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Abstract: In this paper, we study an extended (1+3)-dimensional Kadomtsev-Petviashvili-like equation. Lie symmetry reductions of
the equation were performed and direct integration technique was adopted. Kudryashov’s approach was utilized to generate a closed-
form solution of the equation. Besides, we employ power series approach to secure a solution of the underlying equation. Solutions
found for the underlying equation include hyperbolic function as well as series solutions of the equation. In conclusion, we construct
conserved quantities of the aforementioned equation by invoking Ibragimov’s theorem.
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1 Introduction

Investigation of nonlinear wave phenomenon has made a
huge impact in many natural sciences comprising biology,
mathematics, and precisely in diverse branches of
physics, including condensed matter physics, nonlinear
optics, chemical physics, plasma physics, solid-state
physics as well as fluid dynamics. The study of nonlinear
partial differential equations is a very viable and active
area of research with regards to theoretical physics,
applied  mathematics  with  various engineering
fields [3]- [12]. In particular, considerable interest in
searching for exact travelling wave solutions of the
differential equations that delineate some significant
physical as well as dynamic processes have been one of
the main concerns and focal points to researchers.
Nonetheless, there is no general well-structured
theory that can be used to obtain exact solutions of
nonlinear partial differential equations. Nonetheless, in
later times, there has been the emergence of various
sound and efficient techniques to find exact solutions to
nonlinear partial differential equations. Some of these
techniques are bifurcation technique [13], Adomian

decomposition approach [14], homotopy perturbation
technique [15], mapping and extended mapping
technique [16], extended homoclinic test approach [17],
tanh-coth  approach [18], exp(—®(n))-expansion
technique [19], Painlévé expansion [20], Cole-Hopf
transformation approach [21], Bécklund
transformation [12], rational expansion method [22],
F—expansion technique [23], tan-cot method [24],
extended simplest equation method [25], Hirota
technique [26], Lie symmetry analysis [27, 28], the
(G'/G)—expansion method [29], Darboux
transformation [30], sine-Gordon equation expansion
technique [31], Kudryashov’s method [32], exponential
function technique [33], tanh-function technique [34] and
SO on.

In the field of mathematical physics,
Kadomtsev-Petviashvili (KP) equation which was named
after Boris B. Kadomtsev alongside his co-researcher
Vladimir 1. Petviashvili, is a partial differential equation
that expounds nonlinear wave motion. Moreover, it is
known that the study of nonlinear waves is very
significant in the investigation of diverse nonlinear
phenomena. Many researchers have investigated a variety
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of KP equations. For instance, the well-known
(1+2)-dimensional KP equation expressed as [35, 36]

gy — 6U% — Ottty + Uprey + 3ty = 0, (1)

which is an equation revealed to be a nonlinear partial
differential equation with its existence in two spatial as
well as one temporal coordinate has been studied. The KP
equation (1) recounts the evolution of nonlinear alongside
long waves that possess small-amplitude which is slowly
dependent on the involved transverse coordinate.
Kadomtsev and Petviashvili [35] relaxed the restriction
that the waves be strictly one dimensional, to derive the
completely integrable KP equation in the structure of (1).
In addition, KP equation (1) delineates the evolution of
shallow-water ~ waves that are presented as
quasi-one-dimensional, especially when effects of the
viscosity, as well as the surface tension, are found to be
negligible.

Kadomtsev-Petviashvili equation (1) has been
engaged in modelling various natural happenstances. For
instance, in the investigation of water waves, equation (1)
is revealed in the recounting of a tsunami wave that is
travelling in a zone which is non-homogeneous and
appears at the bottom of the ocean [37]. Besides, it also
emerges in the investigation of nonlinear ion-acoustic
waves found in a magnetized dusty plasma [38]. Over the
past few years, different types of research outcomes for
3D-KP equation (1) have been secured. Consequently,
travelling wave solutions in [39, 40], rogue wave, as well
as a pair of resonance stripe solitons in [41] have been
achieved for the 3D-KP equation (1). The author in [42]
investigated symmetry reductions along with conserved
quantities of the equation. The Hirota bilinear structure of
the 3D-KP equation (1) was utilized to gain mixed
lump-kink solutions with the aid of Maple software
in [43]. Furthermore, by using the exponential function as
well as positive quadratic function, line soliton pairs
together with rational lump solutions of the 3D-KP
equation (1) were established by the authors in [44].

