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Abstract: Class-oriented concept lattices are systems of conceptual clusters, called class-oriented concepts, which are partially ordered
by a subconcept-superconcept hierarchy. The hierarchical structure represents a structured information obtained automatically from
the input data table. This paper presents the correspondent relations between matroids and class-oriented concept lattices. Under
isomorphism, it presents necessary and sufficient conditions to discuss sub-contexts to be compatible by matroid theory. The paper
also contains illustrative examples.
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1 Introduction

Formal concept analysis (FCA) is a method of
exploratory data analysis that aims at the extraction of
natural clusters from object-attribute data tables. It treats
both the individual objects and the individual attributes as
distinct entities for which there is no further information
available except for the relationship saying which objects
have which attributes. There are many types of binary
relations between objects have been studied ([1,2]).
Equivalence relation on objects is one of them. The
importance of equivalence relation on objects in some
different ways has been appeared (cf.[2,3,4]).
Equivalence relation can induce a partition of the universe
and the clusters can construct a hierarchy order and form
a lattice. One of the clusters, which is relative to
class-oriented concepts, is naturally interpreted as
human-perceived concepts in a traditional sense ([2,5]).

As a branch of mathematics, matroid theory borrows
extensively from the terminology of linear algebra and
graph theory. It has been studied in many ways such as
lattice theory and geometry approach ([6,7,8,9,10,11]).
Based on its abundant theoretical contents, matroid theory
has been already applied in many other fields ([6,7,11,12,
13,14]), especially, in the fields relative to FCA (cf.[15]).

This paper uses matroid theory to study on
class-oriented concept lattices. Under isomorphism, we
present necessary and sufficient conditions to discuss the

relation between the category of simple matroids and the
category of class-oriented concept lattices. Afterwards,
we deal with some properties of class-oriented concept
lattices for sub-contexts.

Section 2 presents preliminaries. Section 3 presents the
main results and illustrative examples. Section 4 presents
conclusions and an outline of future research.

2 Preliminaries

We assume that a data set is given in terms of a formal
context (or say, a binary table) as [16]. For simplicity, in
this paper, we only consider a finite set of objects and a
finite set of attributes, finite matroids and finite lattices.
The results may not be true for the infinite cases.

2.1 Lattice theory

For the looking in detail at the relations between
class-oriented concept lattices and matroids, lattices
especially geometric lattices will play an important role.
Thus, it starts by reviewing those aspects of lattice theory.
All the knowledge about lattice theory are referred to [6],
[17].
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If two latticesL1 andL2 are isomorphic, then it will be
denoted byL1

∼= L2 in this paper.

Definition 2.1.1.A finite latticeL is semimodular if for all
x,y ∈ L : x andy coverx∧y ⇒ x∨y coversx andy. A finite
lattice isgeometric if it is semimodular and every point is
the join of atoms.

Lemma 2.1.1.Semimodular lattices are characterized by:
(1) L is semimodular if and only if it satisfies the
Jordan-Dedekind chain condition and its height function
h satisfies for allx,y,
(2) h(x)+h(y)≥ h(x∧ y)+h(x∨ y).

2.2 Class-oriented formal concept lattice

In this paper, all the knowledge about FCA come from
[16]; that about class-oriented concept lattices come from
[1,5]. In this section, we review some basic definitions of
FCA and class-oriented concept lattices to be used in this
paper.

Definition 2.2.1.An object-attribute data table describing
which objects have which attributes can be identified with
a triplet(U,V, I) whereU is a non-empty set (of objects),
V is a non-empty set (of attributes), andI ⊆ U ×V is an
(object-attribute) relation. In FCA,(U,V, I) is called a
formal context.

Objects and attributes correspond to table rows and
columns, respectively, and(x,y) ∈ I indicates that objectx
has attributey (table entry corresponding to rowx and
columny contains×; if (x,y) /∈ I the table entry contains
blank symbol). Based on the binary relationI, we can
associate a set of attributes with an object. An object
x ∈ U has the set of attributes:xI = {y ∈ V |xIy} ⊆ V .
Similarly, an attributey is possessed by the set of objects:
Iy = {x ∈V |xIy} ⊆U .

