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Abstract: We consider the theoretical question concerning time series which arises when the distribution of the observed variable is in
fact a conditional distribution. The Kalman filter providesan effective solution to the linear Gaussian filtering problem. However, when
state or measurement, or both, are highly non-linear, and posterior probability distribution of the state is non-Gaussian, the optimal
linear filter and its modifications do not provide satisfactory results. The Sequential Monte Carlo method (SMC) have become one
of the familiar tools that allowed the Bayesian paradigm to be applied to approximation of sophisticated models. In thispaper we
propose a novel construction of an auxiliary particle filter(APF) algorithm using the Pearson curves technique (PC) forapproximation
of importance weights of simulated particles. The effectiveness of the method is discussed and illustrated by numerical results based
on the simulated stochastic volatility process SV.
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1 Introduction

In practice, many problems in stochastic dynamical
systems require an estimation of the state of a system
changing over time using a sequence of noisy
measurements made on the systems. The article concerns
the nonlinear filtering problems which appear in many
diverse fields including economics, statistical signal and
engineering.
Optimal filtering consists in a recursive estimation of the
sequence of posterior densities{p(xt |y1:t)}t>0, which
summarizes all the information about the system states
X1:t under the assumption that the observationsY1:t are
available. Where, for any process{Zt}t≥1 the realizations
from time t = i to t = j are denoted as:zi: j = (zi, . . . ,z j).
Complex models often lead to integrals that cannot be
solved analytically, therefore it is advisable to use Monte
Carlo approximation methods. Recently, for the
estimation of multiple distributions, the Markov Chain
Monte Carlo (MCMC) methods have been preferred.
However, MCMC methods require a complete
”browsing” of the observations set, which is why they do
not make the right strategy for sequential estimation.
MCMC- based algorithms are very time consuming when

performing online estimations. In this paper, we propose a
different approach which is based upon the Sequential
Monte Carlo (SMC) methods - the technique known as
the particle filtering (PF). This method is becoming
increasingly popular in economics and finance as an
alternative to MCMC methods. The particle filter is a set
of Monte Carlo schemes that enable Kalman-type
recursions when normality or linearity, or both, are
abandoned. The PF methods are sampling algorithms
which combine importance sampling and resampling
schemes. Although it has been two decades since PF first
appeared in Gordon, Salmond and Smith [11], and
immense literature can be found on their theory, it still
represents an area of active research. The standard
reference for SMC methods is Doucet, De Freitas and
Gordon [10], and Cappé, Godsill, Moulines [3],
Arulampalam, Maskell, Gordon, Clapp [1], Doucet,
Johansen [11], Särkkä [23] for recent reviews. We
propose a new construction of an auxiliary particle filter
(APF) algorithm using the Pearson curves technique for
the approximation of importance weights of simulated
particles. The algorithm is verified against the particle
filter in application to the stochastic volatility process SV.
Numerical results show that the proposed approximation
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proves far more accurate than the basic particle filter
(known as the bootstrap filter). All simulations and
calculations were carried out on a 1.6 GHz Pentium
4CPU using the author’s software written in Visual
Studio.

2 A Bayesian approach to state-space
modelling

Although the methodology can be applied to more
complex systems, in the following research we consider a
discrete state space model (DSSM) with a first-order
Markov state process and conditionally independent
observations (sometimes termed as hidden Markov
models, HMM). A DSSM consists of
a stochastic propagation equation, which links the current
state vector to the prior state vector, and a stochastic
observation equation, which links the observation data to
the current state vector.
Let us consider a probability space:(Ω ,Σ ,P), and define
the following model:Xt - a hidden (latent) state process as
a stationary and ergodic Markov process, characterized by
invariant initial probability density of state

X1 ∼ p0(x1), (1)

and Markov transition probability distributionp(x′|x), for
t > 1:

Xt |(X1:t−1 = x1:t−1,Y1:t−1 = y1:t−1)∼ p(xt |xt−1). (2)