Our work investigates the (1+3)-dimensional
extended Kadomtsev-Petviashvili-like equation ((1+3)-D
extKPle) [45]

(ut + Eui + Eu4 + éuzux> +uyy+u,; =0, (2)

2 8 2 .

which was introduced as an extended
Kadomtsev-Petviashvili-like equation via the engagement
of a generalized bilinear differential equation of KP type
of equation (1). The authors employed the bilinear
representations in Hirota sense together with a
transformation given, respectively, as

(DsD; +D}+D})f - f=0andu=2[Inf(t,x,)l,, 3)

for the derivation of the equation. Moreover, based on
generalized bilinear equation as well as Bell polynomial
theories [46], the authors constructed eighteen classes of

rational solutions to (143)-D extKPle (2) with symbolic
computation.

This study explicitly examines (1+3)-D extKPle (2)
with the use of Lie symmetry technique in conjunction
with some other standard methods to achieve new exact
solutions of the equation and its conservation laws.

The paper is outlined as follows. Section 2 highlights
the systematic way of carrying out Lie group analysis of
(1+3)-D extKPle (2) from which Lie point symmetries of
the equation are computed. In addition symmetry
reductions of the underlying equation shall be performed.
Moreover, Section 3 presents the general solution of (2)
with the aid of Kudryashov’s technique. We also secure
the power series solution of (2). Furthermore, Section 4
presents the conservation laws of the underlying equation
by utilizing Ibragimov’s theorem for conserved vectors.
Concluding remarks follow in Section 5.

2 Symmetry analysis

This section presents the computation of the Lie
symmetries of (1+3)-D extKPle (2) which shall be used in
the construction of exact solutions of the equation.

2.1 Lie point symmetries of (2)

The symmetry group of (1+3)-D extKPle (2) will be
achieved by the use of vector field structured as

d

9 0 a0 .0
_ gl Y 27 3Y 47 I
O=c g tog te gt g Mgy

with the coefficient functions (E!,E2 €3 E4 n), all
depending on (¢,x,y,z,u). Vector Q generates all the Lie
point symmetry of (2) if the condition

3 3 3
Q“Km+5ﬁ+§#+5fw)+uw+w40<®
X

holds on (u, + 3u? + 3u* + 3u?uy) _+ uyy, + uz. = 0. Here

0 stands for the fourth prolongation of vector Q and is
defined as

O = Q4+ 1"ty + 1 0o 1"+ M Ou + 17,
o )
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with ', %, n™, ™, 1° and N% defined as

' =Di(@) —uDi(§") —uxDy (§%) —uyDy(§7)

- ”th(§4)a

1" = Dy() — i Dx(E") — uxDo(E%) — uy Dy (£%)
- usz(‘§4)a

0" = Dy(1) — Dy (§1) — Dy (E7) — iy Dy (&)
—ueDi(§%),

™ = Dx(N") — uDx(§ l) - ”xxDX(‘gz) - ”@’Dx(‘§3)
— ux:Dy(EY),

N = Dy(n”) — uryDy (& 1) - ”xyDy(éz) - ”nyY(é3)
- u),ZD),(§4),

N% = D,(N%) — ur:D-(E") — uy:D,(E%) — uy,D,(E?)
—uD.(EY), (6)

representing the coefficient functions in Q1* and the total
derivatives appearing in (6) are given as

D, = at +utau + “ttau, +uxtaux +ey

D, = ax + uxau + uxtau, + “xxaux +y
Dy = 0y +uy0dy + usyOy, + thxyOyy + -+,
D, = d.+u;0,+ utzauz + szaux +eee

(N

Expansion of (4) using the values of the coefficients given
in (6) and subsequently equating all the involved
differential coefficients of u to zero, we get twenty-nine
overdetermined system of linear partial differential
equations (LPDE) which are

Nu=0,& =0,8=0,8=0,§ =0,& =0,
E3=0,67=0,&1=0,E+&=0,282+ & =0,
EL—uEl—m=0,n,—282+&' =0, 2, — &}
&y =0,287-82-&' =028 -2 &' =0,
283 +&7 =0, 2m+ & - &), =0,

3§x2u2 - 3’g'tlu2 —6Nu—6M+ 25,2 =0, N =0,
30414 + 3Metd® + 21 + 21y + 270 = 0, EF =0,
3N+ 9nu? — 3EM? + 6na+ 2+ EE+E3 =0,

whose solution gives the values of infinitesimals as

3 |
E' =1+ Scot, E2 = = (200 +eox — e4y — €52)

2 2
53 = €3+ ¢4t + €y — €72, 54 = €5+ ¢gt + €7y + €62,
1c
= — =Celt.
n 5%

Thus, we have eight Lie point symmetries of (2) listed as:

Q1=27Q2237Q3=i,
ot o Iy
Q4 = 8%’ 0s ya%z%,
Os ZZZ%—Z%7 07 221% —Y%7
0s 3t%+x%+2y%+21(% —u%.

