oriented concept lattices and matroids.7, C) because the height 67, C) is 2.

Using these relationships, we earn that for a latticét

does not always pledge to have a formal context

(UL, Wi, I) satisfying L = #(UL/ =y, ). In addition, X1, %2, X3}

under isomorphism, adopting matroid theory, we get the

necessary and sufficient conditions for a sub-context to be

compatible. {x1} {xs}

We begin this section to discuss the properties of class-
oriented concept lattices. (0}
Lemma 3.1.The following statements abow# (U / =y )
are correct.
(1) AU/ =y) is a geometric lattice with[x] | [x] #
k

Figure 1 Diagram ofL(M) of the matroidV from Example 3.1

Pil, (i # 5, i =1, 2""’k)7i!l[xi] = U} as the family of Example 3.1 compels us to seek that under what
atoms. - conditions, a given matroitl = (S,.%) could bring about
(2 (AB)e Z(U/=y)ifandonlyifA= J [xj]and the existence of a class-oriented concept lattice
XjEA B/ =y) satisfyingZ(U/ =y) = (F,Q).
B= N xl.
XjEA

. . Lemma 3.2.Let M = (S.%) be a matroid withoy as its
Proof. Itis straightforward from (E1),(E2), (F1), (F2) and ¢josyre operator ang = {X1,...,%}. If M satisfies the

the definition Of%(U/ =u). following conditions,

_ : M1) om(om(xi,)U...Uom(X,)) =om(X,)U...U
Corollary 3.1. Let AU/ =y) be given. Up to (_ AL ~ t 1
isomorphism, there is a unique matrod = (S.7%) om (%) where{xi,,.... % } € §
satisfying(.#,C) =2 #(U/ =y). We denote this matroid (M2) h(om(x, U...Ux,)) =t fort =1,2,....k
asM(#(U)). whereh is the height function of.Z, C),

Proof. Routine verification according to Lemma 3.1(1), then there exists a class-oriented concept lattice
the definition ofL(M) and the correspondence between #(U/ =u) satisfying(U/ =y) = (7, Q).
geometric lattices and simple matroids.
Proof. In light of knowledge of matroid theory, for any
By the correspondence between geometric lattices and,y € Siit has ou(ou(x) U om(y)) = omu(xUy) 2
matroids, it follows thaM(#(U)) is defined on the set of ou(x) U om(y). By the definition of simple matroid, for
atoms ofZ(U/ =y). anyx € S, the rank ofoy (x) is 1, that is, the set of atoms
(Z,Q)is{om(X)|x € S}. If om(X) # {x} for somex € S,
The following example shows that for a given matroid no matter to supposew(X) = {X,y1,¥2,...,Y¥n-1} and

M = (S..%), it does not pledge the existence of aformaln > 2. It hints ou(x) = ou(om(Xx) =
context(U,V, 1) satisfying(.#,C) = AU/ =y). om(Om(XUy1U...Uyn_1)) C Sandh(om (X)) = 1.
Example 3.1. Let E = {x,Xx} and Butby (M2), h(om({Xy1, ..,yn-1})) = h(om(xUy1U
I ={0,{x},(i = 1,2,3); {x,x}, (s £ t;st = 1,2,3)}.  ---U¥n-1)) =n# 1, a contradiction. Thus, it follows

ThenM = (E,.#) is a simple matroid with# as its setof S = {om(X)|x € S}. Furthermore,om (%, U ... UX,) =
independent sets. Le¥ be the family of closed sets of OM(Om(Xiy U ... U X)) = om(Xy) U ... U om(X,) =
M. Then the diagram of.#,C) is shown in Figure 1. {X,....%} holds according to the closure axioms of
Evidently,(.#, C) is geometric. matroids and (M2). This impliegy (X) = X € # for any

If we suppose that there is a formal contédp, Vo,lo) X &S Thus, 2 C 7 holds. However,7 C 25 is evident
satisfying%(Uo/ =y,) = (#,C). Then it leads to the set because the set of atoms.&f is S. Therefore, 8 = .7 is
of atoms of#(Up/ =y,) to be{[x]|[x] = {x},i =1,2,3}  followed.
under isomorphism. By the knowledge in Subsection 2.2, | et (U,V,1) be shown in Table 1. From the table, we
up to isomorphism, we obtain getU =V = S= {xy,...,%} and

] U [xj] = {xi, X} € B(Uo/ =u,). (1 # ;1,1 =1,2,3), Xi] = {x},xil ={x},(i=1,....k).
Hence, it is easy to prov# (U / =) = (2Y, Q).

and meanwhile, .
Summing up the abové.7, C) =~ B(U/ =y).

