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Abstract: In this paper, we study an extended (1+3)-dimensional Kadomtsev-Petviashvili-like equation. Lie symmetry reductions of

the equation were performed and direct integration technique was adopted. Kudryashov’s approach was utilized to generate a closed-

form solution of the equation. Besides, we employ power series approach to secure a solution of the underlying equation. Solutions

found for the underlying equation include hyperbolic function as well as series solutions of the equation. In conclusion, we construct

conserved quantities of the aforementioned equation by invoking Ibragimov’s theorem.
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1 Introduction

Investigation of nonlinear wave phenomenon has made a
huge impact in many natural sciences comprising biology,
mathematics, and precisely in diverse branches of
physics, including condensed matter physics, nonlinear
optics, chemical physics, plasma physics, solid-state
physics as well as fluid dynamics. The study of nonlinear
partial differential equations is a very viable and active
area of research with regards to theoretical physics,
applied mathematics with various engineering
fields [3]- [12]. In particular, considerable interest in
searching for exact travelling wave solutions of the
differential equations that delineate some significant
physical as well as dynamic processes have been one of
the main concerns and focal points to researchers.

Nonetheless, there is no general well-structured
theory that can be used to obtain exact solutions of
nonlinear partial differential equations. Nonetheless, in
later times, there has been the emergence of various
sound and efficient techniques to find exact solutions to
nonlinear partial differential equations. Some of these
techniques are bifurcation technique [13], Adomian

decomposition approach [14], homotopy perturbation
technique [15], mapping and extended mapping
technique [16], extended homoclinic test approach [17],
tanh-coth approach [18], exp(−Φ(η))-expansion
technique [19], Painlévé expansion [20], Cole-Hopf
transformation approach [21], Bäcklund
transformation [12], rational expansion method [22],
F−expansion technique [23], tan-cot method [24],
extended simplest equation method [25], Hirota
technique [26], Lie symmetry analysis [27, 28], the
(G′/G)−expansion method [29], Darboux
transformation [30], sine-Gordon equation expansion
technique [31], Kudryashov’s method [32], exponential
function technique [33], tanh-function technique [34] and
so on.

In the field of mathematical physics,
Kadomtsev-Petviashvili (KP) equation which was named
after Boris B. Kadomtsev alongside his co-researcher
Vladimir I. Petviashvili, is a partial differential equation
that expounds nonlinear wave motion. Moreover, it is
known that the study of nonlinear waves is very
significant in the investigation of diverse nonlinear
phenomena. Many researchers have investigated a variety
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of KP equations. For instance, the well-known
(1+2)-dimensional KP equation expressed as [35, 36]

utx − 6u2
x − 6uuxx+ uxxxx + 3uyy = 0, (1)

which is an equation revealed to be a nonlinear partial
differential equation with its existence in two spatial as
well as one temporal coordinate has been studied. The KP
equation (1) recounts the evolution of nonlinear alongside
long waves that possess small-amplitude which is slowly
dependent on the involved transverse coordinate.
Kadomtsev and Petviashvili [35] relaxed the restriction
that the waves be strictly one dimensional, to derive the
completely integrable KP equation in the structure of (1).
In addition, KP equation (1) delineates the evolution of
shallow-water waves that are presented as
quasi-one-dimensional, especially when effects of the
viscosity, as well as the surface tension, are found to be
negligible.

Kadomtsev-Petviashvili equation (1) has been
engaged in modelling various natural happenstances. For
instance, in the investigation of water waves, equation (1)
is revealed in the recounting of a tsunami wave that is
travelling in a zone which is non-homogeneous and
appears at the bottom of the ocean [37]. Besides, it also
emerges in the investigation of nonlinear ion-acoustic
waves found in a magnetized dusty plasma [38]. Over the
past few years, different types of research outcomes for
3D-KP equation (1) have been secured. Consequently,
travelling wave solutions in [39, 40], rogue wave, as well
as a pair of resonance stripe solitons in [41] have been
achieved for the 3D-KP equation (1). The author in [42]
investigated symmetry reductions along with conserved
quantities of the equation. The Hirota bilinear structure of
the 3D-KP equation (1) was utilized to gain mixed
lump-kink solutions with the aid of Maple software
in [43]. Furthermore, by using the exponential function as
well as positive quadratic function, line soliton pairs
together with rational lump solutions of the 3D-KP
equation (1) were established by the authors in [44].