For eachA ⊆U andB ⊆V , it denotes by
A∗ = {y ∈ V | for each x ∈ A : (x,y) ∈ I} and

B∗ = {x ∈U | for eachy ∈ B : (x,y) ∈ I}.

By the above definition, it has
A∗ = {y ∈V |A ⊆ Iy}=

⋂

x∈A
xI and

B∗ = {x ∈U |B ⊆ xI}=
⋂

y∈B
Iy.

Definition 2.2.2. Two objects may be viewed as being
equivalent if they have the same description. An
equivalence relation can be defined by for
x,x′ ∈U,x ≡U x′ ⇔ xI = x′I.

For an objectx ∈ U , the set of objects that are
equivalent tox is called anequivalence class of x and
defined by≡U x = {x′ ∈ U |x′ ≡U x} = {x′ ∈ U |x ≡U
x′}= x ≡U= [x].

The family of all equivalence classes is commonly
known as the quotient set and is denoted by
U/ ≡U= {[x]|x ∈ U}. It defines a partition of the

universe, namely, a family of pairwise disjoint subsets
whose union is the universe. A new family of subsets,
denoted byσ(U/ ≡U ), can be obtained fromU/ ≡U by
adding the empty set /0 and making it closed under set
union, which is a subsystem of 2U and the basis is
U/≡U . The following properties hold:

(E1) A1,A2 ∈ σ(U/≡U )⇒ A1∩A2 ∈ σ(U/≡U );
(E2) A1,A2 ∈ σ(U/≡U )⇒ A1∪A2 ∈ σ(U/≡U ).

Definition 2.2.3.A pair (A,B),A ⊆ U,B ⊆ V , is called a
class-oriented concept if A ∈ σ(U/≡U ) andB = A∗. The
set of objectsA is called theextension of the concept
(A,B), and the set of attributesB is called theintension.

For two class-oriented concepts(A1,B1) and(A2,B2),
we say that

(A1,B1)≤ (A2,B2) if and only if A1 ⊆ A2. . . . . . (F1)
The family of all class-oriented concepts forms a

complete lattice calledclass-oriented concept lattice
which is denoted byB(U/ ≡U ) in this paper. It gives a
hierarchical structure of the elements inσ(U/ ≡U ) and
their corresponding attributes. The meet∧ and the join∨
are defined by
(A1,B1) ∧ (A2,B2) = ((A1 ∩ A2),(A1 ∩ A2)

∗),(A1,B1) ∨
(A2,B2) = ((A1∪A2),(B1∩B2)) . . . . . . . . . . . .(F2)

2.3 Matroid theory

All the knowledge about matroid theory come from [6,7].
We only write out some of them.

Definition 2.3.1. A matroid M is a finite setS and a
collection I of subsets ofS (called independent sets)
such that (i1)-(i3) are satisfied.

(i1) /0∈ I .
(i2) If X ∈ I andY ⊆ X , thenY ∈ I .
(i3) If X ,Y are members ofI with |X | = |Y |+ 1,

there existsx ∈ X \Y such thatY ∪ x ∈ I .

By the closure axioms (see [6], p.8,Theorem 4), a
matroid M is uniquely determined by the familyF of
closed sets ofM. Thus, in this paper, we also write a
matroid(S,I ) as(S,F ).

Lemma 2.3.1.Let M = (S,F ) be a matroid. ThenL(M) =
(F ,⊆) is a geometric lattice.

The correspondence between a geometric latticeL
and the matroidM(L) on the set of atoms ofL is a
bijection between the set of finite geometric lattices and
the set of simple matroids. (The definition ofM(L) is
referred to [6], p.52).

