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Abstract: We consider the theoretical question concerning time serfgch arises when the distribution of the observed vagiahin
fact a conditional distribution. The Kalman filter provides effective solution to the linear Gaussian filtering peoll However, when
state or measurement, or both, are highly non-linear, astegor probability distribution of the state is non-Gaass the optimal
linear filter and its modifications do not provide satisfagtresults. The Sequential Monte Carlo method (SMC) havemecone
of the familiar tools that allowed the Bayesian paradigm ¢oalpplied to approximation of sophisticated models. In ffaiper we
propose a novel construction of an auxiliary particle fi{#sPF) algorithm using the Pearson curves technique (PGgdproximation
of importance weights of simulated particles. The effemi®ss of the method is discussed and illustrated by nurheemalts based
on the simulated stochastic volatility process SV.

Keywords: Sequential Monte Carlo methods; state-space models;asticivolatility process SV, Pearson’s curves technique

1 Introduction performing online estimations. In this paper, we propose a
different approach which is based upon the Sequential
In practice, many problems in stochastic dynamicalMonte Carlo (SMC) methods - the technique known as
systems require an estimation of the state of a systenthe particle filtering (PF). This method is becoming
changing over time using a sequence of noisyincreasingly popular in economics and finance as an
measurements made on the systems. The article conceragernative to MCMC methods. The particle filter is a set
the nonlinear filtering problems which appear in manyof Monte Carlo schemes that enable Kalman-type
diverse fields including economics, statistical signal andrecursions when normality or linearity, or both, are
engineering. abandoned. The PF methods are sampling algorithms
Optimal filtering consists in a recursive estimation of the which combine importance sampling and resampling
sequence of posterior densiti§P(x|y1¢) =0, Which ~ schemes. Although it has been two decades since PF first
summarizes all the information about the system state@ppeared in Gordon, Salmond and Smithl][ and
X1t under the assumption that the observati¥ps are immense literature can be found on their theory, it still
available. Where, for any proce$& }i>1 the realizations represents an area of active research. The standard
from timet =i tot = j are denoted as;;j = (z,...,z). reference for SMC methods is Doucet, De Freitas and
Complex models often lead to integrals that cannot beGordon [L0], and Cappé, Godsil, Moulines 3],
solved analytically, therefore it is advisable to use MonteArulampalam, Maskell, Gordon, Clappl][ Doucet,
Carlo approximation methods. Recently, for the Johansen 11}, Sarkka PR3 for recent reviews. We
estimation of multiple distributions, the Markov Chain propose a new construction of an auxiliary particle filter
Monte Carlo (MCMC) methods have been preferred.(APF) algorithm using the Pearson curves technique for
However, MCMC methods require a complete the approximation of importance weights of simulated
"browsing” of the observations set, which is why they do particles. The algorithm is verified against the particle
not make the right strategy for sequential estimation.filter in application to the stochastic volatility procesé S
MCMC- based algorithms are very time consuming whenNumerical results show that the proposed approximation
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proves far more accurate than the basic particle filterwhich is known as the updating step. The formub (
(known as the bootstrap filter). All simulations and employs the dynamics of the model defined earl@r (
calculations were carried out on a 1.6 GHz Pentium(3) and a one-step ahead forecast distribution:

4CPU using the author’'s software written in Visual

Studio. p(Xt|Y1171)=/p(Xt|Xt71)p(Xt71|Y1171)dXt71- (6)

The likelihood function for a single observation is given
. by the formula:
2 A Bayesian approach to state-space Y

modelling P(Ytly1t-1) = / P(Yt %) P(% [Y11-1)dX:- (7)

Although the methodology can be applied to moreln this research, it is assumed that density functions:
complex systems, in the following research we consider a(Yt|%), P(X|%-1) are known andp(yt|yit-1) > O.
discrete state space model (DSSM) with a first-orderDespite its apparent simplicity, the recursion formula in
Markov state process and conditionally independentquation §) rarely admits a closed-form expression
observations (sometimes termed as hidden Markoynotably the linear-Gaussian case, which leads to the
models, HMM). A DSSM consists of Kalman filter), hence it is necessary to employ
a stochastic propagation equation, which links the currengpproximations.

state vector to the prior state vector, and a stochastic

observation equation, which links the observation data to i . i .

