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Abstract: In this study, motivated by the importance of the Weibull distribution and its widespread use in modeling real-life 
data, we propose a new distribution called the generalized extreme Weibull distribution (GEW), based on the maximum of 
multiple Weibull distributions. The statistical properties of the distribution were examined, and expressions for these 
measures were obtained. Furthermore, the distribution parameters were estimated using different estimation methods. The 
accuracy of these methods is also highlighted. Monte Carlo simulation is employed to validate the results. To demonstrate 
the practical relevance and effectiveness of our novel distribution in modeling empirical phenomena, the results are applied 
to two types of cancer datasets. The findings provide strong evidence of the GEW distribution's efficiency as a flexible and 
powerful tool for modeling on-hand data. 

Keywords: Extreme Weibull Distribution, Estimations Methods, Monte Carlo Simulation, Survival Cancer Model. 

1. Introduction 

Data analysis plays a crucial role in various fields, including management science, reliability analysis, economics, and health 
sciences. The choice of an appropriate model or distribution ensures that the analysis can capture the key features of the data, 
such as skewness, variability, tail behavior and hazard rates. Many statistical distributions have been extensively applied to 
real-life situations, such as environmental studies for modeling wind speed and energy [1], optimization in inventory systems 
[2, 3,4,5,6], and biomedical research [7,8]. The analysis of survival data is no exception, as it has wide applicability across 
various domains, particularly in medical research [9,10]. This type of study requires careful statistical consideration and 
multilevel adjustments to establish a model that provides the best fit to the data [11,12]. Therefore, the proper selection of 
models and distributions is central to producing valid, generalizable, and practically useful results for data analysis.  However, 
traditional distributions may exhibit features such as asymmetry, heavy tails, multimodality, and complex dependence 
structures, which limit their ability to accurately represent real-world problems. This has driven researchers to explore novel 
and more flexible distributions that can better capture the data characteristics and underlying patterns. The functions of 
random variables provide one approach to developing new distributions, often involving additional parameters that allow the 
distribution to relax its assumptions and more effectively represent the behavior of the data. 

Prior studies have recognized mixtures of continuous distributions as a method for developing new distributions [13,14], and 
introduced new distributions based on the extremes of several existing ones, providing a practical tool for modeling stochastic 
inventory problems with random properties. Other researchers have proposed weighted sums, products, and ratios of 
distributions as approaches to create or extend new distributions [15,16]. Additionally, introducing extra parameters can 
refine or relax existing distributions, allowing them to better adapt to data characteristics [17,18]. 

This study focuses on the Weibull distribution [19], a widely recognized and extensively used model for mortality and failure 
data, owing to its flexibility in describing different failure rates. Despite its popularity. The original Weibull distribution, 
with its two parameters, is limited to modeling monotonically increasing or decreasing hazard function. Consequently, its 
application to biomedical data often requires extension [9,12,17,18,20]. To alleviate these challenges, we introduce the 
Generalized Extreme Weibull (GEW) distribution, which is derived as the maximum of several non- identical Weibull 
distributions. By incorporating additional parameters, the GEW enhances flexibility, enabling the model to capture non-
monotonic hazard shapes and represent a wider variety of data patterns. 

To highlight the significance and properties of our distribution, a comparison is established between the proposed Generalized 
Extreme Weibull (GEW) distribution and several existing generalizations of the Weibull distribution, including the Weibull 
[19], Beta Weibull (BW) [26], Kumaraswamy Weibull (KumW) [27], Alpha Power Weibull (APW) [29], Alpha Power 
Kumaraswamy Weibull (APKumW) [9], Exponentiated Generalized Weibull (EGW) [25], and Exponentiated Kumaraswamy 
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Weibull (EKumW) [28] distributions. Table 1 provides a quantitative comparison among the more prevalent Weibull 
generalizations, detailing the number of parameters that reflects the flexibility of the distribution and their key features, see 
Table 1.  

Table 1: Comparative Analysis of Weibull Generalizations 
Distribution Ref No of  

Parameters 
Key Features  

Weibull [19] 2 Baseline model, models monotone hazard rates only  
APW [29] 3 Flexible in modeling skewness, better fit for non-monotonic data than standard 

Weibull. 
EGW [25] 4  Capable of modeling unimodal and bathtub-shaped hazard rates  
BW [26] 4 Classic generalization; widely used for heavy-tailed data and complex hazard 

shapes. 
KumW [27] 4 Highly flexible; handles bounded unit interval properties within a Weibull 

framework. 
EKumW [28] 5 Extended flexibility for extreme values; captures subtle tail behaviors.  
APKumW [9] 5 Superior flexibility and the capability to model non-monotone hazard rates, 

including bathtub and unimodal shapes. 
 GEW New 

Model 
flexible Unimodal shape achieves high flexibility with fewer parameters, can adopt 

more parameters to better fit data when needed. 

This article extends prior studies by presenting detailed properties of the GEW distribution, exploring advanced estimation 
methods, and demonstrating its relevance in several relevant scenarios. The results are expected to benefit both researchers 
and practitioners in survival analysis, extreme value theory, and related fields. 

This article provides a structured overview in Section 1, along with supporting literature on the Generalized Extended Weibull 
(GEW) distribution that reinforces this research. In Section 2, expressions for the Cumulative Distribution Function (CDF) 
and Probability Density Function (PDF) are developed. Moreover, in Section 3, the fundamental statistics associated with 
the GEW distribution and order statistics are studied. In Section 4, four methods for estimating GEW distribution parameters: 
maximum likelihood estimation (MLE), least squares estimation (LSE), weighted least squares estimation (WLSE), and 
Cramér–von Mises estimation (CVME) are discussed. In Section 5, a comprehensive simulation study is conducted, and the 
parameter estimation methodologies are evaluated based on extensive numerical experiments to assess their accuracy and 
performance. Based on these results, Section 6 uses Monte Carlo Simulations to assess the statistical validity and robustness 
of the theoretical findings regarding the GEW Distribution. Finally, Section 7 illustrates real-world applications of the GEW 
distribution using two actual cancer survival datasets. While. Section 8 summarizes the overall contributions of this study 
and prospective future work. 