Our work investigates the (1+3)-dimensional
extended Kadomtsev-Petviashvili-like equation ((1+3)-D
extKPle) [45]

(

ut +
3

2
u2

x +
3

8
u4 +

3

2
u2ux

)

x

+ uyy + uzz = 0, (2)

which was introduced as an extended
Kadomtsev-Petviashvili-like equation via the engagement
of a generalized bilinear differential equation of KP type
of equation (1). The authors employed the bilinear
representations in Hirota sense together with a
transformation given, respectively, as

(DxDt +D4
x +D2

y) f · f = 0 and u = 2 [ln f (t,x,y)]xx , (3)

for the derivation of the equation. Moreover, based on
generalized bilinear equation as well as Bell polynomial
theories [46], the authors constructed eighteen classes of

rational solutions to (1+3)-D extKPle (2) with symbolic
computation.

This study explicitly examines (1+3)-D extKPle (2)
with the use of Lie symmetry technique in conjunction
with some other standard methods to achieve new exact
solutions of the equation and its conservation laws.

The paper is outlined as follows. Section 2 highlights
the systematic way of carrying out Lie group analysis of
(1+3)-D extKPle (2) from which Lie point symmetries of
the equation are computed. In addition symmetry
reductions of the underlying equation shall be performed.
Moreover, Section 3 presents the general solution of (2)
with the aid of Kudryashov’s technique. We also secure
the power series solution of (2). Furthermore, Section 4
presents the conservation laws of the underlying equation
by utilizing Ibragimov’s theorem for conserved vectors.
Concluding remarks follow in Section 5.

2 Symmetry analysis

This section presents the computation of the Lie
symmetries of (1+3)-D extKPle (2) which shall be used in
the construction of exact solutions of the equation.

2.1 Lie point symmetries of (2)

The symmetry group of (1+3)-D extKPle (2) will be
achieved by the use of vector field structured as

Q = ξ 1 ∂

∂ t
+ ξ 2 ∂

∂x
+ ξ 3 ∂

∂y
+ ξ 4 ∂

∂ z
+η

∂

∂u
,

with the coefficient functions (ξ 1,ξ 2,ξ 3,ξ 4,η), all
depending on (t,x,y,z,u). Vector Q generates all the Lie
point symmetry of (2) if the condition

Q[4]

[(

ut +
3

2
u2

x +
3

8
u4 +

3

2
u2ux

)

x

+ uyy + uzz

]

= 0 (4)

holds on
(

ut +
3
2
u2

x +
3
8
u4 + 3

2
u2ux

)

x
+ uyy + uzz = 0. Here

Q[4] stands for the fourth prolongation of vector Q and is
defined as

Q[4] = Q+ηt∂ut +ηx∂ux +ηtx∂utx +ηxx∂uxx +ηyy∂uyy

+ηzz∂uzz , (5)
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with ηt , ηx, ηtx, ηxx, ηyy and ηzz defined as

ηt = Dt(ϕ)− utDt(ξ
1)− uxDt(ξ

2)− uyDt(ξ
3)

− uzDt(ξ
4),

ηx = Dx(ϕ)− utDx(ξ
1)− uxDx(ξ

2)− uyDx(ξ
3)

− uzDx(ξ
4),

ηtx = Dt(η
x)− utxDt(ξ

1)− uxxDt(ξ
2)− uxyDt(ξ

3)

− uxzDt(ξ
4),

ηxx = Dx(η
x)− utxDx(ξ

1)− uxxDx(ξ
2)− uxyDx(ξ

3)

− uxzDx(ξ
4),

ηyy = Dy(η
y)− utyDy(ξ

1)− uxyDy(ξ
2)− uyyDy(ξ

3)

− uyzDy(ξ
4),

ηzz = Dz(η
z)− utzDz(ξ

1)− uxzDz(ξ
2)− uyzDz(ξ

3)

− uzzDz(ξ
4), (6)

representing the coefficient functions in Q[4] and the total
derivatives appearing in (6) are given as

Dt = ∂t + ut∂u + utt∂ut + uxt∂ux + · · · ,

Dx = ∂x + ux∂u + uxt∂ut + uxx∂ux + · · · ,

Dy = ∂y + uy∂u + uty∂ut + uxy∂ux + · · · ,

Dz = ∂z + uz∂u + utz∂ut + uxz∂ux + · · · .

