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Abstract: The boundary knot method (BKM) is a kind of boundary-type hhess method, only boundary points are needed
in the solution process. Like the boundary element methatl raathod of fundamental solutions, the BKM needs nonsimgula
general solutions of governing equations. Therefore ocalion points and source points can be located on the @iysocindary
simultaneously which is superior in dealing with Helmhgbtmblems. In this paper, the BKM is extended to investigateuatic
problems with high wavenumbers. By comparing with the fieleement method, numerical results show that the BKM hasllexte
advantages in dealing with high wave number acoustic pnakle
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1 Introduction still has several drawbacks, such as the boundary layer
effect and singularity or hyper-singularit§,p, 10]. To the

Acoustic problems have very important applications in bE.}St qf our knowledge,_the BEM.for acoustic problems
with high wavenumbers is rare in literatures.

real world, such as noise control, nondestructive testing,
medical imaging, sonar. Investigation on the )
computational methods of acoustic problems is a hot Corresponding to the BEM, boundary-type meshless
topic for engineers and mathematicians. The challengingnethods behave eminent in analyzing many difficult
conundrum is the simulation of acoustic problems with Problems. Among which the method of fundamental
high wavenumbers. Several numerical methods have beegplutions (MFS) 11,12], also called the T-Trefftz method
applied to this problemi] 2, 3]. [1314,15], and the boundary knot method (BKM) are
The finite element method (FEM) can provide fyPical examples. The BKM, proposed by Kang et’][
solutions of the whole physical domain, but the whole €Mploys the nonsingular general solutions instead of
domain should be discretized which makes thefundamental solutions used in the MFS. The fictitious
computational very large. Furthermore, enough FEMmPoundary appeared in the MFS is eliminated while the
cells should be used in each wavelength to ensure th@ther advantages are maintained at the same time.
approximation accuracy for Helmholtz equations Previous numerical results shovy that the.BKM is suitable
modeled from acoustic problems. The mesh-refinemenfo’ many problems associated with Helmholtz
should be implemented with the increasing wavenumbers€duations}7,18,19,20]
The FEM simulation depends on the size of minimal
cells, so the mesh-refinement enlarges the computational Based on the above analysis, this paper uses the BKM
time and increases the accumulating errat$,[6]. An to study acoustic problems with high wavenumbers.
alternative to the FEM is the boundary element methodNumerical results are compared with the FEM to show
(BEM) which is restricted to the boundary of the the superiority. Section 2 briefly introduces the BKM.
considered domain7]. Apart from this, the BEM Followed by Section 3, numerical examples are presented
possesses advantages when dealing with problemisy comparing with the FEM. Some conclusions are made
involving infinite or semi-infinite domains. However, it in Section 4.
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2 The boundary knot method where
[ Qu1 Q12 ... Qin T
Most acoustic sources encountered in real applications
always have definite characters. For convenience, we Ongt Ong2 - Qg N
consider harmonic waves of point acoustic source, which Q= Ths 2% SN (10)
can be modeled to the following Helmholtz problem, to e
illustrate the BKM 0Qu,1 9Qn,2 9QN, N
02u(x) + A2u(x) = 0, in Q (1) N - ﬁ’\? on ...ﬁ. o - _
— are X coefficient matrix,
u(x) =u(x),  onfp @ p= (Ug,...,0ny, 1, -, 0n,) T IS N x 1 vector composed
du(x) =q(x) = q(x), on Iy (3) by boundary Congitions angd = (C1,Cp,...,on)"T iISN x 1
on coefficient vector. stands for the transpose of vector.

u(x) and q(x) are pre-defined boundary conditions on For the solvability of equation9j, we have the

Dirichlet boundary lp and Neumann boundaryy, following theorem.

respectivelyQ means the physical domainiRf, disthe =~ Theorem 1. The radial basis function given by Edf)(

dimensionality,dQ(= Ip U n) represents the physical || give nonsingular interpolation matrix, thus, E®) (s

boundary,A and n are wavenumber and unit normal solvable and has unique solution.

vector, respectively. o ) . Proof. The non-singularity of the interpolation matrix in
The the BKM has similar basic theory with the other Eq. ©) can be similarly proved as in Ref2]]. After

boun_dary-type meshless 'methods. In the BKM' thewhich we can get the conclusion of this theorem by
nonsingular general solutions has no singularity, theCramer’s rule

source points and collqcatlon points can be located on the After the coefficienta is solved, we can calculate
physical boundary simultaneously. The approximate

solutionuy(x) can be expressed in terms of nonsinguIarvalugiarrgg‘mgg' 4) for arbitrary point on the whole
general solutions phy .