2. Generalized Extreme Weibull Distribution 

The cumulative probability of the Weibull distribution [19], 𝑋~𝑊𝑒𝑖𝑏(𝛼, 𝑘), with a scale parameter α and shape parameter k 
is expressed as 

𝐹(𝑥) = 1 − exp 4−5!
"
6
#
7 , 𝑥 ≥ 0                                   (1) 

Differentiating (1), the probability density function(pdf) of the Weibull distribution becomes: 

𝑓(𝑥) = #
"
5!
"
6
#$%

exp 4−5!
"
6
#
7 , 𝑥 ≥ 0, 𝑘, 𝛼 > 0                                              (2) 

where k follows the distribution's shape and α is the scale parameter. 

We define the Generalized Extreme Weibull (GEW) distribution as a new family of distribution that arises as the maximum 
of independent Weibull random variables with distinct scale and shape parameters. Define 𝑆 = {𝑋%, 𝑋&, … , 𝑋'} as a set of 
mutually independent random variables that follow a Weibull distribution parameterized by scale αi  and shape ki. The 
cumulative distribution (CDF) of 𝑋( is expressed as 

𝐹((𝑡) = 𝑃(𝑋( ≤ 𝑡) = 1 − 𝑒𝑥𝑝 4−5 )
"!
6
#!
7.                   (3) 

Describe the Generalized Extreme Weibull (GEW) random variable as 𝑌 = Max({𝑋%, 𝑋&, … , 𝑋').	The CDF of Y is 

𝐹*(𝑡) = 𝑃(𝑌 ≤ 𝑡) = 𝑃(𝑚𝑎𝑥(𝑋%, 𝑋&, … , 𝑋') ≤ 𝑡) = 𝑃(𝑋% ≤ 𝑡, 𝑋& ≤ 𝑡,… , 𝑋' ≤ 𝑡).	 
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Based on the assumption that the random variables are independent, we have  

𝐹*(𝑡) = 𝑃(𝑋% ≤ 𝑡)𝑃(𝑋& ≤ 𝑡)…𝑃(𝑋' ≤ 𝑡) = ∏ 𝐹((𝑡).'
(+%                                             (4) 

Using (3), the GEW distribution’s cumulative function becomes: 

𝐹*(𝑡) = 𝑃(Y ≤ 𝑡) = ∏ N1 − 𝑒𝑥𝑝 4−5 )
"!
6
#!
7O'

(+% .                              (5)      

Using the inclusion-exclusion formula [21], the product term in (5) is expanded as follows:       

∏ N1 − 𝑒𝑥𝑝 4−5 )
"!
6
#!
7O'

(+% = ∑ (−1)# N∑ expN−∑ 4 )
"!"
7
#!"#

,+% O%-(#.⋯.($-' O'
#+0 .                            (6) 

Hence, the CDF becomes: 

𝐹*(𝑡) = ∑ (−1)# N∑ expN−∑ 4 )
"!"
7
#!"#

,+% O%-(#.⋯.($-' O .'
#+0 	                  (7)  

By differentiating equation (5), GEW’s probability density function becomes: 

𝑓*(𝑡) 	= ∑ N
#%
1%
4 )
"%
7
#%$%

𝑒𝑥𝑝 N−4 )
"%
7
#%
O∏ N1 − 𝑒𝑥𝑝 4−5 )

"!
6
#!
7O'

(+%
(23

O .'
3+% 	                                                (8) 

Using the inclusion-exclusion formula [21] again, the product term in (8) is expanded such that: 

∏ N1 − 𝑒𝑥𝑝 4−5 )
"!
6
#!
7O'

(+%
(23

= ∑ (−1)# N∑ expN−∑ N4 )
"!"
7
#!"
O#

,+% O%-(#.⋯.($-'
("23

O .'$%
#+0 	                             (9) 

Hence, the GEW’s probability density function becomes  

𝑓*(𝑡) = ∑ Q
#%
"%
4 )
"%
7
#%$%

𝑒𝑥𝑝 N−4 )
"%
7
#%
OR∑ (−1)# N∑ exp N−∑ N4 )

"!"
7
#!"
O#

,+% O%-(#.⋯.($-'
("23

O .'$%
#+0

'
3+%                    (10) 

The survival and hazard functions are respectively:  

𝑆*(𝑡) = 1 − 𝐹*(𝑡) = 1 − N∑ (−1)# N∑ 𝑒𝑥𝑝 N−∑ N4 )
"!"
7
#!"
O#

,+% O%-(#.⋯.($-' O'
#+0 O,            (11) 	

and  

ℎ*(𝑡) =
4&())

%$7&())
=

∑ 9
$!
'%
: (
'%
;
$%)#

<!=>$: (
'%
;
$%
?@∑ ($%)$A∑ BCD>$∑ >: (

'!"
;
$!"
?$

"*# ?#+!#,⋯,!$+.
!"/%

E.)#
$*0

.
%*#

%$>∑ ($%)$>∑ <!=>$∑ >: (
'!"

;
$!"
?$

"*# ?#+!#,⋯,!$+. ?.
$*0 ?

.            (12) 
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Fig. 1: PDF, CDF and Survival Function of GEW for n=3, different ki, and identical scale parameters. 