As indicated by its name,Xt is observed not directly but
through another process{Yt}t∈N. The observations are
assumed to be conditionally independent when givenXt ,
and their common marginal probability distribution is
expressed as follows:

Yt |(X1:t = x1:t ,Y1:t−1 = y1:t−1,θ )∼ p(yt |xt). (3)

Depending on context,p will denote a probability
distribution or a probability density function.
The sequential inference on the latent processXt is
typically based on the sequence of posterior distributions
p(x1:t |y1:t), where each summarizes all the information
collected aboutX1:t up to timet. In a Bayesian context,
sequential estimation of these distributions can be easily
achieved using the following updating formula:

p(x1:t |y1:t) = p(x1:t−1|y1:t−1)
p(yt |xt)p(xt |xt−1)

p(yt |y1:t−1)
. (4)

In relevant literature, the optimal filtering problem is
defined by a recursion satisfied by the marginal
distributionp(xt |y1:t)

p(xt |y1:t) =
p(yt |xt)p(xt |y1:t−1)

p(yt |y1:t−1)
, (5)

which is known as the updating step. The formula (5)
employs the dynamics of the model defined earlier (2),
(3) and a one-step ahead forecast distribution:

p(xt |y1:t−1) =

∫
p(xt |xt−1)p(xt−1|y1:t−1)dxt−1. (6)

The likelihood function for a single observation is given
by the formula:

p(yt |y1:t−1) =

∫
p(yt |xt)p(xt |y1:t−1)dxt . (7)

In this research, it is assumed that density functions:
p(yt |xt), p(xt |xt−1) are known andp(yt |y1:t−1) > 0.
Despite its apparent simplicity, the recursion formula in
equation (5) rarely admits a closed-form expression
(notably the linear-Gaussian case, which leads to the
Kalman filter), hence it is necessary to employ
approximations.

3 The idea of particle filter and auxiliary
particle filter

It is worth noting that the basic variants of PF are the
extended version of the Sequential Importance Sampling
(SIS) algorithm with an added resampling step (known as
the Sequential Importance Resampling, SIR). Therefore,
the two most important elements of the method which
determine its effectiveness are; the way of selecting an
importance sampling distribution (IS) (also referred to as
the proposal distribution, or the importance function, IF)
and the property of resampling procedure.
Recall that the idea of SIS is to propose an importance
functionq(·) which: should resemblep(·|y1:t) as much as
possible, is easy to sample from and fulfills the
implication p(·|y1:t)> 0 =⇒ q(·)> 0.
In literature we can distinguish between two versions of
IS: the first, where the importance function is taken to be
the transition density (approach known as the kernel
density), i.e.:

q(xt |x1:t−1,y1:t) = p(xt |xt−1), (8)

and the second, known as the optimal IS, where in order to
make the method more effective the definition incorporates
both the state and observation processes:

q(xt |x1:t−1,y1:t) = p(xt |xt−1,yt). (9)

Detailed derivatives of the importance distribution can be
found in the references section. It is worth noting that the
importance sampling density determines the form of the
importance weights which are used for required density
approximation:

w(i)
t = w(x(i)1:t) ∝

p(x1:t |y1:t)

q(x1:t |y1:t)

∝

{
wt−1(x

(i)
1:t−1)p(yt |x(i)t ) dla q(xt |x1:t−1,yt)

1
= p(xt |xt−1)

wt−1(x
(i)
1:t−1)p(yt |x(i)t−1) dla q(xt |xt−1,yt)

2
= p(xt |xt−1,yt)

(10)
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In the paper we assume that the weightsw(i)
t , t = 1, . . . ,T ,

i = 1, . . . ,N are determined up to a multiplicative constant

and∑N
i=1 w(i)

t = 1.
By optimal IS we understand a function which minimizes
the variance of the importance weights conditional upon

the simulated trajectoryx(i)1:t−1 and observationsy1:t , i.e.