N
un(X) =) ¢jQIXYj),  Yj€0Q (4) 3 Numerical example and discussions

=1
We use the above-given BKM to test the Helmholtz
problems with high wavenumbers. Unless otherwise
specified, we use the following relative average error

where y; are source points on the boundagy, are
coefficient to be determinedi| the total number of source

oints,
P (root mean-square relative error: RMSEY:
A
— (2 \(d/2)-1 >
Q(x,y) (ZHT) Jd/2)-1(Ar), d>2  (5) — 1 N fu(x;) — 0xg) 2 a
is the nonsingular general solutions for the Helmholtz AN = u(x;) ’
equation withJ denoting the Bessel function of the first
kind andr =|| x —y || the Euclidean distance. , 3
Differentiation of Eq. 4) is for Ju(xj) = 107,
dun(x) N 9Q(x.yj) 1M 2
n _glcjian . X€Q (6) RMSE = EJﬂ\u(xj)—u(xj)\ : (12)

Substitute Eqgs.4) and 6) into boundary conditions
Egs. @ and @), we have the following equations dw
collocation points

N

for |u(x;j)| < 103, wherej is the index of test pointsi(x;)
andu(x;) are the exact and numerical solutions on the test
point xj, respectivelyN; means the total number of test

A~ v points.
,Zlle(X"yi) =u(xi) i=1,..,Ny ) The unit square domaif? = {(x,y)|0 < x,y < 1} is
NJ_ 20 ) considered. In order to show the variation of the BKM
QXK. Yj - versus the wavenumbgr, we choose the following exact
Zxcj Tj =00 k=1, Nz (8) solution ’
= . _ u(x,y) = sin(Ax) +cogAy). (13)
whereN; andN, are number of collocation points dipy .
andry, respectivelyN; + N, = N. For wavenumberA = 150, Fig. 1 shows the
The matrix form of Eq. ) and @) are convergence curve of the RMSE versus the number of
unknowns per line. We can see that the convergence curve
Qua=b (9) is very smooth with the increasing number of boundary
(@© 2015 NSP
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) ‘ ‘ ‘ ‘ wavenumbers. On the contrary, the BKM has obvious

10 advantage in dealing with such high wavenumber

10" ¢

10

problems.

w Table 1: Relationship among wavenumbgér, boundary point
g 102} numberN, relative average error RMSE and condition number
14 Cond
107t
A N RMSE Cond
10 100 41 49635x 104 1.0906x 1012
. 110 44 70030x 104 3.7007x 1011
1046 28 50 52 54 56 58 60 120 47 68327x 104 1.3554x 1011
Number of unknowns per line 130 49 31715x 1074 1.2850x 10°
, ) 140 54 41059x 104 8.8116x 1011
Fig. 1: Numerical results of the BKM for wavenumbg&r= 150. 150 56 67026x 104 8.9634x 10°
200 73 55960x 104 2.3042x 106
300 107 39554x 104 1.6903x 10
1+ 400 147 11242x 104 1.7559x% 106
fir 500 188 89665x 104 1.8549x 107
e ol 600 214 52239x 10~* 3.9693x 10t/
§ oot 700 253 65808x 104 3.9613x 10'°
£ 800 280 51530x 10~* 4.7599x 10'®
g oor S 900 312 84212x 104 5.9307x 10®
g e 1000 345 0818x 104 1.1787x 106
® 0.001 | I
00001 , , , , . With the increasing number of wavenumbers, Table 1
16 32 512 1024

gives the relationship among boundary point number,
relative average error and condition number. It is found
Fig. 2 The FEM results in reference][for wavenumben = that the increment of 10 wavenumbers corresponds with
150. addition of 2~ 3 boundary points to maintain the solution
accuracy. For the increment of 100 wavenumbers, about
adding 35 boundary points keeps the original solution
accuracy. When the wavenumbgr= 1000, only 345
points. Only 55 boundary points per line can achieve theboundary points can calculate very good result
relative average error RMSE 102, RMSE = 9.0818x 10~“. This phenomenon support the
In order to illustrate the superiority of the BKM, we conclusion given in23], i.e., to approximate Helmholtz
use the FEM numerical results of referencd for equation with acceptable accuracy the resolution of the
comparison. In Fig. 2, the 1024 boundary points per linemesh should be adjusted to the wave number according to
merely reaches the average relative error RMSIE0 ! the rule of thumb. Compared with the FEM, this
for the traditional FEM. Despite the generalized leastphenomenon shows that the boundary point number of
square finite element method (GLS-FEM) has the besthe BKM is rather less sensitive to the increasing
results in Fig. 2, we find that 1024 points per line leads towavenumbers.
the average relative error RMSE 10~° while the same Furthermore, Table 1 shows that the condition numbers
results can be obtained by using 55 points per line for theof coefficient matrix increase with the increasing numbers
BKM. of boundary points or wavenumbers. We also note that the
Note: If one uses the MATLAB toolbox to generate increasing condition number may lead to the instability of
mesh or an unit square domain, seven times amethod18,24].
mesh-generation corresponds to 704 points per line and
totally 1116546 points number. For eight times
mesh-generation, the computer doesn't  work.
Smultaneously, 55 points per line corresponds to totally
216 number for the BKM. In this paper, we use the BKM, which eliminates the
From the above analysis, we can conclude that themesh-generation, to simulate acoustic problems with high
FEM is not suitable for Helmholtz problems with high wavenumbers in terms of stability and convergence. A

84 128 256
Number of unknowns per line

4 Conclusions
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theorem is given to prove the feasibility of the BKM.

[21] B. Fornberg, E. Larsson, G. Wright, Computers &

Numerical results show that the BKM has better accuracy Mathematics with ApplicationS1, 1209-1222 (2006).

than the FEM. Only minor boundary points can achieve
very good results for acoustic problems with high
wavenumbers which proves the applicability of the BKM.
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