(7)

Expansion of (4) using the values of the coefficients given
in (6) and subsequently equating all the involved
differential coefficients of u to zero, we get twenty-nine
overdetermined system of linear partial differential
equations (LPDE) which are

ηxu = 0, ξ 4
x = 0, ξ 3

x = 0, ξ 1
x = 0, ξ 1

y = 0, ξ 1
z = 0,

ξ 3
u = 0, ξ 2

u = 0, ξ 1
u = 0, ξ 3

z + ξ 4
y = 0, 2ξ 2

z + ξ 4
t = 0,

ξ 2
xx − uξ 2

x −η = 0, ηu − 2ξ 2
x + ξ 1

t = 0, 2ηzu − ξ 4
zz

− ξ 4
yy = 0, 2ξ 3

y − ξ 2
x − ξ 1

t = 0, 2ξ 4
z − ξ 2

x − ξ 1
t = 0,

2ξ 2
y + ξ 3

t = 0, 2ηyu + ξ 4
yz − ξ 3

yy = 0,

3ξ 2
x u2 − 3ξ 1

t u2 − 6ηu− 6ηx+ 2ξ 2
t = 0, ηuu = 0,

3ηxu3 + 3ηxxu2 + 2ηzz + 2ηyy+ 2ηtx = 0, ξ 4
u = 0,

3ξ 1
t u3 + 9ηu2− 3ξ 1

txu2 + 6ηxu+ 2ηtu + ξ 4
tz + ξ 3

ty = 0,

whose solution gives the values of infinitesimals as

ξ 1 = c1 +
3

2
c6t, ξ 2 =

1

2
(2c2 + c6x− c4y− c8z) ,

ξ 3 = c3 + c4t + c6y− c7z, ξ 4 = c5 + c8t + c7y+ c6z,

η = −
1

2
c6u.

Thus, we have eight Lie point symmetries of (2) listed as:

Q1 =
∂

∂ t
, Q2 =

∂

∂x
, Q3 =

∂

∂y
,

Q4 =
∂

∂ z
, Q5 = y

∂

∂ z
− z

∂

∂y
,

Q6 = 2t
∂

∂ z
− z

∂

∂x
, Q7 = 2t

∂

∂y
− y

∂

∂x
,

Q8 = 3t
∂

∂ t
+ x

∂

∂x
+ 2y

∂

∂y
+ 2z

∂

∂ z
− u

∂

∂u
.

Hence, (1+3)-D extKPle (2) admits an eight-dimensional
Lie algebra spanned by vectors Q1, . . . ,Q8.

2.2 Symmetry reduction and exact solution

Consider a linear combination of symmetries Q1, Q2, Q3

and Q4 secured earlier as Q = Q1 + γQ2 +Q3 +Q4 with
constant γ 6= 0. We use Q to reduce (1+3)-D extKPle (2)
to a PDE in three independent variables. In continuation,
by solving the corresponding Lagrangian system to Q, we
gain invariants

w = x− γt, g = x− γy, h = y− z, H = u. (8)

Letting θ serve as the current dependent variables as well
as w, g and h as latest independent variables, (1+3)-D
extKPle (2) then alters to

3HgH3 + 3HwH3 + 3HggH2 + 6HwgH2 + 3HwwH2

+ 6H2
g H + 6H2

wH + 12HgHwH + 2γ2Hgg − 4γHgh

− 2γHwg − 2γHww+ 4Hhh+ 6HgHgg + 6HggHw

+ 12HgHwg + 12HwHwg + 6HgHww + 6HwHww = 0. (9)

Clearly, (9) is a nonlinear partial differential equation
existing in terms of three independent variables. We
utilize the generators of (9) to further make a reduction of
the equation to a PDE in two independent variables.
Equation (9) possesses generators given as

Γ1 =
∂

∂w
, Γ2 =

∂

∂g
, Γ3 =

∂

∂h
,

Γ4 = 2γ

(

w− hγ −
h

2
− g

)

∂

∂g
− γh

∂

∂w

+ 2(hγ − 2w+ 2g)
∂

∂h
.

