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Abstract: The boundary knot method (BKM) is a kind of boundary-type meshless method, only boundary points are needed
in the solution process. Like the boundary element method and method of fundamental solutions, the BKM needs nonsingular
general solutions of governing equations. Therefore, collocation points and source points can be located on the physical boundary
simultaneously which is superior in dealing with Helmholtzproblems. In this paper, the BKM is extended to investigate acoustic
problems with high wavenumbers. By comparing with the finiteelement method, numerical results show that the BKM has excellent
advantages in dealing with high wave number acoustic problems.
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1 Introduction

Acoustic problems have very important applications in
real world, such as noise control, nondestructive testing,
medical imaging, sonar. Investigation on the
computational methods of acoustic problems is a hot
topic for engineers and mathematicians. The challenging
conundrum is the simulation of acoustic problems with
high wavenumbers. Several numerical methods have been
applied to this problem [1,2,3].

The finite element method (FEM) can provide
solutions of the whole physical domain, but the whole
domain should be discretized which makes the
computational very large. Furthermore, enough FEM
cells should be used in each wavelength to ensure the
approximation accuracy for Helmholtz equations
modeled from acoustic problems. The mesh-refinement
should be implemented with the increasing wavenumbers.
The FEM simulation depends on the size of minimal
cells, so the mesh-refinement enlarges the computational
time and increases the accumulating errors [4,5,6]. An
alternative to the FEM is the boundary element method
(BEM) which is restricted to the boundary of the
considered domain [7]. Apart from this, the BEM
possesses advantages when dealing with problems
involving infinite or semi-infinite domains. However, it

still has several drawbacks, such as the boundary layer
effect and singularity or hyper-singularity [8,9,10]. To the
best of our knowledge, the BEM for acoustic problems
with high wavenumbers is rare in literatures.

Corresponding to the BEM, boundary-type meshless
methods behave eminent in analyzing many difficult
problems. Among which the method of fundamental
solutions (MFS) [11,12], also called the T-Trefftz method
[13,14,15], and the boundary knot method (BKM) are
typical examples. The BKM, proposed by Kang et al [16],
employs the nonsingular general solutions instead of
fundamental solutions used in the MFS. The fictitious
boundary appeared in the MFS is eliminated while the
other advantages are maintained at the same time.
Previous numerical results show that the BKM is suitable
for many problems associated with Helmholtz
equations[17,18,19,20]

Based on the above analysis, this paper uses the BKM
to study acoustic problems with high wavenumbers.
Numerical results are compared with the FEM to show
the superiority. Section 2 briefly introduces the BKM.
Followed by Section 3, numerical examples are presented
by comparing with the FEM. Some conclusions are made
in Section 4.
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2 The boundary knot method

Most acoustic sources encountered in real applications
always have definite characters. For convenience, we
consider harmonic waves of point acoustic source, which
can be modeled to the following Helmholtz problem, to
illustrate the BKM

∇2u(x)+λ 2u(x) = 0, in Ω (1)

u(x) = ū(x), on ΓD (2)

∂u(x)
∂n

= q(x) = q̄(x), on ΓN (3)

ū(x) and q̄(x) are pre-defined boundary conditions on
Dirichlet boundary ΓD and Neumann boundaryΓN ,
respectively.Ω means the physical domain inRd , d is the
dimensionality,∂Ω(= ΓD ∪ ΓN) represents the physical
boundary,λ and n are wavenumber and unit normal
vector, respectively.

The the BKM has similar basic theory with the other
boundary-type meshless methods. In the BKM, the
nonsingular general solutions has no singularity, the
source points and collocation points can be located on the
physical boundary simultaneously. The approximate
solutionuN(x) can be expressed in terms of nonsingular
general solutions

uN(x) =
N

∑
j=1

c jQ(x,y j), y j ∈ ∂Ω (4)

where y j are source points on the boundary,c j are
coefficient to be determined,N the total number of source
points,

Q(x,y) = (
λ

2πr
)(d/2)−1J(d/2)−1(λ r), d ≥ 2 (5)

is the nonsingular general solutions for the Helmholtz
equation withJ denoting the Bessel function of the first
kind andr =‖ x− y ‖ the Euclidean distance.

Differentiation of Eq. (4) is

∂uN(x)
∂n

=
N

∑
j=1

c j
∂Q(x,y j)

∂n
. x ∈ ∂Ω (6)

Substitute Eqs. (4) and (5) into boundary conditions
Eqs. (2) and (3), we have the following equations onN
collocation points

N

∑
j=1

c jQ(xi,y j) = ū(xi) i = 1, . . . ,N1 (7)

N

∑
j=1

c j
∂Q(xk,y j)

∂n
= q̄(xk) k = 1, . . . ,N2 (8)

whereN1 andN2 are number of collocation points onΓD
andΓN , respectively.N1+N2 = N.

The matrix form of Eq. (7) and (8) are

Qα = b (9)

where

Q =

















Q1,1 Q1,2 . . . Q1,N
. . . . . . . . . . . .

QN1,1 QN1,2 . . . QN1,N
∂Q1,1

∂n
∂Q1,2

∂n . . .
∂Q1,N

∂n
. . . . . . . . . . . .

∂QN2,1

∂n
∂QN2,2

∂n . . .
∂QN2,N

∂n

















(10)

are N × N coefficient matrix,
b = (ū1, . . . , ūN1, q̄1, . . . , q̄N2)

T is N × 1 vector composed
by boundary conditions andα = (c1,c2, . . . ,cN)

T is N ×1
coefficient vector.T stands for the transpose of vector.