Hence, (1+3)-D extKPle (2) admits an eight-dimensional
Lie algebra spanned by vectors Qy,...,0g.

2.2 Symmetry reduction and exact solution

Consider a linear combination of symmetries Q;, Q», O3
and Qg4 secured earlier as Q = Q1 + Y0» + O3 + Q4 with
constant ¥ # 0. We use Q to reduce (143)-D extKPle (2)
to a PDE in three independent variables. In continuation,
by solving the corresponding Lagrangian system to Q, we
gain invariants

wzx—yt,gzx—yy,hzy—z,H:u. (8)

Letting 6 serve as the current dependent variables as well
as w, g and h as latest independent variables, (1+3)-D
extKPle (2) then alters to

3H,H> 4+ 3H,H> + 3HgH? + 6H,oH? + 3H,,,H*

+6H H + 6HyH + 12H,H,,H + 2y Hyy — 4YHy,

— 2YHyyg — 2YHyny + 4Hy, + 6HyHyg + 6HgoH,,

+ 12HHyyg + 12H, Hyyg + 6HgHyy -+ 6Hy Hyy = 0. (9)

Clearly, (9) is a nonlinear partial differential equation
existing in terms of three independent variables. We
utilize the generators of (9) to further make a reduction of
the equation to a PDE in two independent variables.
Equation (9) possesses generators given as

d d d
H:%;B:a_gvl—é:%a

h d d
1“42y<wh}/§g) Fr vh=o

)
+2(h}/72w+2g)%.

If we combine generators I, I and I3 as I' =17+ 15 +
U13, (¥ # 0), we reduce equation (9). The solution of the
related characteristic equations to I yields the invariants

r=h—9%w,s=h—9g, H=G. (10)

Now suppose G is taken as dependent variable alongside »
and s as independent variables, then (1+3)-D extKPle (2)
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becomes
69°G2G + 69°G>*G + 30°G,G* 4 120°G,G,G
+69%G,,G* +39°G,.G* — 38G,G°> — 39G,G>
+ 272 G5 — 272Gy — 272Gy + 4YD Gy
+4Y8Grs — 60°GGys — 603G yGr — 129°GG
—128%G,G,; — 68°GG,, — 69°G,G,, + 4Gy,
+8G,s+4G, =0. (11)

We invoke the Lie point symmetries of (11) to transform
it to an ordinary differential equation (ODE). The
symmetries of (11) include the translational symmetries

P P
L= and 5= (12)

Contemplating the combined form of the two translation
symmetries X; and X, as ¥ = X| + vX,, with v regarded
as a constant, we gain invariants

p=s—vr,G=F (13)

and then we achieve a group invariant solution G = F(p).
Application of the secured invariants to equation (11), the
equation is transformed into

272 0°F" —2yv* 02 F" + 2yv*F" — AyvOF" + 4ySF"
+6V3IOIF F" — 18V F'F" + 4v2F" + 18V F'F"
— 8VF" +6V*O FF +4F" +3v*0°F"F? + 69%F"F
— 12v%F”?F —6vO’F"F? + 30°F"F? + 3y F'F?
—30F'F—60°F'F' =0 (14)
and consequently

o F"(p) + i F'F"(p) + aoF (p)F"(p) + a3 F (p)F' (p)
+ouF?(p)F"(p) =0, (15)

which is a fourth-order nonlinear ordinary differential
equation (NODE), where

oy =2(P0* +vZ(2 —y%) +v(y(® —2)0 —4)
+2y9+2), ap = 6(v—1)30%, ap = 6(v—1)202,

o =3v-10,a=3v-1)20%>and p=9(v—1)x
—Oyvt+ (0 —v+1)y+(v—1)z

3 Solution of (2) via the Kudryashov’s
technique

This section engages the Kudryashov’s approach [47] to

construct the exact solution of the (1+3)-D extKPle (2).
Hyperbolic solution

We now assume that the solution to the fourth-order ODE

(14) using the Kudryashov’s technique can be written in a

formal structure given as

M
F(p)=Y AH*(p), (16)
k=0

with H(p) satisfying the first-order ODE

H'(p) = H*(p) —H(p), a7
whose solution is
1
Hp) =——"-——. 18
(p) cosh p + sinhp (18)
We note that constant parameters Ay, k =0,1,--- M must

be decided but M should first be determined in (16) by
invoking the balancing procedure, see [48]. In our case
we get M = 1, and consequently solution (16) can be
presented as