the current state vector. 3 The |dea Of paI’tIC|e f||ter and aUXI|IaI’y

Let us consider a probability spade?, =, P), and define  particle filter

the following modelX; - a hidden (latent) state process as . ) ,

a stationary and ergodic Markov process, characterized bit IS worth noting that the basic variants of PF are the

invariant initial probability density of state extended version of the Sequential Importance Sampling
(SIS) algorithm with an added resampling step (known as
X1 ~ po(X1), (1) the Sequential Importance Resampling, SIR). Therefore,

N T the two most important elements of the method which
and Markov transition probability distributiop(X'[x), for  determine its effectiveness are; the way of selecting an
t>1: importance sampling distribution (IS) (also referred to as

the proposal distribution, or the importance function, IF)

Xe|(Xet-1 = X12-1,Y12-1 = Y11-1) ~ P&%-1)- - (2 and the property of resampling procedure.

Recall that the idea of SIS is to propose an importance
functionq(-) which: should resemblp(-|y1t) as much as
possible, is easy to sample from and fulfills the
implicationp(-|y11) >0 = q(-) > 0.
In literature we can distinguish between two versions of
IS: the first, where the importance function is taken to be
the transition density (approach known as the kernel

Vi (Xat = Xa4, Yia-1 = Y1e-1,0) ~ p(ye[x).  (3)  density),i.e.

As indicated by its name; is observed not directly but
through another procesgY; }en. The observations are
assumed to be conditionally independent when gen
and their common marginal probability distribution is
expressed as follows:

Depending on contextp will denote a probability A0¢Pas-1,y11) = Pxx-1), (8)

distribution or a probability density function. and the second, known as the optimal IS, where in order to

The sequential inference on the latent procégsis make the method more effective the definition incorporates

typically based on the sequence of posterior distributiondoth the state and observation processes:

p(x11t|y11), where each summarizes all the information _

cc()IIeclted) aboul;; up to timet. In a Bayesian context, A0¢ a1, Y1) = P2, Yo)- ©)

sequential estimation of these distributions can be easilyoetailed derivatives of the importance distribution can be

achieved using the following updating formula: found in the references section. It is worth noting that the
importance sampling density determines the form of the

PVt %) PO |%—1) @ importance weights which are used for required density

P(Ye|y1t-1) approximation:

In relevant literature, the optimal filtering problem is — w{® = w(x{) o PGazlyie)
defined by a recursion satisfied by the marginal BRI (CSEZEY

distributionp(x lys2) . { w1043 1) POlx”) dia g0efxae-1,%) = POtI-1)

P(Yt %) P(X%|Y1t-1) VVFl(X(li:)t—l) PVt ‘XQl) dla q(xx_1,%) 2 p0x/%_1,%)
P(Yely11-1)

P(Xwt|y11) = P(X1t-1/y11-1)

P(X|y1t) = (5) (10)
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In the paper we assume that the weig]vftjs, t=1,...,T,
i=1,...,N are determined up to a multiplicative constant
andy™ w =1.

By optimal IS we understand a function which minimizes

the variance of the importance weights conditional upon

the simulated trajectorxfli,)[_1 and observationg, i.e.

var w] =o. (11)

(Xt‘xlt 1vle>[

It is worth pointing out that on the one hand, the optimal
importance function limits the degeneracy algorithm,

M _ SN )
X =Xy, W =
end for

N71

It is worth noting that the algorithm 1 is substantially

more efficient than the most popular multinomial. Its

processing time is reduced, whereby it is very attractive
for hardware implementation, for details see: Boli¢ et al.
[2], Hol, Schon, Gustafssorl . Now, we can present the

inasmuch as it takes into account the information abousimplest case of particle filtering algorithm, also known

the current observation. But, on the other, it suffers from
two major drawbacks it requires the ab|I|ty to sample