var
q(xt |x(i)1:t−1,y1:t)

[w(i)
t ] = 0. (11)

It is worth pointing out that on the one hand, the optimal
importance function limits the degeneracy algorithm,
inasmuch as it takes into account the information about
the current observation. But, on the other, it suffers from
two major drawbacks: it requires the ability to sample

from p(xt |x(i)t−1,yt) and evaluatep(yt |x(i)t−1) (which, in
general, do not occur in an analytical expression). In the
case where the formula (9) cannot be expressed
analytically, a suboptimal approach is proposed, see
Doucet et al. [10] (we will discuss it in detail later).
In literature, it is a well-known fact that importance
sampling method (and sequential importance sampling)
suffers from severe drawbacks. One of its most important
shortcomings is a sample impoverishment. As the
variance of the unnormalized importance weights tends to
increase exponentially with time, it results in a potential
degeneracy of the approximation. In practice this means
that after a few time steps, a very small subset of particles
takes all the probability mass, which implies that
a discrete measure approximation of the filtering density
becomes invalid and useless. The degeneracy is routinely
measured using the effective sample size criterion

N̂ESS =
(

∑N
i=1(w

(i)
t )2

)−1
. TheN̂ESS below a pre-specified

threshold (typically NT = 0.5N ) implies that the
degeneracy is too high. To prevent the degeneracy
problem, it is recommended to re-draw the generated
samples (known as a resampling step). The idea of
resampling is very intuitive and relies on replicating the
particles with higher weights and discarding those with
negligible weights. The most common resampling
schemes are discussed for example in Bolić, Djurić, Hong
[2].
In this paper we make use of the residual systematic
resampling (RSR), which can be implemented by using
the following steps:

Algorithm 1: RSR

1.Sample U (0) ∼ Unif
(
(0, 1

N ]
)

2.For i from 1 to N calculate
N(i)

t =
⌊
(w(i)

t −U (i−1))N
⌋
+1,

U (i) =U (i−1)+N(i)
t N−1−w(i)

t
The resampled particles are

x(i)t|t = x(N
(i)
t )

t|t−1 , w(i)
t = N−1

end for

It is worth noting that the algorithm 1 is substantially
more efficient than the most popular multinomial. Its
processing time is reduced, whereby it is very attractive
for hardware implementation, for details see: Bolić et al.
[2], Hol, Schön, Gustafsson [13]. Now, we can present the
simplest case of particle filtering algorithm, also known
as the bootstrap filter (algorirhm 2), see Gordon et al.
[12], Doucet et al. [10,11]:

Algorithm 2: Bootstrap filter, BPF , [10]

Put t = 1
For i from 1 to N

–Sample x(i)1|1 ∼ q1(·),
–Compute the particle weights

w(i)
1 =

p1(x
(i)
1|1)p(y1|x(i)1|1)

q1(x
(i)
1|1)

end for

For t from 2 to T
For i from 1 to N

–Sample x(i)t|t−1 ∼ q(x(i)t |x(i)t−1|t−1);

set x̃(i)1:t|t−1 =
{

x(i)1:t−1|t−1,x
(i)
t|t−1

}
;

–Compute the importance weights

w(i)
t ∝ w(i)

t−1

p(yt |x(i)t|t−1)p(x
(i)
t|t−1|x

(i)
t−1|t−1)

q(xt|t−1|x
(i)
t−1|t−1,yt )

end for

Iff N̂ESS < NT, then

Resample
{

x(i)1:t|t−1,w
(i)
t

}
→
{

x(i)1:t|t ,
1
N

}

else x(i)1:t|t = x̃(i)1:t|t−1

set t = t +1 end for

Through PF in particular, we obtain the Monte Carlo
approximation of the filtering distribution, which is an
empirical distribution formed from a set of random
samples (known as particles) with associated weights

p̂(x1:t |y1:t ,θ ) =
N

∑
i=1

w(i)
t δ (x1:t − x(i)1:t|t−1). (12)