Based on the correspondence betweenL and M(L),
for convenient, in what follows, we only use simple
matroids to discuss, and besides, a simple matroid is often
simply to be said a matroid.
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3 Relations and applications

This section will look in detail at the relationships
between class-oriented concept lattices and matroids.
Using these relationships, we earn that for a latticeL, it
does not always pledge to have a formal context
(UL,VL, IL) satisfying L ∼= B(UL/ ≡UL). In addition,
under isomorphism, adopting matroid theory, we get the
necessary and sufficient conditions for a sub-context to be
compatible.

We begin this section to discuss the properties of class-
oriented concept lattices.
Lemma 3.1.The following statements aboutB(U/ ≡U )
are correct.

(1) B(U/≡U ) is a geometric lattice with{[xi] | [xi] 6=

[x j],(i 6= j; i, j = 1,2, . . . ,k),
k⋃

i=1
[xi] = U} as the family of

atoms.
(2) (A,B) ∈ B(U/≡U ) if and only if A =

⋃

x j∈A
[x j] and

B =
⋂

x j∈A
x jI.

Proof. It is straightforward from (E1),(E2), (F1), (F2) and
the definition ofB(U/≡U ).

Corollary 3.1. Let B(U/ ≡U ) be given. Up to
isomorphism, there is a unique matroidM = (S,F )
satisfying(F ,⊆) ∼= B(U/ ≡U ). We denote this matroid
asM(B(U)).
Proof. Routine verification according to Lemma 3.1(1),
the definition ofL(M) and the correspondence between
geometric lattices and simple matroids.

By the correspondence between geometric lattices and
matroids, it follows thatM(B(U)) is defined on the set of
atoms ofB(U/≡U ).

The following example shows that for a given matroid
M = (S,F ), it does not pledge the existence of a formal
context(U,V, I) satisfying(F ,⊆)∼= B(U/≡U ).
Example 3.1. Let E = {x1,x2,x3} and
I = { /0,{xi},(i = 1,2,3);{xs,xt},(s 6= t;s, t = 1,2,3)}.
ThenM = (E,I ) is a simple matroid withI as its set of
independent sets. LetF be the family of closed sets of
M. Then the diagram of(F ,⊆) is shown in Figure 1.
Evidently,(F ,⊆) is geometric.

If we suppose that there is a formal context(U0,V0, I0)
satisfyingB(U0/ ≡U0)

∼= (F ,⊆). Then it leads to the set
of atoms ofB(U0/≡U0) to be{[xi]|[xi] = {xi}, i = 1,2,3}
under isomorphism. By the knowledge in Subsection 2.2,
up to isomorphism, we obtain

[xi]∪ [x j] = {xi,x j} ∈ B(U0/≡U0),(i 6= j; i, j = 1,2,3),

and meanwhile,

{x1,x2,x3}= [x1]∪ [x2]∪ [x3] ∈ B(U0/≡U0).

Evidently, it has [x1] ∪ [x2] ∪ [x3] 6= [xi] ∪ [x j] for any
i, j ∈ {1,2,3}. This brings the height ofB(U0/ ≡U0) to
be 3 which is a contradiction to the construction of
(F ,⊆) because the height of(F ,⊆) is 2.

{ /0}

Figure 1 Diagram ofL(M) of the matroidM from Example 3.1
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Example 3.1 compels us to seek that under what
conditions, a given matroidM = (S,F ) could bring about
the existence of a class-oriented concept lattice
B(U/≡U ) satisfyingB(U/≡U )∼= (F ,⊆).

Lemma 3.2.Let M = (S,F ) be a matroid withσM as its
closure operator andS = {x1, . . . ,xk}. If M satisfies the
following conditions,

(M1) σM(σM(xi1)∪ . . .∪σM(xit )) = σM(xi1)∪ . . .∪
σM(xit ) where{xi1, . . . ,xit} ⊆ S;

(M2) h(σM(xi1 ∪ . . . ∪ xit )) = t for t = 1,2, . . . ,k
whereh is the height function of(F ,⊆),
then there exists a class-oriented concept lattice
B(U/≡U ) satisfyingB(U/≡U )∼= (F ,⊆).