In the GEW distribution, the shape parameters ki play a crucial role in controlling the concentration and spread of the 
distribution. As ki increases, the PDF becomes more concentrated around the mode, the CDF has a steeper slope, and the 
survival function decays quickly with less variability and a greater probability of the maximum falling within a narrower 
interval of values (see Figure 1). However, with a small value of ki, there is a flatter distribution’s PDF, gradual CDF, and 
slower-decaying Survival Function (see Figure 1) resulting in a wider interval that is heavily populated with the maximum 
value due to the diffusion of maximum values. 

 
Fig. 2: PDF, CDF & Survival Function of GEW for n=3, different αi and identical shape parameters. 

As the scale parameters αi increased, the PDF of GEW distribution shifted rightward, resulting in wider and more dispersed 
PDFs with larger maximum values. This causes a gradual increase in the flatness of the CDFs, and a less rapid decline in the 
survival functions (see Figure 2). Thus, the maximum values occur at a higher probability of taking extremes with heavier 
tail. However, decreasing the scale parameters will cause the PDFs to be closer in proximity to the origin, have a steeper 
peak, and have lower variance. The CDFs will rise quickly, whereas the survival functions decrease rapidly, indicating a 
shorter duration between maximum values as well as more concentrated clusters of maximum values. The scale parameters 
are therefore critical components for determining where and how widely distributed the GEW is across time. 
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Fig. 3: PDF, CDF & Survival Function of the GEW distributions with different n, identical scale and shape parameters 

As shown in Figure 3, increasing the parameter n shifts the PDF right, and makes it narrower. The CDF becomes steeper, 
and the survival function decays more rapidly. This indicates a higher concentration and lower variability of the maxima (see 
Figure 3). Conversely, when n decreases, the distribution’s PDF becomes flatter and more spread out, the CDF rises more 
gradually, and the survival function decays more slowly (see Figure 3). Overall, $n$ acts as a shape-controlling parameter, 
influencing the concentration of the maximum without changing the individual Weibull scale 

3. Statistical Measures 

This section provides an overview of some important statistical features of the GEW distribution including quantile, mode, 
skewness, kurtosis, rth moments and order statistics.  

3.1 Quantile and Mode 

In this subsection, the quantile function and mode of the GEW distribution are provided. 

Suppose 𝑋(~𝑊𝑒𝑖𝑏(𝛼( , 𝑘() where 𝑋( are mutually independent. Define the Generalized Extreme Weibull (GEW) random 
variable as 𝑌 = Max({𝑋%, 𝑋&, … , 𝑋'). The qth quantile x, is defined such that                     𝑃(𝑋 ≤ 𝑥) = 𝑞 using the cumulative 
function assumed by (5), expressions for quantiles can be found by setting 𝐹(𝑥) = 𝑞. Hence,  

 F*(𝑥) = ∏ N1 − 𝑒𝑥𝑝 4− 5 !
"!
6
#!
7O'

(+%   ] 

= ∑ (−1)# 4∑ exp 4−∑ 45 !
""
6
#"
7#

,+% 7%-(#.⋯.($-' 7'
#+0 = 𝑞.                          (13) 

Since (13) is not linear, the quantile of the GEW distribution is determined numerically. By setting q = 0.5 and solving for 
x, the median can be determined. On the other hand, the mode is the value that maximizes the probability density function. 
Hence, by solving  𝑓*F(𝑥) = 0 one can obtain the modal value.  

3.2 Measures of Skewness and Kurtosis  

The skewness and kurtosis of the GEW distribution are evaluated using its quantile-based definitions. 
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The coefficient of skewness of the GEW distribution is expressed in terms of quartiles as follows: 

𝑆𝑘 = G1HG#$&G2
G1$G#

,                   (14) 

where Q1, Q2   and Q3 denote the first, second, and third quartiles, respectively. As for the kurtosis measure, it is given in 
terms of the octiles. That is,  

𝐾𝑢 = G3$G4HG1$G#
G5$G2

,                  (15) 

where 𝑄( =
(
I
  

3.3 The Moments 

In this section, expressions for the rth moments of the GEW distribution are developed.   

Let Y be a random variable following the Generalized Extreme Weibull (GEW) distribution.  The rth-moments of Y are 
expressed as 

𝜇*(𝑡) = 𝐸(𝑌J) = ∫ 𝑡J𝑓*(𝑡)𝑑𝑡
HK
0 .                             (16) 

Integrating (16) we obtain  

𝜇*(𝑡) = 𝑟 ∫ 𝑡J$%𝑃(𝑌 > 𝑡)𝑑𝑡 = 𝑟 ∫ 𝑡J$% Q1 − N∏ N1 − 𝑒𝑥𝑝 4−5 )
"!
6
#!
7O'

(+% OR𝑑𝑡.HK
0

HK
0                (17) 

Using the expansion of the product in (6), the GEW’s moments are given by  

𝜇*(𝑡) = ∑ (−1)#H% N∑ ∫ 𝑟𝑡J$%	𝑒𝑥𝑝 N−∑ N4 )
"!"
7
#!"
O#

,+% O𝑑𝑡HK
0%-(#.⋯.($-' O'

#+% .                           (18) 

Table 2 summarizes both the estimated quantiles and the main statistical properties of the GEW distribution with parameter 
set 𝑆 = {(𝛼% = 0.5, 𝑘% = 1.2), (𝛼& = 1, 𝑘& = 1.5), (𝛼L = 1.5, 𝑘L = 2)}. The quantiles illustrate how the data are distributed 
across different probability levels, while the accompanying measures (mean, variance, mode, skewness, and kurtosis) 
describe the overall shape, spread, and asymmetry of the distribution. 