X1, %2, X3} = [x1] U [%2] U [xs] € #(Uo/ =u,)-
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Table 1. A formal context relative to the matroid from converse part? In other words, for a complete lattice
Lemma 3.2 shall we find out a class-oriented concept lattice

Y1|y2|---|Yil-- Yk P/ =y) such thatB(U/ =y) is isomorphic toL? If
X1| X we want to answer this question with the definitions, it
Xo| | X will not be easy though no answer now according to my
: : knowledge. But if we use Theorem 3.1, we will see that
: : the proof is quite easy. The reasons are the following:
X X for a complete latticd., it will not pledge that it is
: : geometric. So, owing to the corresponding between
X.k > geometric lattices and matroids, it could not pledge the

existence of a CO-matroidM = (S.%#) satisfying
(#,C) =2 L. Thus, it will not pledge the existence a
class-oriented concept lattice#(U/ =y) satisfying

We easily see that a free matroM = (S,.%), i.e.  #A(U/=y) =L invirtue of Theorem 3.1 and the above.
7 = . = 25, satisfying condition (M1) must satisfy This consequence implies that there is not a “basic
(M2). A free matroid is trivial. Here, we pay attention to theorem on class-oriented concept lattices” as the one on
that matroids which are not free. We find out that Lemmaformal concept lattices shown inl§], p.20. It also
3.2 is satisfied by much more matroids not only free appears some difference between class-oriented concept
matroids. lattices and formal concept lattices.

In fact, if M = (S %y) is a matroid satisfying (M1)
and (M2), then Lemma 3.2 hin{s#y, C) = 2(Un/ =u,,) In the following, for CO-matroids, we will consider its
for some formal context(Uw,V,Im). Corollary 3.1  applications in the study of class-oriented concept lastic
points out that up to isomorphism, there exists a matroidfor sub-contexts. We need the following lemma.
M(Z(Uw)) = (Suy, Puy ) satistying(Fu,, ©) = #(Un/ =uy)  Lemma 3.4.LetM = (S.Z) be a CO-matroid an@ C S
Hence (#w,C) = (Fuy,C) Is right. That is to say, Then the restrictioM|T of M to T is a CO-matroid.
M(2(Uw)) is isomorphic taM. Proof. We only need to check th|T satisfies (M1) and
(M2) respectively according to Lemma 3.2, Theorem 3.1
and [], p.61,Theorem 1.

Let om,omT be the closure operator dfl,M|T
respectively. LetT = {xq,....%} € S Then it has
ouT(X) = om(X)NT for any X C T in virtue of

wherey, = x;, (i=1,2,...,k).

Now we prove the truth of the converse part of Lemma
3.2.

Lemma 3.3.Let M = (§,.%) be a matroid and there is a
class-oriented concept latticé(U / =y ) satisfying(.-#, C

)= %/ =y). ThenM satisfies (M1) and (M2). [6],p.61,(5).
Proof. In view of Lemma 3.1, (E1), (E2) and (F2), it is not Let {Xj,....,%i,} € T. Then oy (owT(X)U...U
difficult to earn#(U/ =y) = (28, C) whereE is the set owr(X,) = owr(x, U U X, =

of atoms in#(U/ =y). Thus, this result withz(U / =y
) = (%, Q) taken together follows tha¥l satisfies (M1)
and (M2).

oM (X, U...UXi,) NT = (om(Xiy) U...U0om(X,)) NT =
(om(x,) N T) U U (om(x,) N T)
oMt (X)) U...Uow T (X,). Thus,M|T satisfies (M1).