F(p) =Ao+A1H(p). (19)

Inserting the value of F(p) in (19) into NODE (14) in
consonance with (17) we secure an algebraic equation
with regards to H(p) as

30VATH (p)’ + 120°A3H (p)° — 39ATH (p)°
+120%V?ATH (p)° — 240°VvATH (p)® — 120°ATH (p)°
+120°V3ATH (p)® — 3693V ATH (p)’ +360°vATH (p)°
—30VATH (p)* — 219°ATH (p)* —219*v?ATH (p)*
+4202VAIH (p)* — 98A0ATH (p)* + 30ATH (p)*
+90VA(ATH (p)* +309°ATH (p)* — 300°v3ATH (p)*
+900°VZATH (p)* + 1892A0ATH (p)* + 1892V AoATH (p)*
—360°VA)ATH (p)* +902ATH (p)® — 189*VATH (p)®
+90A0ATH (p)? — 99 VvAATH (p)® — 2493A2H (p)?
+249°V3ATH (p)? — 129°V2ATH (p)® — 99A3ATH (p)?
+90VA3ATH (p)® +720°vATH (p)? — 3002V AoATH (p)?
+600°VA)ATH (p)® +4y29%A H(p)® — 4y9*v?AH (p)?
+8V2A H(p)® + 60°A3A H(p)® + 69>V AZA H(p)?
—1209%VAZAH (p)> 4+ 8ySAH(p)® + 4y8*vA H(p)?

— 8y®dVvAH(p)® — 16VAH(p)® +8AH(p)® +69°A1H (p)?
— 693V AZH (p)? + 1803V2AZH (p)? + 90A3A2H (p)?
—90VA3AIH (p)? — 180°VATH (p)? + 120°A0ATH (p)?
+120%v?A0ATH (p)? — 240°VAGATH (p)* — 30A3A 1 H (p)?
+30VA3AH (p)? — 6 02A H(p)? + 6y9*v?A H (p)?

— 12v2A H(p)? — 99°A3A H(p)* — 99*Vv?AZA 1 H (p)?

+ 180°VvAZA H(p)* — 12y8AH(p)* — 6y8*vA H(p)?
+24VA H (p)? +99*V2ASH (p) + 12y VA H(p)?

— 12AH(p)* + 30A3A H(p) — 30VAJAH (p)
+2779%AH(p) — 2y9*V2A H(p) + 30°A3A 1 H(p)
+4v2A1H (p) + 392V AZA 1 H (p) — 3009%A0ATH (p)?
—909°vATH (p)* — 692VAZA H(p) +4yDA H(p)
+2y0°VA H (p) — 4y9VvAH(p) — 8VA H(p)

+4A1H(p) = 0.
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Further splitting the above algebraic equation into diverse
powers of H(p) furnishes

2417707 — 2417V 0% 4 2A,yv D — 4A v
+4A170 +4A,v? — 841V + 3A A5V 92
— 6A1A3VD? +3A1A307 — 3A1A3vD 4 44,
+3A1A30 =0,

(6A1YVI0% — 6417207 — 6A1 YV + 124, yv0
— 124170 +24A,v — 6ATV3 93 + 1847?93
— 18A2v19° + 6A209° 4 1240A3v? 9% — 124,V?
— 24A0ATVO? + 18AGA V2 + 124047192
—9AZA V9% — 9AZATVDY + 3A3A v
—9A%A1 0 + 9A%ATY — 3A3A10 — 124, =0,

J4A PO — 4A YV O +4A YV — 8A YV D
+ 8A170 + 84, V? + 24ATv3 9% — T2A7v2 3
+T72A2v9° + 943V 92 — 304047V 2
+6A2A,v2 9% — 1843V + 60A0AT V2
— 12434, v9* + 94792 — 30404797 + 6A3A | O
—9ApATVD +9ATATVY + 9A0AT O — 9A3ATH
—16A;v —24A%29° + 84, =0,

= 3043393 +9043v2 9% — 9043v e} + 304293
—21A3v2 07 4 184pATv2 9% 4 184pAT 92
+4243v9% — 36A0AT v — 3ATV + 9A0AT v
— 2143092 4+ 3A10 — 940470 =0,

112433 9°% — 36A3v29° + 36ATve° — 124702
+ 1243V 9% — 24A3v0? + 124392 + 3ATvo
—3AT9 =0.