from p(xt|xt 1,yt) and evaluatep(yt|xt 1) (which, in

general, do not occur in an analytical expression). In the

case where the formula9) cannot be expressed

analytically, a suboptimal approach is proposed, se¢

Doucet et al. 10] (we will discuss it in detail later).
In literature, it is a well-known fact that importance
sampling method (and sequential importance sampling
suffers from severe drawbacks. One of its most importan
shortcomings is a sample impoverishment. As the
variance of the unnormalized importance weights tends tq
increase exponentially with time, it results in a potential
degeneracy of the approximation. In practice this mean
that after a few time steps, a very small subset of particle
takes all the probability mass, which implies that
a discrete measure approximation of the filtering density
becomes invalid and useless. The degeneracy is routine
measured using the1 effective sample size criterion
s= (ziN:l(wt('))z) . TheNgss below a pre-specified
threshold (typically Nt = 0.5N ) implies that the
degeneracy is too high. To prevent the degeneracy
problem, it is recommended to re-draw the generate
samples (known as a resampling step). The idea o
resampling is very intuitive and relies on replicating the
particles with higher weights and discarding those with
negligible weights. The most common resampling
schemes are discussed for example in Boli¢, Djuri¢, Hond
[2].
In this paper we make use of the residual systematig
resampling (RSR), which can be implemented by using
the following steps:

Algorithm 1: RSR

1. Sanpl e U© ~ Unif ((0, &])
2.For i from1 to N calculate
Nt(l) _ {(Wt(l) _U(l—l))NJ +1,

U =yl-1 ¢ N[(i)N—l _ Wt(i)

The resanpl ed particles

as the bootstrap filter (algorirhm 2), see Gordon et al.
[12], Doucet et al. 10,11]:

Algorithm 2: Bootstrap filter, BPF , [10]

Put t=1
For i from1l to N

—sarpl & K, ~ ()
—Conpute the particle weights
wi) — p1<x‘1'f1>p<y1\><§fl>

! q1 (Xg‘)l)

[

end for

For t from2 to T
For i from1l to N

—Sanpl e X[\t 1NQ(Xt |X[ 1\t i

{4}

1t 1t 1vxt\t 1
—Comput e the_ [ rrport ance wei ght s
wl) DWle(yr\xtft v <xm e )
Xt\t 1‘X[ 1t 1yt)

j o

(1)
set Ky 4=

! end for

| ff NESS< N,

Resanmpl e {x(lii‘til,
(i)

_ )
1t = X1

t=t+1 end for

t hen

()

W () 1

11\t7N}

el se x

set

Through PF in particular, we obtain the Monte Carlo
approximation of the filtering distribution, which is an
empirical distribution formed from a set of random
samples (known as particles) with associated weights

ZW (X1t — X11\t V-

More formally (after the resampling step), the weighted
distribution (L2) is replaced by the unweighted measure

1 (i
i=

P(X1t|y1t,0) (12)

P(X1t|y1t, 0 (13)
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whered(-) is the Dirac delta function, amd[(i) denotes the

normalized importance weight attached to parti(f,ilé )

The random measuré?) can be used to approximate any —Sanpl e X(ll‘o ~ ("),
integral. As an example we can consider an expected value —Conpute the particle
of an integrable real functiog: wei ght s w<1') as in BPF end
N for
A (1) 4 (4 (D) 2.For t from2 to T
=) W X . 14
pN(d)) iZi t ¢( 11“_1) ( ) For i from1 to N

(1) () = (i)
—set W', OwW, P(ye|x 41
According to the strong law of large numbers (under mild 1 1P i 2

assumptions) Resanpl e {Xgi,l‘t,zawfgl} —
Bn(®) .~ P(9), (15) CTI-Y

where a.s. denotes an almost sure convergence. Details pf end for

this basic proposition and its proof can be found, among .

others, in Doucet et al1[]. —For i frc(;ign 1 t°<i')\‘ i)

Literature features various methods of PF optimization sanmpl e x; ; ~ a0 X g-1o%)

which mainly consist in applying selected suboptimal set i 1m0 sl )

function approximation methods, or some modifications w) O PRt Py a gy o PO

of the resampling procedure, for example: Johansen, q(mtflwl‘t,yw)ﬁ(yt\xt(?l‘t,ﬁ

Doucet Prokhorov, Yul5], Douc, Moulines, Olsson7], end for

Doucet et al. 11], Del Moral, Doucet, Jasral]. end for

The modified construction of APF we propose consists in
the use of Pearson curves (PC) for an approximation o
simulated particles weights. The idea of APF is strongly
associated with the fact that when we use the optimal

importance function9), the weight (0) (at timet) does . .