If we combine generators Γ1, Γ2 and Γ3 as Γ = Γ1 +Γ2 +
ϑΓ3, (ϑ 6= 0), we reduce equation (9). The solution of the
related characteristic equations to Γ yields the invariants

r = h−ϑw, s = h−ϑg, H = G. (10)

Now suppose G is taken as dependent variable alongside r

and s as independent variables, then (1+3)-D extKPle (2)
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becomes

6ϑ 2G2
s G+ 6ϑ 2G2

r G+ 3ϑ 2GssG
2 + 12ϑ 2GsGrG

+ 6ϑ 2GrsG
2 + 3ϑ 2GrrG2 − 3ϑGsG

3 − 3ϑGrG
3

+ 2γ2ϑ 2Gss − 2γϑ 2Grs − 2γϑ 2Grr + 4γϑGss

+ 4γϑGrs− 6ϑ 3GsGss − 6ϑ 3GssGr − 12ϑ 3GsGrs

− 12ϑ 3GrGrs − 6ϑ 3GsGrr − 6ϑ 3GrGrr + 4Gss

+ 8Grs+ 4Grr = 0. (11)

We invoke the Lie point symmetries of (11) to transform
it to an ordinary differential equation (ODE). The
symmetries of (11) include the translational symmetries

Σ1 =
∂

∂ r
and Σ2 =

∂

∂ s
. (12)

Contemplating the combined form of the two translation
symmetries Σ1 and Σ2, as Σ = Σ1 +νΣ2, with ν regarded
as a constant, we gain invariants

p = s−νr, G = F (13)

and then we achieve a group invariant solution G = F(p).
Application of the secured invariants to equation (11), the
equation is transformed into

2γ2ϑ 2F ′′− 2γν2ϑ 2F ′′+ 2γνϑ 2F ′′− 4γνϑF ′′+ 4γϑF ′′

+ 6ν3ϑ 3F ′F ′′− 18ν2ϑ 3F ′F ′′+ 4ν2F ′′+ 18νϑ 3F ′F ′′

− 8νF ′′+ 6ν2ϑ 2F ′2F + 4F ′′+ 3ν2ϑ 2F ′′F2 + 6ϑ 2F ′2F

− 12νϑ 2F ′2F − 6νϑ 2F ′′F2 + 3ϑ 2F ′′F2 + 3νϑF ′F3

− 3ϑF ′F3 − 6ϑ 3F ′F ′′ = 0 (14)

and consequently

α0F ′′(p)+α1F ′F ′′(p)+α2F(p)F ′2(p)+α3F3(p)F ′(p)

+α4F2(p)F ′′(p) = 0, (15)

which is a fourth-order nonlinear ordinary differential
equation (NODE), where
α0 = 2(γ2ϑ 2 +ν2(2− γϑ 2)+ν(γ(ϑ − 2)ϑ − 4)
+ 2γϑ + 2), α1 = 6(ν − 1)3ϑ 3, α2 = 6(ν − 1)2ϑ 2,
α3 = 3(ν − 1)ϑ , α4 = 3(ν − 1)2ϑ 2 and p = ϑ(ν − 1)x
−ϑγνt +(γϑ −ν + 1)y+(ν − 1)z.

3 Solution of (2) via the Kudryashov’s

technique

This section engages the Kudryashov’s approach [47] to
construct the exact solution of the (1+3)-D extKPle (2).

Hyperbolic solution
We now assume that the solution to the fourth-order ODE
(14) using the Kudryashov’s technique can be written in a
formal structure given as

F(p) =
M

∑
k=0

AkHk(p), (16)

with H(p) satisfying the first-order ODE

H ′(p) = H2(p)−H(p), (17)

whose solution is

H(p) =
1

cosh p+ sinh p
. (18)

We note that constant parameters Ak,k = 0,1, · · · ,M must
be decided but M should first be determined in (16) by
invoking the balancing procedure, see [48]. In our case
we get M = 1, and consequently solution (16) can be
presented as

F(p) = A0 +A1H(p). (19)

Inserting the value of F(p) in (19) into NODE (14) in
consonance with (17) we secure an algebraic equation
with regards to H(p) as