S JhintkingzgftLeThma 3.2 ?r][ﬂ tLem:na_ 3.3 V\ch Since M is a CO-matroid, reviewing the proof of
ubsection 2.5 together, we get that up 10 ISOMOrphISM, oy 4 32 and Lemma 3.3, we see that % if and

every matroid which satisfies (M1) and (M2) correspondsonly if there are atomsaa : j — 1,2 nlin (Z,C)
to a unique class-oriented concept lattice, and vice versa. n 1 AR T
Thus, up to isomorphism: (1) for a matroM satisfying  satisfyingA= | a,- (M2) hintshy (A) = n wherehy, is
(M1) and (M2), we denote the correspondent =1

class-oriented concept lattice &(M); (2) for a given
class-oriented concept latticg#(U/ =y), we call the
matroid corresponding to it &0-matroid and denoted it
by M(#(U)). (Actually, a CO-matroidM(#£(U)) is

the height function of(.%#,C). In addition, the simple
property ofM pledges{x} to be an atom in.#,C) for
eachx € S Hence{x, } is an atom in(#,C) for each

X; €T,(j=1,...,p) andhy(om (X, U...UX,)) = pis

already defined in Corollary 3.1. Here is only to repeat it.) true. Furthermore{;, } is an atom irM|T also. It follows
The importance of CO-matroids lies in the following hM\T(GM\T(Xij)) = 1. We could using induction op with
theorem. omr (X, U ... UX) = om(, U...Ux)NT for
Theorem 3.1. The correspondence between at 1...,p and finally, we obtain
class-oriented concept lattice#(U/ =y) and the hy(owT(X,U...UxX,)) = p. ThusM|T satisfies (M2).
CO-matroidM(£(U)) on the set of atoms o%(U/ =)
is a bijection between the set of class-oriented concept If one wishes to examine parts of a rather complex
lattices and the set of matroids. class-oriented concept system, it seems reasonable to
Subsection 2.2 shows us that each class-orienteéxclude some objects and/or attributes from the
concept lattice is a complete lattice. How about theexamination. We shall describe the effects of this
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procedure on the class-oriented concept lattice. The (=) The first fact we need to prove is thef n must
class-oriented concept lattice of a sub-context always hasecessarily be infimum-preserving and supremum
an order-embedding into that of the original context. -preserving for(X;,Y;) € Z(H/ =n), (j = 1,2), where
Much more information can be obtained when dealing(X1,Y1) and (Xp,Y») satisfy that it exists(Aj,Bj) €
with compatible sub-contexts, which is introduced later in (U / =y) satisfying (X;,Yj) = (A; N H,Bj N N),
this section. (j=1,2).

In view of (F2), it gets:

(Xl,Yl) V (Xz,Yz) (Xl U X2,Y1 N Yz)
((Al NH) U(AU H),(Bl N N) n (Bz N N))
(A1 U Ag) N H,(B1 N By) " N), and besides,
My N((A1,B1) V (A2,B2)) = Mun(ALUA2,BiNBy) =

We open the following of this section with the question (A1 U A2) N H,(B1 N Bz) N N). Hence,
of how the concept system of a sub-context is related toTy n((A1,B1) V (A2,B2)) = (X1,Y1) V (X2,Y2)
that of (U,V,1) and how to use CO-matroids to deal with My n(A1,B1) V IMh N (A2, B2);
this question. (X1, Y1) A (X2,Y2) = (AcNH,BiNN) A (A2NH, BN

If (U,V,I) is a formal context and iH C U and
N CV, then(H,N,I N (H x N)) is called asub-context of
(U,V,1) (cf.[16], p.97,Definition 44).

Example 3.2.Let a formal contex(U,V,1) be shownin N) = (AcnA200H, 1 xIN(H xN)); meanwhile,
Table 2 andU = {xq3,%2,X3},V = {y1,¥2,¥3}. Then M N (A, B1) A (A XGBAl)r;AimH,-, (AL Ag, (AL N1 A2)")
) = 04}, (1=1,2.9) ForaseN = {yyal v, we R B AR BE T unA (R0A
consider the sub-contextU,N,I N (U x N)). In this ' XA A
sub-context{x;] = {x1,xs} and[xz] = {x2}. Every extent =(ALNANH, (N X)NN) e BH/ =q).
of (U,V,l) is not pledged to be an extent of XeA1NAy
(U,N,IN(U xN)). This follows ( N x)NN = (A NA NH)* =
XeA1NA
N xIN(H xN). Additionally,
Table 2. Formal context from Example 3.2 XEANALNH
I_I|-|7N(A;|_7 Bl) A I-IH7N(A2, Bz) = (Al NH,B1N N) A (Az n
yily2|ys H,B,NN) = (A NANH, (AL NANH)*) € B(H/ =p)
X1 x| |x where (A1 N Ay N H)* = N xNn(H xN).
X2 X | X XEA1NANH
X3| X Therefore, [Ty n((A1,B1) A (A2,B2))
=(ANANH, N xIN(HxN))
xeA1NANH