More formally (after the resampling step), the weighted
distribution (12) is replaced by the unweighted measure

p̃(x1:t |y1:t ,θ ) =
1
N

N

∑
i=1

δ (x1:t − x(i)1:t|t), (13)
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whereδ (·) is the Dirac delta function, andw(i)
t denotes the

normalized importance weight attached to particlex(i)t .
The random measure (12) can be used to approximate any
integral. As an example we can consider an expected value
of an integrable real functionϕ :

p̂N(ϕ) =
N

∑
i=1

w(i)
t ϕ(x(i)1:t|t−1). (14)

According to the strong law of large numbers (under mild
assumptions)

p̂N(ϕ)
a.s−−−→

N→∞
p(ϕ), (15)

where a.s. denotes an almost sure convergence. Details of
this basic proposition and its proof can be found, among
others, in Doucet et al. [10].
Literature features various methods of PF optimization
which mainly consist in applying selected suboptimal
function approximation methods, or some modifications
of the resampling procedure, for example: Johansen,
Doucet Prokhorov, Yu [15], Douc, Moulines, Olsson [7],
Doucet et al. [11], Del Moral, Doucet, Jasra [4].
The modified construction of APF we propose consists in
the use of Pearson curves (PC) for an approximation of
simulated particles weights. The idea of APF is strongly
associated with the fact that when we use the optimal
importance function (9), the weight (10) (at timet) does
not depend on the statext . Therefore, it seems wasteful to
resample particles at the end of iterationt − 1 prior to
consideringyt . Instead, it is proposed to employ the
knowledge about the next observation before resampling
to ensure that particles are compatible with that
observation. APF was first described by Pitt and Shephard
[19], and almost simultaneously by Carpenter, Clifford
and Fearnhead [8]. It can be shown that the APF proposed
in Carpenter et al. [8], may be interpreted as SIR with a
target function p(x1:t |y1:t+1). Having selected the
appropriate importance functionq(xt |xt−1,yt) and the
resampling strategy, we can now summarize the
considered APF algorithm as the pseudo code described
below in Algorithm 3.
It is worth noting that by employing the following
algorithm, we can obtain the approximation:

p̃(x1:t |y1:t+1) ∝ p(x1:t |y1:t)p̃(yt+1|xt), (16)

where ˜p(yt+1|xt) is the approximation of function
p(yt+1|xt). However, p(x1:t |y1:t) is not approximated
directly, hence it is necessary to modify the associated
importance weights, see Doucet et al. [11] for details.

Algorithm 3: Auxiliary particle filter, APF

1.Put t = 1
For i from 1 to N

–Sample x(i)1|0 ∼ q1(·),
–Compute the particle

weights w(i)
1 as in BPF end

for
2.For t from 2 to T

For i from 1 to N
–set w̃(i)

t−1 ∝ w(i)
t−1 p̃(yt |x(i)t−1|t−2)

Resample {x(i)1:t−1|t−2, w̃
(i)
t−1} →{

x(i)1:t−1|t−1,
1
N

}
;

end for

–For i from 1 to N
sample x(i)t|t−1 ∼ q(x(i)t |x(i)t−1|t−1,yt)
set

w(i)
t ∝

p(yt |x(i)t|t−1)p(x
(i)
t|t−1|x

(i)
t−1|t−1) p̃(yt+1|x(i)t|t−1)

q(xt|t−1|x
(i)
t−1|t−1,yt ) p̃(yt |x(i)t−1|t−1)