By calculating the first two moments, the expression for the variance of the GEW distribution can be obtained. Thus, using 
the moments in (18), we have  

𝐸(𝑋) = ∑ (−1)#H% N∑ ∫ 	𝑒𝑥𝑝 N−∑ N4 )
"!"
7
#!"
O#

,+% O𝑑𝑡HK
0%-(#.⋯.($-' O'

#+% .            (19) 

𝐸(𝑋&) = ∑ (−1)#H% N∑ ∫ 2𝑡	𝑒𝑥𝑝 N−∑ N4 )
"!"
7
#!"
O#

,+% O𝑑𝑡HK
0M%-(#.⋯.($-' O'

#+% .            (20) 

The variance is defined by:  

𝑉𝑎𝑟(𝑋) = 𝐸(𝑋&) − a𝐸(𝑋)b&                 (21) 

Using (19) and (20) in (21) the GEW’s variance is determined.  

To illustrate, Mathematica software is used to provide the estimated quantiles and some statistical properties of the GEW 
distribution. Considering the parameters listed in the set 𝑆 = {(𝛼% = 0.5, 𝑘% = 1.2), (𝛼& = 1, 𝑘& = 1.5), (𝛼L = 1.5, 𝑘L =
2)},  the quantiles, mean, variance, mode, skewness, and kurtosis are computed and depicted in Table 2.  

Table 2: Quantiles and Statistical Properties of GEW for the set S 
Section Metric Value 
Quantiles Q(1/8) 0.8463 

Q(1/4) 1.0785 
Q(3/8) 1.2759 
Q(1/2) 1.4699 
Q(5/8) 1.6800 
Q(3/4) 1.9327 
Q(7/8) 2.2985 
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Statistical Properties Mean 1.5458 
Variance 0.4047 
Mode 1.3032 
Skewness 0.6710 
Kurtosis 3.4979 

3.4 Order Statistics 

In this section, the order statistics of the GEW distribution are investigated.  

Suppose an independent random sample 𝑦%, 𝑦&, … , 𝑦N	where each 𝑦3 follow the GEW distribution. Let 
𝑌%,N, 𝑌&,N, … , 𝑌N,Ndenote the corresponding order statistics. The PDF of the rth order statistics of the GEW’s is expressed as 
follows:           

𝑓*6,8(𝑥) =
N!

(J$%)!(N$J)!
a1 − 𝐹*(𝑥)b

N$Ja𝐹*(𝑥)b
J$%𝑓*(𝑥). where x > 0                                          (22)                          

By substituting the CDF (6) and the PDF (10) in (22), the 𝑟)Qorder statistic of the GEW distribution is obtained as follows 

𝑓*6,8(𝑥) =
N!

(J$%)!(N$J)!
N1 − 4∑ (−1)# 4∑ exp4−∑ 45 !

""
6
#"
7#

,+% 7%-(#.⋯.($-' 7'
#+0 7O

N$J

  

4∑ (−1)# 4∑ exp 4−∑ 45 !
""
6
#"
7#

,+% 7%-(#.⋯.($-' 7'
#+0 7

J$%
∑ Q

#%
"%
4 )
"%
7
#%$%

𝑒𝑥𝑝N−4 )
"%
7
#%
OR'

3+%   

∑ (−1)# N∑ expN−∑ N4 )
"!"
7
#!"
O#

,+% O%-(#.⋯.($-'
("23

O .'$%
#+0              (23) 

By setting r = 1 and N = 1, expression (23) reduces to the PDF of the GEW distribution given in (6). The rth order statistics 
of the GEW distribution for r = 1 and r = N are respectively given by 

𝑓*#,8(𝑥) = 𝑁N1 − 4∑ (−1)# 4∑ exp 4−∑ 45 !
""
6
#"
7#

,+% 7%-(#.⋯.($-' 7'
#+0 7O

N$%

  

∑ Q
#%
"%
4 )
"%
7
#%$%

𝑒𝑥𝑝 N−4 )
"%
7
#%
OR'

3+%  ∑ (−1)# N∑ expN−∑ N4 )
"!"
7
#!"
O#

,+% O%-(#.⋯.($-'
("23

O .'$%
#+0            (24) 

𝑓*8,8(𝑥) = 𝑁 4∑ (−1)# 4∑ exp 4−∑ 45 !
""
6
#"
7#

,+% 7%-(#.⋯.($-' 7'
#+0 7

N$%
∑ Q

#%
"%
4 )
"%
7
#%$%

𝑒𝑥𝑝 N−4 )
"%
7
#%
OR'

3+%   

∑ (−1)# N∑ expN−∑ N4 )
"!"
7
#!"
O#

,+% O%-(#.⋯.($-'
("23

O .'$%
#+0                                                                       (25) 

4. Parameter Estimation  

The parameters of the GEW distribution are estimated using four methods: the maximum likelihood estimators (MLE), the 
least-squares estimators (LSE), the weighted least-squares estimators (WLSE), and the Cramér–von Mises estimators 
(CVME). A sensitivity analysis of the performance of these methods is conducted to examine their effectiveness and the 
influencing factors. 