Proof. In light of knowledge of matroid theory, for any
x,y ∈ S, it has σM(σM(x) ∪ σM(y)) = σM(x ∪ y) ⊇
σM(x)∪ σM(y). By the definition of simple matroid, for
anyx ∈ S, the rank ofσM(x) is 1, that is, the set of atoms
(F ,⊆) is {σM(x)|x ∈ S}. If σM(x) 6= {x} for somex ∈ S,
no matter to supposeσM(x) = {x,y1,y2, . . . ,yn−1} and
n ≥ 2. It hints σM(x) = σM(σM(x)) =
σM(σM(x∪ y1∪ . . .∪ yn−1))⊆ S andh(σM(x)) = 1.
But by (M2), h(σM({x,y1, . . . ,yn−1})) = h(σM(x ∪ y1∪
. . . ∪ yn−1)) = n 6= 1, a contradiction. Thus, it follows
S = {σM(x)|x ∈ S}. Furthermore,σM(xi1 ∪ . . . ∪ xit ) =
σM(σM(xi1 ∪ . . . ∪ xit )) = σM(xi1) ∪ . . . ∪ σM(xit ) =
{xi1, . . . ,xit} holds according to the closure axioms of
matroids and (M2). This impliesσM(X) = X ∈ F for any
X ⊆ S. Thus, 2S ⊆ F holds. However,F ⊆ 2S is evident
because the set of atoms ofF is S. Therefore, 2S = F is
followed.

Let (U,V, I) be shown in Table 1. From the table, we
getU =V = S = {x1, . . . ,xk} and

[xi] = {xi},xiI = {xi},(i = 1, . . . ,k).
Hence, it is easy to proveB(U/≡U )∼= (2U ,⊆).

Summing up the above,(F ,⊆)∼= B(U/≡U ).
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Table 1. A formal context relative to the matroid from
Lemma 3.2

y1 y2 ... yi ... yk
x1 ×
x2 ×
...

...
...

...
...

...
...

xi ×
...

...
...

...
...

...
...

xk ×

whereyi = xi,(i = 1,2, . . . ,k).

We easily see that a free matroidM = (S,F ), i.e.
I = F = 2S, satisfying condition (M1) must satisfy
(M2). A free matroid is trivial. Here, we pay attention to
that matroids which are not free. We find out that Lemma
3.2 is satisfied by much more matroids not only free
matroids.

In fact, if M = (S,FM) is a matroid satisfying (M1)
and (M2), then Lemma 3.2 hints(FM ,⊆) ∼= B(UM/ ≡UM )
for some formal context(UM,VM, IM). Corollary 3.1
points out that up to isomorphism, there exists a matroid
M(B(UM)) = (SUM ,FUM ) satisfying(FUM ,⊆)∼= B(UM/≡UM )

Hence (FM,⊆) ∼= (FUM ,⊆) is right. That is to say,
M(B(UM)) is isomorphic toM.

Now we prove the truth of the converse part of Lemma
3.2.

Lemma 3.3.Let M = (S,F ) be a matroid and there is a
class-oriented concept latticeB(U/≡U ) satisfying(F ,⊆
)∼= B(U/≡U ). ThenM satisfies (M1) and (M2).

Proof. In view of Lemma 3.1, (E1), (E2) and (F2), it is not
difficult to earnB(U/ ≡U ) ∼= (2E ,⊆) whereE is the set
of atoms inB(U/ ≡U ). Thus, this result withB(U/ ≡U
) ∼= (F ,⊆) taken together follows thatM satisfies (M1)
and (M2).