end for
end for

4 Simulations and results

The performance of the method under discussion is
demonstrated through a simulated standard stochastic
volatility model SV with uncorrelated measurement. The
SV model is the alternative to the Autoregressive
Conditional Heteroscedasticy (ARCH) and GARCH type
processes which assumes two error processes; SV allows
the variance of the returns to be an unobserved random
process. This implies that the SV models can be more
flexible than the ARCH - type models in fitting the data. It
allows modelling two of the main features of the financial
time series i.e. time varying volatility and clustering
phenomena in volatility. The first SV model appeared in
1973 (attributed to Clark); in its most simple continuous
form was proposed by Taylor (1986). During the last two
decades extensive research has been carried out on this
type of models. Many extensions to the SV models have
been proposed in the literature. For a comprehensive
discussion on the models see, for example Casarin[9],
Liesenfeld, Richard [17], Shephard [21], Shephard and
Andersen [22], and Tsyplakov [25].
We define the model assuming thatyt is the observed
return, andxt the unobserved log-volatility and in order to
proceed sequentially, identify latent variables and
observations by conditional distributions

p(xt+1|xt ,θ ) =
1√

2πσ2
η

exp

(
− (xt+1−α −φxt)

2

2σ2
η

)
,

(17)
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p(yt |xt ,θ ) =
1√
2π

exp

(
−1

2

(
y2

t

exp(xt)
+ xt

))
, (18)

where φ is the persistent parameter that allows for
volatility clustering (|φ | < 1), α is interpreted as the drift
(shift) parameter,σ2

η is the volatility of the volatility
factor, andθ = [α,φ ,σ2

η ] is the parameter vector.
To implement APF, we propose using a linearized method
(LM) based on the first and second Taylor’s series
approximation.
In order to simplify the necessary calculations, we
introduce the function as the logarithm of the target
functions:

l(xt) = ln p(xt |xt−1,yt). (19)

Assuming thatl(xt) is twice differentiable with respect to
xt , it can be approximated as follows

l(xt)≈ l(x)+ [l′(x)]T (xt − x)+
1
2
(xt − x)T l′′(x)(xt − x),

(20)

where l′(x) = ∂ l(xt )
∂xt

∣∣∣∣
xt=x

, l′′(x) = ∂ 2l(xt )

∂xt ∂xT
t

∣∣∣∣
xt=x

, and the

point x is chosen arbitrarily. If the functionl(xt) is
concave, formula (16) is then equivalent to the following

C− 1
2
(xt − x−m(x))T Σ−1(x)(xt − x−m(x)) , (21)

where Σ(x) = −l′′(x)−1, m(x) = Σ(x)l′(x), and C is a
constant independent ofx.
The above considerations as well as the definition of the
function illustrate that the importance function is a
Gaussian distribution function of known parameters:

q(xt |xt−1,yt) = N (m(x)+ x,Σ(x)) . (22)

For more details, please see Doucet et al.[10].
Another method is the Laplace approximation (LA)
technique, which consists in an expansion of the
logarithm of p(xt |xt−1,yt) around a point
xt,max = argmaxxt l(xt). The derived approximation has
the following form

l(xt)≈
∂ 2l(xt)

2∂x2
t

∣∣∣∣
xt=xt,max

(xt − xt,max)
2
, (23)

which resembles the log-kernel of Gaussian density.
Consequently, we approximateq(xt |xt−1,yt) by an
unnormalized Gaussian

q(xt |xt−1,yt) =Cexp

(
− (x− xt,max)

2

2Ht

)
, (24)

where Ht =

(
∂ 2l(xt )

2∂x2
t

∣∣∣∣
xt=xt,max

)−1

, and C is normalizing

constant.
In this paper, our main goal is to discuss the possibility of

improving the PF method by applying a Pearson curves
technique (PC) for approximation of functionsp(yt |xt−1).
The details of the method are placed in the Appendix.
It can be easily checked that the function under
consideration is symmetric, and its kurtosisβ2 depends
on σ2