The above system yields

Ag = 19(1 — V), A= 219(1 — V),

oyl {0(v+1)+2—\/v21§)2+4vﬁ—4}.

29

In consequence, the associated general solution to the
stated values of Ag, A; and 7y is expressed with regards to
hyperbolic functions as

20(1—v)

M( 7xay’Z) ( )—i_costhrSinhP7

(20)

with p=93(v—1Dx—99yvi+(y0 —v+1)y+(v—1)z
The dynamics of the solution can be viewed with
dissimilar values of the involved parameters in Figures 1,
2 and 3.

— P—

14

10+

L
-5 E 5

Fig. 1: Kink-type wave profile of hyperbolic solution (20)
att = 0.5 and x = 0.4.
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L
-5 5

-10 -5 5

Fig. 2: Kink-type wave profile of hyperbolic solution (20)

att =—03and x=0. Fig. 3: Kink-type wave profile of hyperbolic solution (20)

att =0.6 and x = —0.2.

3.1 Power series solution of NODE (15)

This subsection furnishes a solution to NODE (15) by
employing power series technique [49]. In this case we
seek a solution of equation (15) in a power series which

@© 2021 NSP
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assumes the form
F(p)=Y amp™, @21
m=0
with first and second derivatives given, respectively, as
FI P) _ Z mampm
m=0
(22)

Inserting the value of F(p) from (21) and (22) into (15),
one realizes

! and F"(p) =

m=0

oo

(0% Z m(m—1)anp™ > + oy

i mampml‘|

m=2 m=1

X Z m(l’ﬂ* 1)“»117”172 + o Z aum (23)
| m=2 m=0

X Z Zmamp +03 Z Z Zamp
Lm=1m=1 m=0m=0m=

X Z manp™ | + oy Z Z amp™ (24)

= m=0m=

X Z m(m— 1)ampmz‘| =0, (25)

m=2

which leads to a more simplified structure given as

20pa; 4 60pas + o Z (m+1)(m+2)an2p™
m=2

+2aqai1a; + 1200qaza3 + Z

m=2

m

Y (k+1)

k=0
X (m—k+1)(m—k+2)ar1am—ki2] p"

o m k+1
+a2a0a%+4a2a1a%+(x2 Z [Z Z i(k—
m=2 | k=0i=1

+2)aias_is2am i) P+ Oaga) +205a3a;

+(X3Z [ZZZm k+1)aa;—a;— j—i

0,j=0i

(ngE

Xam,k+]] P+ 206461(2)612 + 606461%613 + 0y Z [

m=

[SS]

k=1

k
X Z(m —k+1)(m—k+ 2)a,~akl~amk+2] P =0.
i=0
(26)

Next, comparing various coefficients of p in equation (26),
one achieves form =0, 1;

200par + 200 a1az + (Xzaoa% + (X3a(3)a] + 20640%02 =0,
(27)

60pas + 1200 aza3 + 4-062611(1% + 206361?(12 + 606461%613 =0
(28)

Z m(m—1)a,p™ 2.

and by generally considering m > 2, we gain

am+2 =

1 m
) @ S

=0
X (m—k+1)(m—k+2)ai1am—ri2
m k41

rand Y i

(k—i+2)aiar_i2amk

+o3 Z Z Z(m —k+V)aja;—iar—j—iam—i+1
=0 j=0i=0

m k
+oy Y Y (m—k+1)(m—k+2)aa;
f=1i=0

X p—k42 | - (29)

Using equations (27) and (28), for arbitrary constants ag
and ay, one generates

(Xzaoa% + (X3a(3)a]
200+ 20a1 + 206461(2) ’
4062010% +2(X3a?a2

. . 31
BT o + 12014 + 6oy D

(30)

Invoking recursion formula (29), one can successfully
secure other terms a,,,m = 4,5,...,0. Therefore, the
power series solution of (15) can be presented as

F(p)=ao+aip+ap’+asp’+ Y, amiop™

m=2
a 2 3
papai + ozayay )
200+ 20 a1 + 2(X4a(2)p
4062010% +2(X3a?a2 3
600 + 120103 + 6oyl