Thinking of Lemma 3.2 and Lemma 3.3 with
Subsection 2.3 together, we get that up to isomorphism,
every matroid which satisfies (M1) and (M2) corresponds
to a unique class-oriented concept lattice, and vice versa.
Thus, up to isomorphism: (1) for a matroidM satisfying
(M1) and (M2), we denote the correspondent
class-oriented concept lattice asB(M); (2) for a given
class-oriented concept latticeB(U/ ≡U ), we call the
matroid corresponding to it asCO-matroid and denoted it
by M(B(U)). (Actually, a CO-matroidM(B(U)) is
already defined in Corollary 3.1. Here is only to repeat it.)

The importance of CO-matroids lies in the following
theorem.

Theorem 3.1. The correspondence between a
class-oriented concept latticeB(U/ ≡U ) and the
CO-matroidM(B(U)) on the set of atoms ofB(U/ ≡U )
is a bijection between the set of class-oriented concept
lattices and the set of matroids.

Subsection 2.2 shows us that each class-oriented
concept lattice is a complete lattice. How about the

converse part? In other words, for a complete latticeL,
shall we find out a class-oriented concept lattice
B(U/ ≡U ) such thatB(U/ ≡U ) is isomorphic toL? If
we want to answer this question with the definitions, it
will not be easy though no answer now according to my
knowledge. But if we use Theorem 3.1, we will see that
the proof is quite easy. The reasons are the following:

for a complete latticeL, it will not pledge that it is
geometric. So, owing to the corresponding between
geometric lattices and matroids, it could not pledge the
existence of a CO-matroidM = (S,F ) satisfying
(F ,⊆) ∼= L. Thus, it will not pledge the existence a
class-oriented concept latticeB(U/ ≡U ) satisfying
B(U/≡U )∼= L in virtue of Theorem 3.1 and the above.

This consequence implies that there is not a “basic
theorem on class-oriented concept lattices” as the one on
formal concept lattices shown in [16], p.20. It also
appears some difference between class-oriented concept
lattices and formal concept lattices.

In the following, for CO-matroids, we will consider its
applications in the study of class-oriented concept lattices
for sub-contexts. We need the following lemma.

Lemma 3.4.Let M = (S,F ) be a CO-matroid andT ⊆ S.
Then the restrictionM|T of M to T is a CO-matroid.

Proof. We only need to check thatM|T satisfies (M1) and
(M2) respectively according to Lemma 3.2, Theorem 3.1
and [6], p.61,Theorem 1.

Let σM,σM|T be the closure operator ofM,M|T
respectively. Let T = {x1, . . . ,xt} ⊆ S. Then it has
σM|T (X) = σM(X) ∩ T for any X ⊆ T in virtue of
[6],p.61,(5).

Let {xi1, . . . ,xip} ⊆ T. Then σM|T (σM|T (xi1) ∪ . . . ∪
σM|T (xip)) = σM|T (xi1 ∪ . . . ∪ xip) =
σM(xi1 ∪ . . .∪ xip)∩ T = (σM(xi1)∪ . . .∪σM(xip))∩ T =
(σM(xi1) ∩ T ) ∪ . . . ∪ (σM(xip) ∩ T ) =
σM|T (xi1)∪ . . .∪σM|T (xip). Thus,M|T satisfies (M1).

Since M is a CO-matroid, reviewing the proof of
Lemma 3.2 and Lemma 3.3, we see thatA ∈ F if and
only if there are atoms{aA j : j = 1,2, . . . ,n} in (F ,⊆)

satisfyingA =
n⋃

j=1
aA j . (M2) hintshM(A) = n wherehM is

the height function of(F ,⊆). In addition, the simple
property ofM pledges{x} to be an atom in(F ,⊆) for
eachx ∈ S. Hence{xi j} is an atom in(F ,⊆) for each
xi j ∈ T,( j = 1, . . . , p) and hM(σM(xi1 ∪ . . .∪ xip)) = p is
true. Furthermore,{xi j} is an atom inM|T also. It follows
hM|T (σM|T (xi j)) = 1. We could using induction onp with
σM|T (xi1 ∪ . . . ∪ xit ) = σM(xi1 ∪ . . . ∪ xit ) ∩ T for
t = 1, . . . , p, and finally, we obtain
hM|T (σM|T (xi1 ∪ . . .∪ xip)) = p. ThusM|T satisfies (M2).