3ϑνA4
1H(p)5 + 12ϑ 2A3

1H(p)5 − 3ϑA4
1H(p)5

+ 12ϑ 2ν2A3
1H(p)5 − 24ϑ 2νA3

1H(p)5 − 12ϑ 3A2
1H(p)5

+ 12ϑ 3ν3A2
1H(p)5 − 36ϑ 3ν2A2

1H(p)5 + 36ϑ 3νA2
1H(p)5

− 3ϑνA4
1H(p)4 − 21ϑ 2A3

1H(p)4 − 21ϑ 2ν2A3
1H(p)4

+ 42ϑ 2νA3
1H(p)4 − 9ϑA0A3

1H(p)4 + 3ϑA4
1H(p)4

+ 9ϑνA0A3
1H(p)4 + 30ϑ 3A2

1H(p)4 − 30ϑ 3ν3A2
1H(p)4

+ 90ϑ 3ν2A2
1H(p)4 + 18ϑ 2A0A2

1H(p)4 + 18ϑ 2ν2A0A2
1H(p)4

− 36ϑ 2νA0A2
1H(p)4 + 9ϑ 2A3

1H(p)3 − 18ϑ 2νA3
1H(p)3

+ 9ϑA0A3
1H(p)3 − 9ϑνA0A3

1H(p)3 − 24ϑ 3A2
1H(p)3

+ 24ϑ 3ν3A2
1H(p)3 − 72ϑ 3ν2A2

1H(p)3 − 9ϑA2
0A2

1H(p)3

+ 9ϑνA2
0A2

1H(p)3 + 72ϑ 3νA2
1H(p)3 − 30ϑ 2ν2A0A2

1H(p)3

+ 60ϑ 2νA0A2
1H(p)3 + 4γ2ϑ 2A1H(p)3 − 4γϑ 2ν2A1H(p)3

+ 8ν2A1H(p)3 + 6ϑ 2A2
0A1H(p)3 + 6ϑ 2ν2A2

0A1H(p)3

− 12ϑ 2νA2
0A1H(p)3 + 8γϑA1H(p)3 + 4γϑ 2νA1H(p)3

− 8γϑνA1H(p)3 − 16νA1H(p)3 + 8A1H(p)3 + 6ϑ 3A2
1H(p)2

− 6ϑ 3ν3A2
1H(p)2 + 18ϑ 3ν2A2

1H(p)2 + 9ϑA2
0A2

1H(p)2

− 9ϑνA2
0A2

1H(p)2 − 18ϑ 3νA2
1H(p)2 + 12ϑ 2A0A2

1H(p)2

+ 12ϑ 2ν2A0A2
1H(p)2 − 24ϑ 2νA0A2

1H(p)2 − 3ϑA3
0A1H(p)2

+ 3ϑνA3
0A1H(p)2 − 6γ2ϑ 2A1H(p)2 + 6γϑ 2ν2A1H(p)2

− 12ν2A1H(p)2 − 9ϑ 2A2
0A1H(p)2 − 9ϑ 2ν2A2

0A1H(p)2

+ 18ϑ 2νA2
0A1H(p)2 − 12γϑA1H(p)2 − 6γϑ 2νA1H(p)2

+ 24νA1H(p)2 + 9ϑ 2ν2A3
1H(p)3 + 12γϑνA1H(p)2

− 12A1H(p)2 + 3ϑA3
0A1H(p)− 3ϑνA3

0A1H(p)

+ 2γ2ϑ 2A1H(p)− 2γϑ 2ν2A1H(p)+ 3ϑ 2A2
0A1H(p)

+ 4ν2A1H(p)+ 3ϑ 2ν2A2
0A1H(p)− 30ϑ 2A0A2

1H(p)3

− 90ϑ 3νA2
1H(p)4 − 6ϑ 2νA2

0A1H(p)+ 4γϑA1H(p)

+ 2γϑ 2νA1H(p)− 4γϑνA1H(p)− 8νA1H(p)

+ 4A1H(p) = 0.
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Further splitting the above algebraic equation into diverse
powers of H(p) furnishes