not depend on the stake Therefore, it seems wasteful to 4 Simulations and results

resample particles at the end of iteratipR 1 prior to

consideringy;. Instead, it is proposed to employ the The performance of the method under discussion is
knowledge about the next observation before resamplinglemonstrated through a simulated standard stochastic
to ensure that particles are compatible with thatvolatility model SV with uncorrelated measurement. The
observation. APF was first described by Pitt and ShephargV model is the alternative to the Autoregressive
[19), and almost simultaneously by Carpenter, Clifford Conditional Heteroscedasticy (ARCH) and GARCH type
and Fearnhead]. It can be shown that the APF proposed processes which assumes two error processes; SV allows
in Carpenter et al.g], may be interpreted as SIR with a the variance of the returns to be an unobserved random
target function p(xit|ly1t+1). Having selected the process. This implies that the SV models can be more
appropriate importance functiog(x|x—-1,y;) and the flexible than the ARCH - type models in fitting the data. It
resampling strategy, we can now summarize theallows modelling two of the main features of the financial
considered APF algorithm as the pseudo code describetime series i.e. time varying volatility and clustering

below in Algorithm 3. phenomena in volatility. The first SV model appeared in
It is worth noting that by employing the following 1973 (attributed to Clark); in its most simple continuous
algorithm, we can obtain the approximation: form was proposed by Taylor (1986). During the last two
- N decades extensive research has been carried out on this
P(Xalyrt+1) O P(Xet|y1e) BVi+1/%0), (16)  type of models. Many extensions to the SV models have

been proposed in the literature. For a comprehensive
discussion on the models see, for example Casjrin[
d_iesenfeld, Richard 17], Shephard 21], Shephard and
Andersen 22], and Tsyplakov25].

We define the model assuming thatis the observed
return, ands the unobserved log-volatility and in order to
proceed sequentially, identify latent variables and
observations by conditional distributions

where plyi;+1/%) is the approximation of function
P(Yi+1/%). However, p(xi1|y11) is not approximated
directly, hence it is necessary to modify the associate
importance weights, see Doucet et all][for details.

Algorithm 3: Auxiliary particle filter, APF

1.Put t=1 1 (Xt _a_qoxt)z
i ,0) = exp( — 2L ,
For i from1 to N P(X+1/%,6) \/Zroﬁ p( 20%
(17)
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2 improving the PF method by applying a Pearson curves
1 1 i technique (PC) for approximation of functiopéy:|x_1).
POkIx, 6) = \/2neXp< 2 (exp(xt) +Xt)> - 18 The details of the method are placed in the Appendix.

where @ is the persistent parameter that allows for ::toncsailgergﬁof?:"sy r:gigrl?cedargzaittstESrté%ncélgnenudnsder
volatility clustering g(p| < 1), a is interpreted as the drift Y ' 2 Cep

; . h - on a2, (B2 = exp(a?). It takes the form of either the
hift t th latility of th latilit N nr
(shift) parameteroj is the volatility of the volatility Pearson type Il curve ({8, > 3) or type VII (for 3, < 3),

— 27 i
facf[or, andd = [a, ¢, 03] is the parameter vector. r the Gaussian curve (f§, = 3), see Johanson, Nixon
To implement APF, we propose using a linearized metho nd Amos 14]. A thorough theoretical analysis of APF

(LM) based on the first and second Taylors seriesg,. i1 effectiveness shows that we should select a

approximation. . function p(yt|%—1) with thicker tails thanp(yi|%—1) (so
In order to simplify the necessary calculations, We a4 the importance weights should be upper bounded).
introduce the function as the logarithm of the target 1 arefore. we assume thatyix_1) is a Pearson type

functions: VII distribution with a shape parameten and a scale
1(x) = In p&[xe-1, %t)- (19)  parameten, defined by the density
Assuming that(x) is twice differentiable with respect to
X, it can be approximated as follows VI 2 (m) 1 y? 7m| 25
. am(y) = av/T (m—05) P 0e)(Y); (25)
1) 2 1 () + [1'(0)] T (% = %) + 5 (% =X)T1"(x) (% —X),
2 (20) where m = ggg:g, a= ,/%‘;—2_332, () is the gamma

) . -
where I'(x) = ala(;@ L 17(x) = zlgﬁ and the functlon.. Additionally, due to the._fact that the.