If one wishes to examine parts of a rather complex
class-oriented concept system, it seems reasonable to
exclude some objects and/or attributes from the
examination. We shall describe the effects of this
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procedure on the class-oriented concept lattice. The
class-oriented concept lattice of a sub-context always has
an order-embedding into that of the original context.
Much more information can be obtained when dealing
with compatible sub-contexts, which is introduced later in
this section.

If (U,V, I) is a formal context and ifH ⊆ U and
N ⊆ V , then(H,N, I ∩ (H ×N)) is called asub-context of
(U,V, I) (cf.[16], p.97,Definition 44).

We open the following of this section with the question
of how the concept system of a sub-context is related to
that of (U,V, I) and how to use CO-matroids to deal with
this question.

Example 3.2.Let a formal context(U,V, I) be shown in
Table 2 and U = {x1,x2,x3},V = {y1,y2,y3}. Then
[x j] = {x j},( j = 1,2,3). For a setN = {y1,y2} ⊂ V , we
consider the sub-context(U,N, I ∩ (U × N)). In this
sub-context,[x1] = {x1,x3} and[x2] = {x2}. Every extent
of (U,V, I) is not pledged to be an extent of
(U,N, I ∩ (U ×N)).

Table 2. Formal context from Example 3.2

y1 y2 y3
x1 × ×
x2 × ×
x3 ×

This example shows that the class-oriented concepts
of a sub-context can not simply be derived from those of
(U,V, I) by restricting their extent and intent to a
sub-context. This can be done only for compatible
sub-contexts, which will be examined next.

A sub-context (H,N, I ∩ (H × N)) is called
compatible if the pair (A ∩ H,B ∩ N) is a class-oriented
concept of the sub-context for every class-oriented
concept(A,B) ∈ B(U/≡U ).

Restricting the concepts to a compatible sub-context
yields a map between the class-oriented concept lattices,
which necessarily has to be structure-preserving, as the
following shows:

Theorem 3.2. A sub-context (H,N, I ∩ (H × N)) of
(U,V, I) is compatible if and only if
ΠH,N(A,B) := (A∩H,B∩N) for all (A,B) ∈ B(U/ ≡U )
defines a surjective complete homomorphism
ΠH,N : B(U/ ≡U ) → B(H/ ≡H).(The definition of
complete lattice homorphism or complete homorphism is
cf.[16], p.7,Definition 13.)

Proof. (⇐) SinceΠH,N is surjective, it follows(X ,Y ) =
(A∩H,B∩N)∈B(H/≡H) for each(A,B)∈B(U/≡U ).
Hence,(H,N, I ∩ (H ×N)) of (U,V, I) is compatible.

(⇒) The first fact we need to prove is thatΠH,N must
necessarily be infimum-preserving and supremum
-preserving for(X j,Yj) ∈ B(H/ ≡H), ( j = 1,2), where
(X1,Y1) and (X2,Y2) satisfy that it exists(A j,B j) ∈
B(U/ ≡U ) satisfying (X j,Yj) = (A j ∩ H,B j ∩ N),
( j = 1,2).

In view of (F2), it gets:
(X1,Y1) ∨ (X2,Y2) = (X1 ∪ X2,Y1 ∩ Y2) =

((A1 ∩ H) ∪ (A2 ∪ H),(B1 ∩ N) ∩ (B2 ∩ N)) =
((A1 ∪ A2) ∩ H,(B1 ∩ B2) ∩ N), and besides,
ΠH,N((A1,B1) ∨ (A2,B2)) = ΠH,N(A1 ∪ A2,B1 ∩ B2) =
((A1 ∪ A2) ∩ H,(B1 ∩ B2) ∩ N). Hence,
ΠH,N((A1,B1) ∨ (A2,B2)) = (X1,Y1) ∨ (X2,Y2) =
ΠH,N(A1,B1)∨ΠH,N(A2,B2);