η , (β2 = exp(σ2
η ). It takes the form of either the

Pearson type II curve (ifβ2 > 3) or type VII (for β2 < 3),
or the Gaussian curve (ifβ2 = 3), see Johanson, Nixon
and Amos [14]. A thorough theoretical analysis of APF
for its effectiveness shows that we should select a
function p̃(yt |xt−1) with thicker tails thanp(yt |xt−1) (so
that the importance weights should be upper bounded).
Therefore, we assume that ˜p(yt |xt−1) is a Pearson type
VII distribution with a shape parameterm and a scale
parametera, defined by the density

fV II
a,m (y) =

2Γ (m)

a
√

πΓ (m−0.5)

(
1+

y2

a2

)−m

I[0,∞)(y), (25)

where m = 5β2−9
2β2−6, a =

√
2µ2β2
β2−3 , Γ (·) is the gamma

function. Additionally, due to the fact that the
observations can assume both positive and negative
values, it is necessary to extend the function in (4.9) to the
negative axis. Assuming that they appear equally often,
we consider a combination of PC VII defined on the
whole of the real line

fV II
a−,a+,m−,m+

(y)=
1
2

(
fV II
a,m (y)I(−∞,0)(y)+ fVII

a,m (y)I[0,∞)(y)
)
,

(26)
where the parameters(a−,m−), (a+,m+) are determined
separately for negative and additive sets of{yt}t .
Figure 1 indicates how the auxiliary particle filter
combines with the PC technique approximates the true
value of the state variable of the considered SV model.

In order to investigate the performance and compare the
accuracy of the proposed algorithm, we evaluate its
effectiveness by the Root Mean Squared Error (RMSE)
defined as

RMSE[t] =

(
t−1

t

∑
k=1

(xt − x̂t|t)

) 1
2

, (27)

which measures the distance between the truext and the
filtered series ˆxt , where

x̂t = E[xt |y1:t ] =
N

∑
i=1

w(i)
t x(i)t . (28)

The presented theory is justified by several computer
simulations. In these simulations we assume that
parametersα, φ are constant (α = 0.3, φ = 0.8) while
manipulating the level of theσ (most filters are sensitive
to the size of the disturbance which is exposed to hidden
variables). For this we denote models M1, M2, M3 for
σ = 0.5, σ = 1, σ = 2, respectively. Additionally, we
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Fig. 1: The results of filtering estimates obtained for the
stochastic volatility model by the APFPC algorithm for the
considered SV model (4.1)-(4.2) with parametersφ = 0.8, σ2 =
1, α = 0.3, T = 1000, number of particlesN = 1000 where x0 is
the latent state of simulated process and xH denotes the state of
filtering process.

compare the three algorithms: the proposed APF
(APF PC), the well-known SIR filter (denoted as KPF),
and the APF described in Pitt et al. [19] (APF P).
Depending on IS, the algorithms are denoted as APFLM
(for the linearized method), APFLA (when IS is
calculated by the Laplace approximation) and APFPC
(when IS is a prior kernel). Simulation results for the
proposed technique are presented in Figure2. The

conducted simulations unequivocally illustrate the fact
that the PF method with the IS function determined by
linearization is burdened with the biggest estimation
error. The result is particularly worthy of notice as LM is
one of the most frequently proposed methods of
determining the importance sampling density in literature.
Therefore, in our further analysis, we will deal with
a comparison of KPF, APFP, APFPC.

Finally Figure 2 shows that the proposed technique,
regardless of the model, outperforms the conventional
particle filter. This fact is emphesized by Figure 3 where
we can see that APFPC performs better than other
methods. Surprisingly, an increased number of generated
particles does not noticeably minimize the RMSE error,
which is a valuable observation in practical terms. It is
interesting to point out that the evaluated RMSE is close
to the volatility of underlying state process.
Due to the time-consuming resulting from SMC
computational complexity and generally known fact that
the Monte Carlo estimation methods require a large
number of MC simulations to ensure the desired
efficiency of the estimation it is extremely valuable

Fig. 2: Results of RMSE for SIR and the APF techniques from
top row to bottom M1, M2, M3 respectively, which are computed
using simulated time series with lengthT = 1000 and two
different numbers of particlesN = 500 (left colum),N = 10000
(right column). In the plot we have used the following colours to
denote: pink -KPF, green -APFLA, violet -APF LM, navy blue
-APF P, dark green -APFPC. ).