Y XX [y observqtlpns can assume both positive and negative
point X is chosen arbitrar”y_ If the function(xt) is values, it is necessaryto extend the function in (49) to the

concave, formula (16) is then equivalent to the following Negative axis. Assuming that they appear equally often,
we consider a combination of PC VII defined on the
whole of the real line

1

where 5(x) = —1"()%, mx) = ZI(0, andC is a & -amm ¥ =3 (EmW)leg M)+ mW)low ().

constant independent &f (26)

The above considerations as well as the definition of theVhere the parameteta_,m_), (a,m. ) are determined
function illustrate that the importance function is a Separately for negative and additive sets ;.

Gaussian distribution function of known parameters: Figure 1 indicates how the auxiliary particle filter
combines with the PC technique approximates the true

a(%%_1,¥%t) = N(m(x) + X, Z(x)). (22)  value of the state variable of the considered SV model.

C— 500 —x—m0)) =19 (4 —x—m(x)),  (21)

For more details, please see Doucet efl].| In order to investigate the performance and compare the
Another method is the Laplace approximation (LA) accuracy of the proposed algorithm, we evaluate its
technique, which consists in an expansion of theeffectiveness by the Root Mean Squared Error (RMSE)
logarithm  of  p(x|%_1,%t) around a point definedas

Xtmax = argmax, |(x). The derived approximation has 1
2

the following form t
RMSE[t] = {t™ 5 (% —%yp) | (27)
1) ~ 2100 (% —xmad?  (23) -
~ — At,max) >
20¢ X=Xt max which measures the distance between the xusnd the

. . .. filtered series¢; where
which resembles the log-kernel of Gaussian densny.I 163, W

Consequently, we approximate|(x|x-1,¥t) by an N
unnormalized Gaussian % = Ex|y1t] = let(')Xt(')- (28)
i=

X — X max)*
Q(Xt|Xt1,yt)=CeXp(—%), (24)  The presented theory is justified by several computer

simulations. In these simulations we assume that
-1 parametersx, @ are constantq = 0.3, ¢ = 0.8) while
02|(><§) , andC is normalizing ~ Manipulating the level of the' (most filters are sensitive
2% {5 e mae to the size of the disturbance which is exposed to hidden
constant. ' variables). For this we denote models M1, M2, M3 for
In this paper, our main goal is to discuss the possibility ofo = 0.5, 0 = 1, g = 2, respectively. Additionally, we

where H; =
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N=500 N=10000
M1
8 x0 e =
— xH ’F_ =]
M2
- $ice, o
-4 % s ato b0 =
0 200 400 600 800 M3
S A .
Fig. 1: The results of filtering estimates obtained for the === ::k%_,_l__ e
stochastic volatility model by the ARPC algorithm for the , .

considered SV model (4.1)-(4.2) with parametgrs 0.8, g2 =
1,a =0.3,T =1000, number of particled = 1000 where x0 is
the latent state of simulated process and xH denotes tredtat

filtering process. Fig. 2: Results of RMSE for SIR and the APF techniques from

top row to bottom M1, M2, M3 respectively, which are computed
using simulated time series with length = 1000 and two
different numbers of particled = 500 (left colum),N = 10000
(right column). In the plot we have used the following co®tw
compare the three algorithms: the proposed APFdenote: pink -KPF, green -AREA, violet -APF_LM, navy blue
(APF_PC), the well-known SIR filter (denoted as KPF), -APFP, dark green -APFPC.).
and the APF described in Pitt et allg (APF_P).
Depending on IS, the algorithms are denoted as ARF
(for the linearized method), ARPEA (when IS is
calculated by the Laplace approximation) and APE
(when IS is a prior kernel). Simulation results for the

proposed technique are presented in Figdre The ¢

conducted simulations unequivocally illustrate the fact .| i

that the PF method with the IS function determined by + ; e —
linearization is burdened with the biggest estimation s i |
error. The result is particularly worthy of notice as LM is

one of the most frequently proposed methods of

ML

APF_PC APF P KPF

determining the importance sampling density in literature ,;_ o

Therefore, in our further analysis, we will deal with

a comparison of KPF, APIP, APEPC. 7l

Finally Figure 2 shows that the proposed technique, ™ : +
regardless of the model, outperforms the conventiona || i

particle filter. This fact is emphesized by Figure 3 where I

we can see that APPC performs better than other 4
methods. Surprisingly, an increased number of generate
particles does not noticeably minimize the RMSE error,
which is a valuable observation in practical terms. It is
interesting to point out that the evaluated RMSE is closeFig. 3: Box and whiskers plot of RMSE for the APFC, APEP
to the volatility of underlying state process. and KPF techniques based on 100 independent realizatims. F
Due to the time-consuming resulting from SMC lefttorightand from top row to bottom M1, M2, M3 respectiyel
computational complexity and generally known fact that which are computed using simulated time series with lefigth
the Monte Carlo estimation methods require a largel000 andN =500 numbers of particles.