(X1,Y1)∧ (X2,Y2) = (A1 ∩H,B1 ∩N)∧ (A2 ∩H,B2 ∩
N) = (A1 ∩A2 ∩H,

⋂

x∈A1∩A2∩H
xI ∩ (H ×N)); meanwhile,

ΠH,N((A1,B1)∧ (A2,B2)) = ΠH,N(A1∩A2,(A1∩A2)
∗)

= ΠH,N(A1∩A2,
⋂

x∈A1∩A2

xI)

= (A1∩A2∩H,(
⋂

x∈A1∩A2

xI)∩N) ∈ B(H/≡H).

This follows (
⋂

x∈A1∩A2

xI) ∩ N = (A1 ∩ A2 ∩ H)∗ =

⋂

x∈A1∩A2∩H
xI ∩ (H ×N). Additionally,

ΠH,N(A1,B1)∧ΠH,N(A2,B2) = (A1 ∩H,B1 ∩N)∧ (A2 ∩
H,B2∩N) = (A1∩A2∩H,(A1∩A2∩H)∗) ∈ B(H/≡H)
where (A1 ∩ A2 ∩ H)∗ =

⋂

x∈A1∩A2∩H
xI ∩ (H × N).

Therefore,ΠH,N((A1,B1)∧ (A2,B2))
= (A1∩A2∩H,

⋂

x∈A1∩A2∩H
xI ∩ (H ×N))

= ΠH,N(A1,B1)∧ΠH,N(A2,B2).
The second fact we need to prove is the surjective

property ofΠH,N .
Let h ∈ H, [h]U = {x ∈ U |x ≡U h} and

[h]H = {x ∈ H|x ≡H h}. Then it has
([h]U ,hI) ∈ B(U/≡U )

and ([h]H ,hI ∩ (H × N)) ∈ B(H/ ≡H), and further,
ΠH,N([h]U ,hI) = ([h]U ∩H,hI ∩N) ∈ B(H/≡H). Since

[h]U ∩H = {x ∈ H|hI = xI}
and [h]H = {x ∈ H|xI ∩ (H × N) = hI ∩ (H × N)}. In
addition, ([h]U ∩ H,hI ∩ N) ∈ B(H/ ≡H) hints
[h]U ∩ H =

⋃

a∈[h]U∩H
[a]H in view of Lemma 3.1. It is

obviouslyh ∈ [h]U ∩H. This leads to[h]H ⊆ [h]U ∩H. Let
a ∈ ([h]U ∩ H) \ [h]H . Then [a]H ⊆ [h]U ∩ H is true, i.e.
a ∈ H andaI = hI. FromaI = hI and(H,N, I ∩ (H ×N))
is a sub-context of(U,V, I), we gets

aI ∩ (H ×N) = hI ∩ (H ×N).
Furthermore, it followsa ∈ [h]H , a contradiction to
a ∈ ([h]U ∩ H) \ [h]H . This means[h]U ∩ H = [h]H . In
other words, inB(H/≡H), ([h]H ,hI ∩ (H ×N)) could be
described as([h]U ∩H,hI ∩N) = ΠH,N([h]U ,hI).

By Lemma 3.1, for each(X ,Y ) ∈ B(H/≡H)\ ( /0,N),
it should haveX =

⋃

x∈X
[x]H and Y =

⋂

x∈X
xI. From the

above of this part, it brings aboutΠH,N([x]U ,xI) =
([x]U ∩ H,xI ∩ N) = ([x]H ,xI ∩ (H × N)) ∈ B(H/ ≡H).
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Considering this result with the result in the proof of first
fact above, it follows thatΠH,N(