Fig. 3: Box and whiskers plot of RMSE for the APFPC, APFP
and KPF techniques based on 100 independent realizations. From
left to right and from top row to bottom M1, M2, M3 respectively,
which are computed using simulated time series with lengthT =
1000 andN = 500 numbers of particles.
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advantage of the method is that it allows to obtain
significantly more accurate estimates of the state variable
for a relatively small number of simulations N.

5 Conclusions

The theory of the PF framework emphasizes the
important role played by the importance density, but it is
clear that the quality of state’s estimates improves
together with the importance weights approximation
efficiency. Thus in order to estimate these importance
weights, we have proposed the Pearson curves technique.
The performance of the method is tested for three
different models of stochastic volatility process, which is
fairly common in financial time series analysis. The
experimental comparison of the three techniques under
consideration demonstrates superior performance of the
APF PC algorithm, regardless of the model. Additionally,
our modification, as outlined above, makes APF
straightforward and quick to implement. The results we
have arrived at confirm the familiar fact that the
effectiveness of the PF estimation is heavily dependent on
the appropriate choice of the importance function
sampling as well as the selection of importance particles
(correctness of resampling).
An altogether separate issue in the field of PF is the
question of estimation of structural model parameters. It
is worth noting that relevant literature distinguishes
between two approaches: in the first one parameters are
treated as hidden variables (extension of state-space is
carried out); see: Liu and West [18] and Polson, Stroud
and Müller [20], whereas the second approach makes use
of the EM method and particle filtering jointly (EM-PF).
Some examples of estimation of structural parameters of
a model using EM-PF can be found in Kantas, Doucet,
Singh, Maciejowski [16] and Cappé [5]. In the future, it
would be interesting to compare and study the efficiency
of estimation of our modification of PF combined with
online Expectation Maximisation algorithm and the
HMM-particle learning method for model parameters.

Appendix: Person curves technique for APF

In this section we demonstrate a Pearson curves technique
approximation which relies on the fact that the first four
moments are available although the density itself is
analytically intractable or unknown. Karl Pearson
introduced the system of classification densities by the

shape parameters: skewnessβ1 =
µ2

3
µ2

2
and kurtosis,

β2 = µ4
µ2

2
(they are tabulated), where

µk = E[(yt −E[yt |xt−1])
k|xt−1] is a k-th central moment,

k = 2,3,4.
To provide approximations ofp(yt |xt−1)) distributions for

SV model we rewrite the model as a discrete state space
model, see Taylor (1986)

xt = logσ2
t

x1 ∼ N

(
α

1−φ
,

σ2
η

1−φ2

)
,

xt+1 = α +φxt +σηηt ,

yt = exp
(xt

2

)
εt ,

[
εt
ηt

]
∼ N

(
0,

[
1 0
0 1

])
, t = 1, . . . ,T.

We can compute the explicit form of the mentioned
moments:

E [yt |xt−1] = E

[
exp

(
α +φxt−1+σηηt

2
εt

)∣∣∣∣xt−1

]
= 0,

µ2 =Var [yt |xt−1] = exp(α +φxt−1+0.5σ2
η),

µ3 = 0,

µ4 = E
[
y4

t |xt−1
]
= exp(2α +2φxt−1)exp(2σ2

η).

Accordingly, we can conclude thatp(yt |xt−1) is a
symmetric function, described by kurtosisβ2 = exp(σ2

η)

which depends on σ2
η (the variance of

a stochastic component of state equation).
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