For the solvability of equation (9), we have the
following theorem.
Theorem 1. The radial basis function given by Eq. (5)

will give nonsingular interpolation matrix, thus, Eq. (9) is
solvable and has unique solution.
Proof. The non-singularity of the interpolation matrix in

Eq. (9) can be similarly proved as in Ref. [21]. After
which we can get the conclusion of this theorem by
Cramer’s rule.

After the coefficienta is solved, we can calculate
values from Eq. (4) for arbitrary point on the whole
physical domain.

3 Numerical example and discussions

We use the above-given BKM to test the Helmholtz
problems with high wavenumbers. Unless otherwise
specified, we use the following relative average error
(root mean-square relative error: RMSE) [22]:

RMSE =

√

√

√

√

1
Nt

Nt

∑
j=1

∣

∣

∣

∣

u(x j)− ũ(x j)

u(x j)

∣

∣

∣

∣

2

, (11)

for |u(x j)| ≥ 10−3,

RMSE =

√

√

√

√

1
Nt

Nt

∑
j=1

∣

∣u(x j)− ũ(x j)
∣

∣

2
, (12)

for |u(x j)|<10−3, wherej is the index of test points,u(x j)
andũ(x j) are the exact and numerical solutions on the test
point x j, respectively.Nt means the total number of test
points.

The unit square domainΩ = {(x,y)|0 ≤ x,y ≤ 1} is
considered. In order to show the variation of the BKM
versus the wavenumberλ , we choose the following exact
solution

u(x,y) = sin(λ x)+ cos(λ y). (13)

For wavenumber λ = 150, Fig. 1 shows the
convergence curve of the RMSE versus the number of
unknowns per line. We can see that the convergence curve
is very smooth with the increasing number of boundary
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Fig. 1: Numerical results of the BKM for wavenumberλ = 150.

Fig. 2: The FEM results in reference [2] for wavenumberλ =
150.

points. Only 55 boundary points per line can achieve the
relative average error RMSE= 10−3.

In order to illustrate the superiority of the BKM, we
use the FEM numerical results of reference [2] for
comparison. In Fig. 2, the 1024 boundary points per line
merely reaches the average relative error RMSE= 10−1

for the traditional FEM. Despite the generalized least
square finite element method (GLS-FEM) has the best
results in Fig. 2, we find that 1024 points per line leads to
the average relative error RMSE= 10−3 while the same
results can be obtained by using 55 points per line for the
BKM.

Note: If one uses the MATLAB toolbox to generate
mesh or an unit square domain, seven times
mesh-generation corresponds to 704 points per line and
totally 1116546 points number. For eight times
mesh-generation, the computer doesn’t work.
Simultaneously, 55 points per line corresponds to totally
216 number for the BKM.

From the above analysis, we can conclude that the
FEM is not suitable for Helmholtz problems with high

wavenumbers. On the contrary, the BKM has obvious
advantage in dealing with such high wavenumber
problems.

Table 1: Relationship among wavenumberλ , boundary point
numberN, relative average error RMSE and condition number
Cond
—————————————————————————-
λ N RMSE Cond
—————————————————————————-
100 41 4.9635×10−4 1.0906×1012

110 44 7.0030×10−4 3.7007×1011

120 47 6.8327×10−4 1.3554×1011

130 49 3.1715×10−4 1.2850×109

140 54 4.1059×10−4 8.8116×1011

150 56 6.7026×10−4 8.9634×109

—————————————————————————
200 73 5.5960×10−4 2.3042×1016

300 107 3.9554×10−4 1.6903×1014

400 147 1.1242×10−4 1.7559×1016

500 188 8.9665×10−4 1.8549×1017

600 214 5.2239×10−4 3.9693×1017

700 253 6.5808×10−4 3.9613×1015

800 280 5.1530×10−4 4.7599×1016

900 312 8.4212×10−4 5.9307×1015

1000 345 9.0818×10−4 1.1787×1016

—————————————————————————

With the increasing number of wavenumbers, Table 1
gives the relationship among boundary point number,
relative average error and condition number. It is found
that the increment of 10 wavenumbers corresponds with
addition of 2∼ 3 boundary points to maintain the solution
accuracy. For the increment of 100 wavenumbers, about
adding 35 boundary points keeps the original solution
accuracy. When the wavenumberλ = 1000, only 345
boundary points can calculate very good result
RMSE= 9.0818× 10−4. This phenomenon support the
conclusion given in [23], i.e., to approximate Helmholtz
equation with acceptable accuracy the resolution of the
mesh should be adjusted to the wave number according to
the rule of thumb. Compared with the FEM, this
phenomenon shows that the boundary point number of
the BKM is rather less sensitive to the increasing
wavenumbers.

Furthermore, Table 1 shows that the condition numbers
of coefficient matrix increase with the increasing numbers
of boundary points or wavenumbers. We also note that the
increasing condition number may lead to the instability of
a method [18,24].

4 Conclusions

In this paper, we use the BKM, which eliminates the
mesh-generation, to simulate acoustic problems with high
wavenumbers in terms of stability and convergence. A
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theorem is given to prove the feasibility of the BKM.
Numerical results show that the BKM has better accuracy
than the FEM. Only minor boundary points can achieve
very good results for acoustic problems with high
wavenumbers which proves the applicability of the BKM.
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