⋃

x∈X
[x]U ,

⋂

x∈X
xI) =

ΠH,N(
∨

x∈X ([x]U ,xI)) =
∨

x∈X
(ΠH,N([x]U ,xI)) =

∨

x∈X
([x]H ,xI ∩ (H × N)) = (

⋃

x∈X
[x]H ,

⋂

x∈X
xI) = (X ,X∗) =

(X ,Y ). That is to say, each element(X ,Y ) ∈ B(H/ ≡H)
\( /0,N) can be described as the form
ΠH,N(A,B) = (A ∩ H,B ∩ N) for (A,B) =
(
⋃

x∈X
[x]U ,

⋂

x∈X
xI) ∈ B(U/≡U ). Additionally,

( /0,U) ∈ B(U/≡U ) follows ΠH,N( /0,U) = ( /0∩H,U ∩N)
= ( /0,N) ∈ B(H/≡H). ThereforeΠH,N is surjective.

The third fact we need to prove is thatΠH,N is
infimum-preserving and supremum-preserving. This fact
is easily proved by Lemma 3.1 and the above two facts.

Therefore,ΠH,N is a complete homomorphism.

Taking Theorem 3.1 and Theorem 3.2 together, we
can describe compatible property of a sub-context using
matroid theory as follows.
Theorem 3.3. A sub-context(H,N, I ∩ (H × N)) of

(U,V, I) is compatible if and only if up to isomorphism,
M(B(H)) = M(B(U))|SH whereSH is the set of atoms
in B(H/≡H).
Proof. Let SU be the set of atoms inB(U/ ≡U ). By

Theorem 3.1, Lemma 3.2, Lemma 3.3 and Lemma 3.4, up
to isomorphism, it earns M(B(U)) = (SU ,FU )
= (SU ,2SU ) and M(B(H)) = (SH ,FH) = (SU ,2SH ),
where FU ,FH is the family of closed sets of
M(B(U)),M(B(H)) respectively becauseSU ,SH is the
set of atoms in(FU ,⊆) and (FH ,⊆) respectively up to
isomorphism. By [6], p.61, it gets
M(B(U))|SH = (SH ,F ), where F = {X ∩ SH |
X ∈ FU}= {X ∩SH |X ∈ 2SU }.

Because (H,N, I ∩ (H × N)) is a sub-context of
(U,V, I). Thus, by Theorem 3.2, up to isomorphism, the
sub-context(H,N, I ∩ (H ×N)) of (U,V, I) is compatible
if and only if a class-oriented concept(C,D) ∈
B(H/ ≡H) satisfies that there is(A,B) ∈ B(U/ ≡U )
satisfying (C,D) = (A,B) ∩ SH . In other words, the
sub-context(H,N, I ∩ (H ×N)) of (U,V, I) is compatible
if and only if (C,D) ∈ FH ⇔ (C,D) = (A,B) ∩ SH for
some(A,B) ∈ FU .

Therefore, equivalently to say, the sub-context
(H,N, I ∩ (H ×N)) of (U,V, I) is compatible if and only
M(B(U))|SH = M(B(H)) holds under isomorphism.

4 Conclusions and future research

We present conditions for FCA for the output
class-oriented concept lattices up to isomorphism. The
most importance in this paper is that we provide the
correspondent relations between matroids and
class-oriented concept lattices. This is the foundation for
the application of matroid theory to class-oriented

concept lattice theory, and vice versa. Theorem 3.3.
implies that matroid theory could be used to deal with
sub-contexts, and further, the other properties of
class-oriented concept lattices. We believe that matroid
theory would be used to discuss class-oriented concept
lattices in decomposition parts and factors, and so on.
Because of Theorem 3.1 and the properties of
sub-matroids, we also assert that many algorithms in
matroid theory will be used to find out the class-oriented
concepts and the class-oriented concept lattices for formal
contexts. These are our future research.
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[3] R. Bělohĺavek, V. Skleńǎr, J. Zacpal, Concept lattices

constrained by equivalence relations, In: V.Anásel,
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