H(p) : 2A1γ2ϑ 2 − 2A1γν2ϑ 2 + 2A1γνϑ 2 − 4A1γνϑ

+ 4A1γϑ + 4A1ν2 − 8A1ν + 3A1A2
0ν2ϑ 2

− 6A1A2
0νϑ 2 + 3A1A2

0ϑ 2 − 3A1A3
0νϑ + 4A1

+ 3A1A3
0ϑ = 0,

H(p)2 : 6A1γν2ϑ 2 − 6A1γ2ϑ 2 − 6A1γνϑ 2 + 12A1γνϑ

− 12A1γϑ + 24A1ν − 6A2
1ν3ϑ 3 + 18A2

1ν2ϑ 3

− 18A2
1νϑ 3 + 6A2

1ϑ 3 + 12A0A2
1ν2ϑ 2 − 12A1ν2

− 24A0A2
1νϑ 2 + 18A2

0A1νϑ 2 + 12A0A2
1ϑ 2

− 9A2
0A1ν2ϑ 2 − 9A2

0A2
1νϑ + 3A3

0A1νϑ

− 9A2
0A1ϑ 2 + 9A2

0A2
1ϑ − 3A3

0A1ϑ − 12A1 = 0,

H(p)3 : 4A1γ2ϑ 2 − 4A1γν2ϑ 2 + 4A1γνϑ 2 − 8A1γνϑ

+ 8A1γϑ + 8A1ν2 + 24A2
1ν3ϑ 3 − 72A2

1ν2ϑ 3

+ 72A2
1νϑ 3 + 9A3

1ν2ϑ 2 − 30A0A2
1ν2ϑ 2

+ 6A2
0A1ν2ϑ 2 − 18A3

1νϑ 2 + 60A0A2
1νϑ 2

− 12A2
0A1νϑ 2 + 9A3

1ϑ 2 − 30A0A2
1ϑ 2 + 6A2

0A1ϑ 2

− 9A0A3
1νϑ + 9A2

0A2
1νϑ + 9A0A3

1ϑ − 9A2
0A2

1ϑ

− 16A1ν − 24A2
1ϑ 3 + 8A1 = 0,

H(p)4 : − 30A2
1ν3ϑ 3 + 90A2

1ν2ϑ 3 − 90A2
1νϑ 3 + 30A2

1ϑ 3

− 21A3
1ν2ϑ 2 + 18A0A2

1ν2ϑ 2 + 18A0A2
1ϑ 2

+ 42A3
1νϑ 2 − 36A0A2

1νϑ 2 − 3A4
1νϑ + 9A0A3

1νϑ

− 21A3
1ϑ 2 + 3A4

1ϑ − 9A0A3
1ϑ = 0,

H(p)5 : 12A2
1ν3ϑ 3 − 36A2

1ν2ϑ 3 + 36A2
1νϑ 3 − 12A2

1ϑ 3

+ 12A3
1ν2ϑ 2 − 24A3

1νϑ 2 + 12A3
1ϑ 2 + 3A4

1νϑ

− 3A4
1ϑ = 0.

The above system yields

A0 = ϑ(1−ν), A1 = 2ϑ(1−ν),

γ =
ν − 1

2ϑ

{

ϑ(ν + 1)+ 2−
√

ν2ϑ 2 + 4νϑ − 4
}

.

In consequence, the associated general solution to the
stated values of A0, A1 and γ is expressed with regards to
hyperbolic functions as

u(t,x,y,z) = ϑ(1−ν)+
2ϑ(1−ν)

cosh p+ sinh p
, (20)

with p = ϑ(ν − 1)x−ϑγνt +(γϑ − ν + 1)y+(ν − 1)z.
The dynamics of the solution can be viewed with
dissimilar values of the involved parameters in Figures 1,
2 and 3.

-10 -5 5 10
y

8

10

12

14

16

18

z

Fig. 1: Kink-type wave profile of hyperbolic solution (20)

at t = 0.5 and x = 0.4.
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Fig. 2: Kink-type wave profile of hyperbolic solution (20)

at t =−0.3 and x = 0.
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Fig. 3: Kink-type wave profile of hyperbolic solution (20)

at t = 0.6 and x =−0.2.

3.1 Power series solution of NODE (15)

This subsection furnishes a solution to NODE (15) by
employing power series technique [49]. In this case we
seek a solution of equation (15) in a power series which
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assumes the form

F(p) =
∞

∑
m=0

am pm, (21)

with first and second derivatives given, respectively, as

F ′(p)=
∞

∑
m=0

mam pm−1, and F ′′(p)=
∞

∑
m=0

m(m−1)ampm−2.