4.1 MLE 

Let 𝑦%, 𝑦&, … , 𝑦Nbe a random sample of size N following the GEW distribution. Define the vector 𝜃 =
(𝛼%, 𝑘%, 𝛼&, 𝑘&, … , 𝛼', 𝑘')	be the parameters to be estimated. The GEW’s likelihood function, denoted by L(θ), is given as 
follows 

𝐿(𝜃) = ∏ 𝑓*(𝑦J)N
J+% .                                                    (26)

     

Moreover, using (8) in (26), the function of the log-likelihood GEW, represented as l(θ), can be expressed as the following: 
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𝑙(𝜃) = ∑ 𝑙𝑛 N∑ N
#%
1%
4R6
"%
7
#%$%

𝑒𝑥𝑝 N−4R6
"%
7
#%
O∏ N1 − 𝑒𝑥𝑝 4−5R6

"!
6
#!
7O'

(+%
(23

O'
3+% 			O .N

J+%            (27) 

The MLEs [22] 𝛼,i  and 𝑘,j  can be determined by the maximization of (27) through the application of numerical methods. To 
obtain the normal equations of l(θ), the first partial derivatives of l(θ), with respect to αl and kl are determined. Thus,  ∀𝑙 =
1, . . , 𝑛, the following equations are obtained  

S,
S""

= ∑ %
T6

⎝

⎜
⎛
𝐸,,J𝐷,,J p−

#"
""
+

#"U
96
'"
V
$"

""
r −∑ 𝐷3,J𝐸3,J

#"U
96
'"
V
$"
<!=:$U96'"

V
$"
;

""A%$<!=:$U
96
'"
V
$"
;E

'
3+%
32,

⎠

⎟
⎞
,N

J+%                                   (28)  

and  

S,
S#"

= ∑ %
T6
p𝐸,,J𝐷,,J N

%
#"
+ 41 − 5R6

""
6
#"
7 𝑙𝑛 5R6

""
6O −	∑ 𝐷3,J𝐸3,J

U96'"
V
$"
,'U96'"

V<!=:$U96'"
V
$"
;

%$<!=:$U96'"
V
$"
;

'
3+%
32,

r ,N
J+%             (29) 

Where 𝐷3,J =
#%
"%
4R6
"%
7
#%$%

𝑒𝑥𝑝 N−4R6
"%
7
#%
O,  𝐸3,J = ∏ Q1 − 𝑒𝑥𝑝 N−4R6

"%
7
#%
OR ,'

(+%
32(

 and 

 𝑆J = ∑ 𝐷3,J𝐸3,J'
3+% . ∀𝑗 = 1, , , 𝑛. 

The parameter estimates under MLE are computed numerically using the Newton- Raphson method by solving equations 
(28) and (29) after equating to zero. To find the MLE 𝜃w, iterate θ using  

𝜃()H%) = 𝜃()) + 𝐽$%a𝜃())b. ∇𝑙a𝜃())b                 (30)       

Where ∇𝑙(𝜃) is the gradient vector from the partial derivatives (25) and (26) and 𝐽(𝜃) is the negative Hessian of the log-
likelihood. That is, 

𝐽(𝜃) = −4 S2,
SW!SW%

7
(,3

;  i,j =1,..n and S2,
SW!SW%

≈ S,XW!HQ,W%Y$S,XW!$Q,W%Y

&Q
                                   (31) 

Thus, the 95% confidence interval for each parameter 𝜃( is expressed as  

𝐶. 𝐼 = 𝜃w( ± 1.96�𝐽$%(𝜃)                 (32)
                                       

4.2 LSE 

The least square objective of GEW denoted as S(θ), is defined by  

𝑆(𝜃) = ∑ 5𝐹*a𝑦3b −
3

NH%
6
&
.N

3+%                  (33) 

Substituting the CDF (5) in (33), the least square objective of GEW denoted as S(θ), is expressed as 

𝑆(𝜃) = ∑ N∏ N1 − 𝑒𝑥𝑝 4−5
R%
"!
6
#!
7O − 3

NH%
'
(+% O

&
N
3+% .               (34) 

The LSEs [23], 𝛼,i  and 𝑘,j  can be determined by minimizing equation (34). Hence, by numerically solving the nonlinear 
equations (35) and (36) using the Newton-Raphson method, which are set equal to zero, we obtain the parameter estimates 

ST
S""
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""
6
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""
6
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7.		           (35) 

	 ST
S#"
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where  𝐸(,3 = ∏ N1 − 𝑒𝑥𝑝 4−5
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6
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 ∀𝑙 = 1, . . , 𝑛. 

4.3 WLSE 

The weighted least square objective function of GEW is denoted as Sw(θ) and is defined as 

𝑆`(𝜃) = ∑ 𝑤3 5𝐹*a𝑦3b −
3

NH%
6
&
.N

3+%                 (37) 

Substituting (5) in (37), the weighted least square objective function of GEW is denoted as Sw(θ) and is given by the following 

𝑆`(𝜃) = ∑ 𝑤3 N∏ N1 − 𝑒𝑥𝑝 4−5
R%
"!
6
#!
7O − 3

NH%
'
(+% O

&

,N
3+%                                             (38) 

where wj is the weighted least squares fit one gives at each empirical point yj given by  

	𝑤3 =
(NH%)2

3(NH%$3)
.                   (39) 

The WLSE [23] estimates  𝛼,i  and 𝑘,j  can be determined by the minimizing (39), hence by solving numerically the nonlinear 
equations (40) & (41) using the Newton- Raphson method, which are set equal to zero we can obtain the parameter estimates   
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Where 𝐸(,3 = ∏ N1 − 𝑒𝑥𝑝 4−5
R%
"<
6
#<
7O = ∑ (−1)# ∑ 𝑒𝑥𝑝 4−∑ 5
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6
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,∈T 7T⊆{%,..,'}/{(}
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∀𝑙 = 1, . . , 𝑛  

4.4 CVME 

The Cramer–von Mises objective of GEW is denoted as C(θ) is defined by 

𝐶(𝜃) = %
%&N

+∑ 5𝐹*a𝑦3b −
&3$%
&N
6
&
.N

3+% 	                (42) 

The Cramer–von Mises objective of GEW is denoted as C(θ) is given by 

𝐶(𝜃) = %
%&N

+∑ N∏ N1 − 𝑒𝑥𝑝 4−5
R%
"!
6
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7O − &3$%