=apt+ap—

=)

)

m=2

‘l m
T wmtD(mt2) (O‘lkzo(k“)

m

X (m—k+1)(m—k+2)ap1am 2+ 0 Z
k=0

1 m k

X i(k —i+ 2)aiak,i+za,,1,k + 03 Z Z

1 k=0 j=0

Y (-
i=0

kel
+

m

k+1)aia; iag—j—i@m—i+1+ 04y
=1

X Z(m —k—+ 1)(m —k+ 2)aiakian1k+2)] pm+27

i=0

m=2,3,4,5,...
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and so the power series solution of equation (2) is given as

u(t,x,y,2) =ao+ayp+ap’+asp’+ Y amop”

m=2
2 3
Ohapaj + 0saya; p2
200 +2qa + 2064(1(2)

=ao+ap—

4a2a1a%+2a3a%az 3
B 60 + 12061612—1—606461%1)
1 m
~ o (@ B
X (m—k+1)(m—k+2)ap1am—_rs2
m k+1

Tl Y
+(X3ZZZm k+1)aa;—;

k=0 j=0i=

=

+)

m=2

714’2 aak i+20m—k

k

m
X G j—ilm—ir1 + 04 Y Y (m—k+1)
k=1i=0

X (m—k—+ 2)a,~ak,~amk+2) 1 P,
m:253a4555"' (32)

with a;, (i =0,1,2,...) regarded as arbitrary constants. It
is noteworthy to declare here that approximate structure of
(32) can be expressed as
u(t,x,y,z) =ao+a(0(v—1x—3yve+ (y0—v+1)y
2 3
O apay + 0zapa
+(v—1)g) - A TN
200 +2aqa; + 2044
X (O(v—1)x—0yvi+ (yd—v+1)y
dopaias +20a3a
B D R e e L
60y + 1201a; + 6064(11
X (O(v—1x—=0yvi+ (y0—v+1)y
+(v—=1)23+---. (33)

u = (u'u?,...,u™). In this case, we have
U(1),U(),---,U(g connoting the collections of all first,
second up until the gth-order partial derivatives, which
implies, uf = D;(u®), uf; = D;D;(uf),..., accordingly
where we have total derivative operators expressed with
regards to x' as

d o 0 o 0

Di=oa Tl G TYige

J

The Euler-Lagrange operator, for each o included in
(35), is given as

teei=1,.n (35)

1) d

5T ...Dj, , (36)
6 S>Zl l] l a loltlz l;

a=1,...,m, 37

with the Lie-Bicklund operator expressed as

.0 0 .

X=&— “— & n%ed 38
§ag T35 &n%ed, (38)

where the space o7 is taken as the space of differential
functions and operator (38) can be presented as

d d d
X = éal+n T*ZC’”Z iy (39)
l]lz l;
with
Cl (Wa)Jréj lj)
Cl] Ay _Dll Dls(Wa)+€] jl] zvs>1- (40)

In this case, we express the Lie characteristic function W&
as
o __ 0 gi
W =n E'u i 41

Consequently, the Lie-Bicklund operator (39) in a
characteristic structure can be presented as

: d
X=&¢Di+Ws—+Y Di..Di,(W*) 55—

W . (42)

o
s>1 a 1112 I
Assuming we associate the system of adjoint equations to
(34) as

He (6, u,v, U (g),v(g) =0, o =1,....m, (43)
4 Conservation laws of (1+3)-D extKPle (2) with H, given as
o . 8(vP Hp)

In this section, we do the computation of conserved vectors H (x,u,v, ..., U V(g) = s O=1,....m,
for (2) by exploiting the Ibragimov’s theorem [50, 51] for Su
conserved quantities. In doing that, we first supply some v=(x), (44)

lient ch teristi f the techni .
- I?re(l:ilflriica:ir; ics O the techinique where v = (v!,v2,...,v") are newly-introduced dependent
Contemplat " din the struct variables. Suppose that (34) admits the symmetry

offetnpiate a system expressec 1 He structire generator (38), it follows that system (44) also admits the
Ho (x,u,u(1y, -5 ug) =0, a=1,....,m, (34) operator
which is a gth-order system of partial differential 0 0 0 .
equations existing with »n independent variables Y= 5 oxt +n“ Ju® +77* e’ nd= Mg +veD;(§")];
x = (x',x%,...,%") as well as m dependent variables (45)
@© 2021 NSP
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with Y in (45) serving as an extension of (38) to the new
variable v*. Besides, AE‘ can be achieved from the relation

X(Hy) = A5 Hp. (46)

Thus, we give Ibragimov’s theorem for conserved vectors.