number of MC simulations to ensure the desired

efficiency of the estimation it is extremely valuable
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advantage of the method is that it allows to obtain SV model we rewrite the model as a discrete state space
significantly more accurate estimates of the state variablenodel, see Taylor (1986)
for a relatively small number of simulations N.

x = loga?
5 Conclusions W@ o2
X1 ~ —

- 1 1_ (pa 1_ (pz )
The theory of the PF framework emphasizes the
important role played by the importance density, but it is -
clear that the quality of state’s estimates improves Xeb1 = O+ @K A+ O,
together with the importance weights approximation %
efficiency. Thus in order to estimate these importance Wi :exp(E) &,

weights, we have proposed the Pearson curves technique.

The performance of the method is tested for three

different models of stochastic volatility process, whish i [& ] ~N <o, [1 OD t=1,....T.

fairly common in financial time series analysis. The Mt 01

experimental comparison of the three techniques under - .
consideration demonstrates superior performance of the W€ can compute the explicit form of the mentioned
APF_PC algorithm, regardless of the model. Additionally, Moments:

our modification, as outlined above, makes APF O+ Q% 1+ 000

stralghtfo_rward and qu!ck to |mplem.e_nt. The results we Elyi|% 1] =E [exp<#&) ‘Xt—l] =0,
have arrived at confirm the familiar fact that the 2

effectiveness of the PF estimation is heavily dependent on

the appropriate choice of the importance function Lo = Var [yt|%_1] = exp(a+qoxt,1+0.50,§),
sampling as well as the selection of importance particles
(correctness of resampling).

An altogether separate issue in the field of PF is the
question of estimation of structural model parameters. It
is worth noting that relevant literature distinguishes ~ M4=E [Wx-1] = exp(2a + 29 1) exp(207).
between two approaches: in the first one parameters are

treated as hidden variables (extension of state-space i : -
carrieq out); see: Liu and West§| and Polson, Stroud Is&;r%?rﬁltl:i%b;hnvc\:/ﬁonc,ac:]escccr)irt]ggdbey iﬁ?&%’gi 1e)xp|(302()a
and Muller [20], whereas the second approach makes use” . ’ . n

of the EM method and particle filtering jointly (EM-PF). Which ~ depends —on o;  (the variance  of
Some examples of estimation of structural parameters oft Stochastic component of state equation).

a model using EM-PF can be found in Kantas, Doucet,

Singh, Maciejowski 16] and Cappé¥j]. In the future, it

would be interesting to compare and study the efficiencyFunding

of estimation of our modification of PF combined with

online Expectation Maximisation algorithm and the

HMM-particle learning method for model parameters. ~ This research was in part supported by a grants from the
Polish National Science Centre
UMO-2013/11/D/HS4/04014

and 04.0.09.00/2.02.03.01.0007 NCN. ZKEZ.14.002.

Hz =0,

Appendix: Person curves technique for APF

In this section we demonstrate a Pearson curves technique
approximation which relies on the fact that the first four NOtes
moments are available although the density itself is

analytically intractable or unknown. Karl Pearson The results presented formed part of PhD thesis of
introduced the system of classification densities by thefirst-noted author written under the aegis of second-noted

2
shape parameters: skewnefs = % and kurtosis, author.

2

_ Ha
B = u3 (they are tabulated), where Part of the presented results were discussed at The 7th

tx = E[(yt — E[Wt|%_1])¥[%_1] is a k-th central moment, Scientific Conference on Modelling and Forecasting of
k=2234. Socio-Economic Phenomena May 7 - 10, 2013,
To provide approximations gf(y:|x_1)) distributions for ~ Zakopane, Poland.
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