&N
'
(+% O

&

.N
3+%                                      (43) 

The CVME [24] estimators 𝛼,i  and 𝑘,j  are determined by minimizing (43), this is achieved by solving numerically the 
nonlinear equations (44) and (45) using the Newton-Raphson method, which are set equal to zero 
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S""

= 2∑ N∏ N1 − 𝑒𝑥𝑝 4−5
R%
"!
6
#!
7O − &3$%

&N
'
(+% O𝐸(,3 5−

#"
""
6N

3+% 5
R%
""
6
#"
𝑒𝑥𝑝 4−5

R%
""
6
#"
7.               (44) 

Sa
S#"

= 2∑ N∏ N1 − 𝑒𝑥𝑝 4−5
R%
"!
6
#!
7O − &3$%

&N
'
(+% O𝐸(,3N

3+% 5
R%
""
6
#!
𝑙𝑛 5

R%
""
6
#"
𝑒𝑥𝑝 4− 5

R%
""
6
#"
7.           (45)  

Where  𝐸(,3 = ∏ N1 − 𝑒𝑥𝑝 4−5
R%
"!
6
#!
7O,2( = ∑ (−1)# ∑ 𝑒𝑥𝑝 4−∑ 5
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""
6
#"

,∈T 7T⊆{%,..,'}/{(}
'$%
#+0 ,  |S|=k,  

∀𝑙 = 1, . . , 𝑛.  

5. Simulation Analysis   

The accuracy of the estimation methods is investigated using the parameters  (𝛼% = 0.5, 𝑘% = 1.2), (𝛼& = 1, 𝑘& =
1.5), (𝛼L = 1.5, 𝑘L = 2). Furthermore, the effect of changes in the sample size N on the GEW parameter estimates is 
examined. The estimated parameters for each estimator, 𝜃w, are assessed using measures of accuracy, namely, the bias, the 
variance and the root mean squared error (RMSE), which is calculated respectively by using the expressions:  
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&
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(+% where 𝜃w̅ = %
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= �𝑉𝑎𝑟a𝜃wb + 𝐵𝑖𝑎𝑠a𝜃wb&  

 Where R: Simulation Number, R=1000 

𝜃(: Actual value of the ith observation   

𝜃w(: Estimated Value of ith observation   

𝜃w̅: Mean of the estimated values   

Once the bias and variance of each estimated parameter are obtained from the simulation results, the RMSE of each estimated 
parameter is computed for different sample sizes N and reported in table 3 

Table 3: Parameter Estimates for Different N 
Sample Size MLE 

(Est) 
MLE 
(RMSE) 

LSE 
(Est) 

LSE 
(RMSE) 

WLSE 
(Est) 

WLSE 
(RMSE) 

CVME 
(Est) 

CVME 
(RMSE) 

N = 25 
 
 
 
 

α1 0.5683 0.3168 0.5462  0.4135 0.5529 0.4089 0.5488 0.3917 
α2 1.0337  0.3394 1.0715 0.3752 1.0637  0.3500 1.0661 0.3287 
α3 1.4279  0.1817 1.4638 0.1987 1.4571 0.1978 1.4619 0.2017 
k1 1.0602 2.2724 1.1274 2.4797 1.1124 2.2715  1.1198 2.2336 
k2 1.3465  1.2609 1.4226 1.4448 1.4362 1.2212 1.4301 1.5042 
k3 2.0618 0.5195 2.0841 0.6141 2.0928 0.5472 2.0887 0.6162 

N = 50 
 

α1 0.5294 0.2719 0.5368 0.3430 0.5416 0.3361 0.5392 0.3220 
α2 0.9795 0.2571 1.0369 0.2469 1.0294 0.2322 1.0348 0.2335 
α3 1.4418 0.1225 1.4742 0.1491 1.4695 0.1356 1.4711 0.1438 
k1 1.1447 2.1541 1.1583 2.4306 1.1492 2.1581 1.1531 2.0628 
k2 1.5578 0.8516 1.4691 1.0767 1.4638 0.8435 1.4657 1.2672 
k3 2.0793 0.3357 2.0527 0.3825 2.0607 0.3649 2.0579 0.4198 

N = 100 
 

α1 0.5126 0.2310 0.5247 0.2859 0.5281 0.2700 0.5312 0.2626 
α2 1.0089 0.1801 1.0186 0.1668 1.0142 0.1520 1.0201 0.1602 
α3 1.4735 0.0885 1.4839 0.0994 1.4862 0.0946 1.4827 0.1057 
k1 1.1864 1.9299 1.1719 2.0582 1.1658 1.9934 1.1627 1.8820 
k2 1.5132 0.5172 1.4923 0.7424 1.4951 0.5554 1.4939 0.6413 
k3 2.0281 0.2264 2.0398 0.2731 2.0449 0.2387 2.0421 0.2630 

N = 500 
 

α1 0.5038 0.1399 0.5074 0.1497 0.5049 0.1318 0.5041 0.1430 
α2 1.0112 0.0660 1.0061 0.0712 1.0054 0.0707 1.0060 0.0672 
α3 1.4926 0.0445 1.4948 0.0435 1.4959 0.0416 1.4949 0.0454 
k1 1.1971 0.4920 1.1957 0.3976 1.1974 0.3864 1.1979 0.3978 
k2 1.4956 0.1443 1.4979 0.2142 1.4988 0.1880 1.4985 0.2186 
k3 2.0114 0.0924 2.0068 0.1177 2.0061 0.1050 2.0052 0.1194 