Theorem 41Every Lie Biicklund, Lie point as well as
non-local symmetry (38) that is admitted by the system of
equation presented in (34) produces a conserved quantity
for the system comprising equation (34) alongside adjoint
(43) with the components of C' of the conserved vector
C=(C',---,C") decided by the relation

i ; 8% 0L
C=¢%4+W*—+) D;...D;y( W*)———,
Suf s; ! l 5”3"] iy.is
i=1,....n, 47)
with a formal Lagrangian expressed as
L =v*Hy(x,u,... JU(q))- (48)

Remark 41We remark that system (34) is self-adjoint if
the replacement v = u in the system of adjoint equation
(43) produces the same system (34). For a more detailed
understanding of the proof and more information on the
results presented here, the reader is directed to [50, 51].

4.1 Derivation of conservation laws via
Ibragimov’s theorem

This subsection presents the conservation laws of (1+3)-D
extKPle (2) by invoking Ibragimov’s theorem [51]. Using
the outlined information given earlier we have the
theorem:

Theorem 427he adjoint equation of (1+3)-D extKPle (2)
is expressed as

3 3
H =v,— —vxu3 + vaxuz F 3V + 3V +Vyy +v =0

2
(49)
and the Lagrangian given as

3 3
Y =vH = v{utx + Euxu3 + Euxxuz + 3u§u + Bttty + Uy

+ ”zz}v (50
where
3 3
H=u,+ —uxu3 + —umuz + 3u)2(u + Bty + Uy + Uz

2 2
(D)

It is clear from the adjoint equation (49) and remark (41)
that (1+3)-D extKPle (2) is not self-adjoint. Therefore,
using the earlier outlined information, we have the

conserved vectors associated with Lie symmetries
previously obtained as subsequently presented. Therefore,

time translation symmetry Q; = d/dr possesses
conservation law
Ch = 2 vty + 2 vitggtl + 3o+ vitz, + vitgy + 3
1= S Vilxl o Vitelt VU + Vit + Vityy + 3Vt
+ Vi + Uy v
2 1x 2 tVxs
3 3
Cl = Eu,vxuz — Evu,u3 — Evu,xuz — 3usuuv — 3us iy Vv

1
— Eun + 3upuy vy + sy,

2
Y _
Cl = wvy — v,

Ci = uv; — ugzv.

The corresponding conserved vectors to generator O, =
d/dx which is a Lie point symmetry in x- translation, are

;1 1
Gy = UV — ZUyV,

2 2

3 1 1
G = Euxvxuz + UzV + Uy + Eu,xv + Evtux + 3u§vx,

- _
Gy = uyvy — UtyyV,

C5 = uyv; — yv.

Associated conservation law to y-translation Lie point
symmetry Q3 = d/dy is

1 1
5= FUyVx = SlhxyV,
3 3 3
CG=— Euyu3v+ Euyvxuz - Euxyuzv — Suyuyuy
1 1
— Uy — Eutyv + Ev,uy + 3uyuyvy,
, 3 3
C% = Euxu3v + Eumuzv + 3u§uv + UV + StV

+ UV + Uy vy,

7 _
C3 = uyv; — uyv.

We present the related conservation law to z-translation
symmetry Q4 = d/dz as

.1 1

Cy= Euzvx — Euxzv,
3 3 3
Cy=— 5”1”3V+ Euzvxuz — Euxzuzv — 3uuuv
1 1
— 3uyty vy — Eu,z + Ev,uz + 3uu, vy,

CX = UzVy — UV,

Z 3 3 3 2 2
Ci= Euxu v+ Euxxu V4 3uuy + tyyV + 3yl v

+ UV + UzV;.
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Rotation Lie point symmetry Qs = yd/dz — zd/dy has
conserved quantity

Ci=— Eyuxzv + Ezuxyv + E)’”z"x - EZ”YVX’
3 3
Ci=— Eyuzu3v—|— Ezuyu3v + EWZVXMZ - EZ”nyuz

3
+ Ezuxyuzv — 3yuxttuv + 3Zultyuv — 3yl v

1 1 1
— Eyu,zv + Ezu,yv + Eyv,uZ — Ezv,uy + 3yuyu,vy

3 2
— S VUUV + 3Tty — 3ZUNUyVy,

2

— Zzua®y — Zzuu’v — 3zu§uv — UzV — ZUzzV

2 2
— YUyV — 32UV — Tl V + YU Vy — ZiyVy,

3 3
Ci= Eyuxu% + Eyuxxuzv + 3yu§uv + UyV + 2ty v

+ YityyV + Byl V + Yty V + YUV, — ZUy ;.