, _ = My N(A1,B1) ATTH N (A2, Bo).
This example shows that the class-oriented concepts The second fact we need to prove is the surjective
of a sub-context can not simply be derived from those ofproperty ofMTy N.
(U,V,1) by restricting their extent and intent to a Let h € H,hjy = {x € Ulx =4 h}
sub-context. This can be done only for compatible [h),; = {x € H|x=p h}. Then it has
sub-contexts, which will be examined next. ([hu,hl) € BU/ =)
and ([hjy,hl N (H x N)) € #(H/ =n), and further,
A sub-context (H,N,I n (H x N)) is called 7y y([hjy,hl) = ([hju "H,hINN) € B(H/ =p). Since
compatible if the pair (ANH,BNN) is a class-oriented [y NH = {xeHlhl =xI}
concept of the sub-context for every class-orientedand [h] = {x € H|xi N (H x N) = hl N (H x N)}. In
concept(A,B) € Z(U/ =y). addition, ([hju N H,hlt N N) € #(H/ =4) hints
NunH = U [an in view of Lemma 3.1. It is
Restricting the concepts to a compatible sub-context achjynH
yields a map between the class-oriented concept latticembviouslyh € [hjy NH. This leads tdh]y C [hjy NH. Let
which necessarily has to be structure-preserving, as tha € ([hju "H) \ [N]4. Then[a]y C [hju NH is true, i.e.
following shows: ac H andal =hl. Fromal = hl and(H,N,I N (H x N))

Theorem 3.2. A sub-context(H,N,I N (H x N)) of  iS@asub-contextofu,V.1), we gets

(U,V,1) is compatible if and only if alN(H xN)=hIn(H xN). o
Man(AB) == (AnH,BNN) for all (A,B) € Z(U/ =y) Furthermore, it followsa € [hl4, a contradiction to
defines a surjective  complete  homomorphism@ € ([Nju MH)\ [hy. This meanshly NH = [h]y. In
Man : U/ =y) — B(H/ =n).(The definition of other words, in8(H/ =n), ([, hl N (H x N)) could be
complete lattice homorphism or complete homorphism isdescribed aglhjy (H, hI NN) = Iy n([hjy, hi).
cf.[16], p.7,Definition 13.) By Lemma 3.1, for eackX,Y) € Z(H/ =n)\ (O,N),

it should haveX = dy = . F th
Proof. («<) Sincelly \ is surjective, it follows(X,Y) = 1 should have ng[X]H an XQXX rom fhe
(ANH,BNN) € Z(H/ =n) for each(A,B) € Z(U/ =y).

above of this part, it brings aboufly n([Xu,xXI
Hence,(H,N,I N (H x N)) of (U,V,1) is compatible. (Ku NH,XI NN) = ([X]u,xI N (H x N))

and
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Considering this result with the result in the proof of first concept lattice theory, and vice versa. Theorem 3.3.

fact above, it follows thafly n( U [Xu, N XI) = implies that matroid theory could be used to deal with
xexX xeX sub-contexts, and further, the other properties of
MaN(Vyex (Ku,x)) - = XXX(HHN([X]U’X')) = class-oriented concept lattices. We believe that matroid

XX N (Hx N)) = (U Xu, N x) = (X,X*) = theory would be used to discuss class-oriented concept
xeX xeX lattices in decomposition parts and factors, and so on.
). That is to say, each elemefX,Y) € Z(H/ =n)  Because of Theorem 3.1 and the properties of
) can be described as the form sub-matroids, we also assert that many algorithms in
N(AB) = (AN HBNN) for (AB) =  matroid theory will be used to find out the class-oriented
Xu, N x) € B(U/ =y). Additionally, concepts and the class-oriented concept lattices for forma

U
)e «%E(U/ —u) follows M n(0,U) = (0N H,U AN) contexts. These are our future research.

(O,N) € B(H/ =n). Thereforely \ is surjective.
The third fact we need to prove is thdiy y is

infimum-preserving and supremum-preserving. This fact

is easily proved by Lemma 3.1 and the above two facts. Acknowledgement
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