N = 1000 
 

α1 0.5019 0.1016 0.5027  0.1053 0.5018 0.0955 0.5015 0.1043 
α2 1.0047  0.0475 1.0031 0.0487 1.0042 0.0467 1.0049 0.0488 
α3 1.4981 0.0297 1.4970 0.0307 1.4976 0.0306 1.4979 0.0314 
k1 1.1985 0.3142 1.1989 0.3063 1.1991 0.2985 1.1990 0.2878 
k2 1.5026 0.0995 1.5012 0.1492 1.5006 0.1271 1.5007 0.1515 
k3 2.0043 0.0652 2.0037 0.0829 2.0047 0.0730 2.0041 0.0819 
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Fig. 4: RMSE of the Estimated Parameters of the GEW Distribution at Different Sample Sizes 

Mathematica software was used to simulate parameter estimates using various estimation methods across different sample 
sizes. The accuracy of the methods was assessed using the root mean squared error (RMSE), as presented in Table 3. The 
results show that as N increases, RMSE consistently decreases, indicating that a larger sample size improves the accuracy of 
the estimates, regardless of the estimation method used. Overall, for the proposed model, the maximum likelihood estimation 
(MLE) method proved to be the most effective, yielding the most accurate parameter estimates. This trend is visually 
illustrated in Figure 4, which demonstrates the consistency of the estimators as 𝑁increases. 

6. Monte Carlo Simulation  

Simulation is applied to estimate the distribution of the GEW random variables using different parameter listed in the set 
𝑆 = {(𝛼% = 0.5, 𝑘% = 1.2), (𝛼& = 1, 𝑘& = 1.5), (𝛼L = 1.5, 𝑘L = 2)}. Moreover, the GEW’s probability density function of 
this set is constructed using simulations and presented in Figure 5. This graph suggests that the GEW distribution follows a 
recognizable pattern and fits into theoretical assumptions reasonably well. The Monte Carlo method represents a reliable tool 
for finding extreme values in Weibull-distributed data because it approximates actual distribution rather well. 

 
Fig. 5: Theoretical and Simulated PDFs of the GEW in the Set S 

7. Applications  

Two real datasets of cancer patients, adopted from [9], are utilized to evaluate the goodness of fit of our distribution. For 
simplicity and without loss of generality, we consider the GEW distribution with 𝑛 = 3 for the non-identical parameters case. 
Moreover, the fit of our novel GEW distribution is compared against existing distributions, such as the Alpha Power 
Kumaraswamy Weibull distribution (APKumW) [9], the Weibull distribution [19], the Exponentiated Generalized Weibull 
(EGW) distribution [25], the Beta Weibull (BW) distribution [26], the KumW distribution [27], the Exponentiated 
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Kumaraswamy Weibull (EKumW) distribution [28], and the Alpha Power Weibull (APW) distribution [29]. The results show 
that the data are closely fitted by GEW distribution with n = 3, outperforming the competing distributions and highlighting 
its significance and applicability. The efficiency of-fit for each competing distribution is assessed using the AIC and the KS 
goodness-of-fit test. 

Using (10) the pdf of GEW distribution for n = 3 is given by: 

𝑓*(𝑥) = ∑ Q
#%
"%
4 )
"%
7
#%$%

𝑒𝑥𝑝 N−4 )
"%
7
#%
OR∑ (−1)# N∑ expN−∑ N4 )

"!"
7
#!"
O#

,+% O%-(#.⋯.($-L
("23

O .&
#+0

L
3+% 	            (46) 

The novel distribution is employed to model real-life data sourced from [9]. For the purpose of estimation, only records with 
fully observed (uncensored) data were included. 

Based on Prior studies, [40, 41], the performance of these fitted models is assessed. Three important statistical measures are 
mainly, the Akaike Information Criterion (AIC) the Kolmogorov-Smirnov statistic, and the accompanying p-value. The AIC 
provides a means of model selection in which lower values indicate a better fit while penalizing model complexity. The KS 
statistic captures the largest difference between the empirical and theoretical distribution functions with smaller values the 
better agreement. The p-value of the KS test represents its statistical significance. The larger the p-value, usually greater than 
0.05, the better the model fits to the data. 

7.1 Acute Bone Cancer Data 

The dataset comprises the survival times (in days) of 73 patients detected with acute bone cancer, obtained from [30]. The 
observed values are as follows: 

“0.09, 0.76, 1.81, 1.10, 3.72, 0.72, 2.49, 1.00, 0.53, 0.66, 31.61, 0.60, 0.20, 1.61, 1.88, 0.70, 1.36, 0.43, 3.16, 1.57, 4.93, 
11.07, 1.63, 1.39, 4.54, 3.12, 86.01, 1.92, 0.92, 4.04, 1.16, 2.26, 0.20, 0.94, 1.82, 3.99, 1.46, 2.75, 1.38, 2.76, 1.86, 2.68, 1.76, 
0.67, 1.29, 1.56, 2.83, 0.71, 1.48, 2.41, 0.66, 0.65, 2.36, 1.29, 13.75, 0.67, 3.70, 0.76, 3.63, 0.68, 2.65, 0.95, 2.30, 2.57, 0.61, 
3.93, 1.56, 1.29, 9.94, 1.67, 1.42, 4.18, 1.37.” 

Table 4 displays the maximum likelihood estimates (MLEs) for both the GEW distribution and the competing models, which 
were used to model acute bone cancer data. The GEW distribution was found to fit the data best, as indicated by its AIC 
value (286.2710) and KS statistic (0.0647), both of which were the lowest among all tested models, and its P-value (0.9194), 
which was the highest. 