We computed the conservation law for generator

Q¢ =2td/dz—zd/dx as

1 1
Clé = —TfUyv+ EZ“xxV+tMZVX - EZMxan

3
Ci=— 3tuzu3v + 3tuzvxu2 — Ezuxvxu2 — 3tuxzu2vv

1
— ZlyyV — O Uyl V — UV — EZszV + Ot Uy, vy

2
— —ZVUy F Vil — 32UV — UV — Uz

2
— Otuxuuv,

Cg = — 2tUyV + ZUyyV + 2tUVy — ZUyVy,
Cg = 3tuxu3v + 3tuxxu2v + 6tu)2(uv + 2tuyyy + ZUyv
+ UV + Of Uyl V + 20UV + 20UV, — ZUKY;.

Operator Q7 = 2td/dy — yd /dx possesses the conserved
quantity

1 1
C% = —tuyv+ Eyuxxv +tuyvy — Eyuxvx,

3
C=— 3tuyu3v + 3tuyvxu2 — Eyuxvxu2 — 3tuxyu2v
1
— UyV — YUyyV — Ol Uty V — tUlpyV — Eyu,xv

+ Ot ity vy — %yv,ux — Ot uyltyuy — yu;v
+tviuy — 3yu)25vx,
C%’ = 3tud v + 3tugu’v + 6tu§uv + 2tuzv + uyy
+ Yy V + Ot UtV + 28UV + 2ty Vy — YUYy,
C5 = — 2ty v + yuxv + 2tuyv, — yuv,.
Fian/agy, for Qg = 3td/dt +xd/dx +2yd /dy+ 220 /dz —
ud/du,

we calculated conserved vectors in the structure

9 9 1
Cé = EthM3V + Etuxxuzv + 9tu)2cuv + vau + 3tugv

1 3
— ZUyzV — YUyyV — =XV + Mty v + Etu,xv

2

3
+ Etu,vx + yuyvy + 3tuyyv — UyV + ZUVy + Exuxvx,

3 9
Cy=— Evu4 — SZvuzu3 — 3yvuyu3 + EVx“3 — Etvu,u3

3
+ 3zuzvxu2 + 3yuyvxu2 + E)cuxvxu2 — 3zvuxzu2

9 9
+ Etvxu,u2 — Etvu,xuz — 6zvu U u — Oyvuyuuu

1
— Otvuuu + Ev,u — 6vu)26 + XV, + xvityy + 3xu£vxvx

+ O6yuy UV — OZVU Uy — OYVU Uy — 2Vity + Otuyy iy

1 3 1
+ yuyve + ZXxuy v + Etu,v, — ZVUg; — YVUpy + ZXVUzyx

2 2
3
— Otvusuyy + ZuZve — Etvun + 6zu uy + 3uy vy

— 3yvuxyu2 — 6vuxu2,
Cg = 3yu® v + 3yueu’v + 6yu§uv + vyu+ 2yuv
— XlyyV + Oyl UV — 3tUyV + 2yusv + 3t vy
+ 2yuyvy — 3uyy — 22Uy, v + Xty Vy + 22U, Vy,
Cs = 3zuxu3v + 3zuxxu2v + 6zu%uv +vu —3uyv
— XUyzV + 62UtV — 3tuts,v + 22UV + 3tus v,
+ XUV, + 2yuyV; — 2yity v + 220y + 22UV,

S Concluding remarks

In this paper, we investigated an extended
(1+3)-dimensional Kadomtsev-Petviashvili-like equation
(2). We gained exact solutions of the equation with the
use of Lie symmetry reductions as well as direct
integration. We obtained a general solution of the
equation by making use of the Kudryashov’s technique.
In consequence, we gain a hyperbolic function solution of
the equation. Besides, power series solution of the
underlying equation was also found. Furthermore, we
derived conserved quantities of (2) by invoking
Ibragimov’s theorem. These conserved quantities include
the conservation of energy and momentum. We note that
the conserved vectors contain variable v which is an
indication that the extended (1+3)-dimensional
Kadomtsev-Petviashvili-like equation (2) possesses
infinite conserved vectors.
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