Table 4: Parameters Estimation for the Acute Bone Cancer Data 

Distribution 𝜽	jMLE Estimated Parameters AIC KS P Value 

GEW 𝜃	j = 4𝛼% 	= 	0.1055;	𝛼& 	= 	0.1769;	𝛼L = 1.789;			
𝑘% 	= 	0.2440;	𝑘& 	= 	0.6415;	𝑘L 	= 	1.4766	7 286.2710 0.0647 0.9194 

APKumW 𝜃	j = 5α	 = 	0.0046; 	a	 = 	5.0887; 	b	 = 	0.4137;	
c	 = 	0.5358; 	λ	 = 	1.3007	 6  291.7005 0.0680 0.8888 

Weibull 𝜃	j = (c	 = 	0.7656; 	λ	 = 	2.9260	) 326.8033 0.1887 0.0111 

EGW 𝜃	j = 5a	 = 	2.7262; 	b	 = 	80.5514; 	c	 = 	0.2353;
	λ	 = 	0.15070	 6 294.0796 0.0924 0.5612 

BW 𝜃	j = 5a	 = 	59.2646; 	b = 62.394; 	c	 = 	0.1262;	
λ	 = 	41.4347	 6 298.9643 0.0988 0.4747 

KumW 𝜃	j = 5a	 = 	2.7498; 	b	 = 	0.3506; 	c	 = 	0.6483;
	λ	 = 	0.3447	 6 311.4273 0.1470 0.0853 

EKumW 𝜃	j = 5a	 = 	1.273; 	b	 = 	1.9974; 	c	 = 	0.4002;
	λ	 = 	1.0345; 	α	 = 	5.4855	 6 302.2774 0.1168 0.2720 

APW 𝜃	j = (c	 = 	0.9218; 	λ	 = 	0.0791; 	α	 = 	0.0021) 309.0348 0.1884 0.0112 
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Fig. 6: CDFs, PDFs and Survival functions of Acute Bone Cancer Data 

7.2 Head and Neck Cancer Data 

Survival time of a sample of 44 patients having Head and Neck cancer disease patients recently examined by [31] is presumed. 
The information is: "12.20, 23.56, 23.74, 25.87, 31.98, 37, 41.35, 47.38, 55.46, 58.36, 63.47, 68.46, 78.26, 74.47, 81.43, 84, 
92, 94, 110, 112, 119, 127, 130, 133, 140, 146, 155, 159, 173, 179, 194, 195, 209, 249, 281, 319, 339, 432, 469, 519, 633, 
725, 817, 1776". 

Table 5 displays the maximum likelihood estimates (MLEs) for both the GEW distribution and the competing models, which 
were used to model the cancer data for head and neck. The GEW distribution clearly provides the best fit with the lowest 
AIC (564.3977), lowest KS statistic (0.0476), and very high P-value (0.9999), demonstrating a high fit with the empirical 
data.  

Table 5: Parameters Estimation for the Head and Neck Cancer Data 

Distribution 𝜽	jMLE Estimated Parameters  AIC KS P Value 

GEW 𝜃	j = 4𝛼% 	= 	81.5693;	𝛼& 	= 	11.9971;	𝛼L 	= 	132.8173;
	𝑘% 	= 	1.3325;		𝑘& 	= 	1.2705;	𝑘L 	= 	0.6132	 7 564.3977 0.0476 0.9999 

APKumW 𝜃	j = 5𝑎	 = 	4.8428; 	𝑏	 = 	0.6523; 	𝑐	 = 	0.5719;
	𝜆	 = 	0.0260; 	𝛼	 = 	0.3173	 6 565.1112 0.0751 0.4435 

Weibull 𝜃	j = (𝑐	 = 	0.9386; 	𝜆	 = 	213.6881	) 567.6877 0.1267 0.4435 

EGW 𝜃	j = 5a	 = 	0.0784; 	b	 = 	1.6582; 	c	 = 	0.3437;
	λ	 = 	0.0513 6 602.3591 0.2687 0.0027 
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BW 𝜃	j = 5𝑎	 = 	2.3728; 	𝑏	 = 	0.0759; 	𝑐	 = 	0.3999;	
𝜆	 = 	0.2225 6 602.5257 0.3075 0.0003 

KumW 𝜃	j = 5a	 = 	0.3532; 	b	 = 	0.0782; 	c	 = 	0.4911;
	λ	 = 	1.2577 6 604.0207 0.3142 0.0002 

EKumW 𝜃	j = 5𝑎	 = 	7.8983; 	𝑏	 = 	6.8318; 	𝑐	 = 	0.2203;
	𝜆	 = 	0.0541; 	𝛼	 = 	1.8148	 6 566.0263 0.0973 0.7625 

APW 𝜃	j = (𝑐	 = 	0.8779; 	𝜆	 = 	0.0105; 	𝛼	 = 	1.6918) 570.2769 0.1277 0.4342 

 
Fig. 7- CDFs, PDFs and Survival Functions for the Head and Neck Cancer Data 

The Generalized Extreme Weibull (GEW) distribution demonstrated the best overall fit among all the competing models. For 
each dataset analyzed, the GEW distribution yielded the lowest AIC and KS values with the highest p-values, demonstrating 
a superior goodness of fit (Tables 4–5). Moreover, the graphical analyses presented in Figures 6–7 further support this 
conclusion. 

8. Conclusion 

A new generalization arising from Weibull distributions, the Generalized Extreme Weibull distribution (GEW), is formulated. 
The statistical properties of our novel distribution are investigated, including PDF, CDF, mean, mode, moment generating 
function, quartiles, and others. Furthermore, the order statistics are evaluated. The parameters are estimated using four 
estimation methods, namely, MLE, LSE, WLSE, and CVME. Numerical analysis is employed to evaluate the accuracy of 
the estimation methods. Two cancer data sets were considered to evaluate the suitability of this distribution in modeling such 
data. The findings underline the effectiveness of the GEW distribution as a practical and reliable option for survival analysis, 
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particularly in medical and reliability studies characterized by complex hazard rate structures. 
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