(22)
Inserting the value of F(p) from (21) and (22) into (15),
one realizes

α0

∞

∑
m=2

m(m− 1)ampm−2 +α1

[

∞

∑
m=1

mam pm−1

]

×

[

∞

∑
m=2

m(m− 1)ampm−2

]

+α2

[

∞

∑
m=0

am pm

]

(23)

×

[

∞

∑
m=1

∞

∑
m=1

mam pm−1

]

+α3

[

∞

∑
m=0

∞

∑
m=0

∞

∑
m=0

am pm

]

×

[

∞

∑
m=1

mam pm−1

]

+α4

[

∞

∑
m=0

∞

∑
m=0

am pm

]

(24)

×

[

∞

∑
m=2

m(m− 1)ampm−2

]

= 0, (25)

which leads to a more simplified structure given as

2α0a2 + 6α0a3 +α0

∞

∑
m=2

(m+ 1)(m+ 2)am+2pm

+ 2α1a1a2 + 12α1a2a3 +α1

∞

∑
m=2

[

m

∑
k=0

(k+ 1)

× (m− k+ 1)(m− k+ 2)ak+1am−k+2] pm

+α2a0a2
1 + 4α2a1a2

2 +α2

∞

∑
m=2

[

m

∑
k=0

k+1

∑
i=1

i(k− i

+2)aiak−i+2am−k] pm +α3a3
0a1 + 2α3a3

1a2

+α3

∞

∑
m=2

[

m

∑
k=0

k

∑
j=0

j

∑
i=0

(m− k+ 1)aia j−iak− j−i

×am−k+1] pm + 2α4a2
0a2 + 6α4a2

1a3 +α4

∞

∑
m=2

[

m

∑
k=1

×
k

∑
i=0

(m− k+ 1)(m− k+ 2)aiak−iam−k+2

]

pm = 0.

(26)

Next, comparing various coefficients of p in equation (26),
one achieves for m = 0,1;

2α0a2 + 2α1a1a2 +α2a0a2
1 +α3a3

0a1 + 2α4a2
0a2 = 0,

(27)

6α0a3 + 12α1a2a3 + 4α2a1a2
2 + 2α3a3

1a2 + 6α4a2
1a3 = 0

(28)

and by generally considering m ≥ 2, we gain

am+2 = −
1

α0(m+ 1)(m+ 2)

[

α1

m

∑
k=0

(k+ 1)

× (m− k+ 1)(m− k+ 2)ak+1am−k+2

+α2

m

∑
k=0

k+1

∑
i=1

i(k− i+ 2)aiak−i+2am−k

+α3

m

∑
k=0

k

∑
j=0

j

∑
i=0

(m− k+ 1)aia j−iak− j−iam−k+1

+α4

m

∑
k=1

k

∑
i=0

(m− k+ 1)(m− k+ 2)aiak−i

× am−k+2

]

. (29)

Using equations (27) and (28), for arbitrary constants a0

and a1, one generates

a2 =−
α2a0a2

1 +α3a3
0a1

2α0 + 2α1a1 + 2α4a2
0

, (30)

a3 =−
4α2a1a2

2 + 2α3a3
1a2

6α0 + 12α1a2 + 6α4a2
1

. (31)

Invoking recursion formula (29), one can successfully
secure other terms am,m = 4,5, . . . ,∞. Therefore, the
power series solution of (15) can be presented as

F(p) = a0 + a1p+ a2p2 + a3 p3 +
∞

∑
m=2

am+2 pm+2

= a0 + a1p−
α2a0a2

1 +α3a3
0a1

2α0 + 2α1a1 + 2α4a2
0

p2

−
4α2a1a2

2 + 2α3a3
1a2

6α0 + 12α1a2 + 6α4a2
1

p3

+
∞

∑
m=2

[

−
1

α0(m+ 1)(m+ 2)

(

α1

m

∑
k=0

(k+ 1)

× (m− k+ 1)(m− k+ 2)ak+1am−k+2 +α2

m

∑
k=0

×
k+1

∑
i=1

i(k− i+ 2)aiak−i+2am−k +α3

m

∑
k=0

k

∑
j=0

×
j

∑
i=0

(m− k+ 1)aia j−iak− j−iam−k+1 +α4

m

∑
k=1

×
k

∑
i=0

(m− k+ 1)(m− k+ 2)aiak−iam−k+2

)

]

pm+2,

m = 2,3,4,5, . . .
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and so the power series solution of equation (2) is given as

u(t,x,y,z) = a0 + a1p+ a2p2 + a3p3 +
∞

∑
m=2

am+2 pm+2,

= a0 + a1p−
α2a0a2

1 +α3a3
0a1

2α0 + 2α1a1 + 2α4a2
0

p2

−
4α2a1a2

2 + 2α3a3
1a2

6α0 + 12α1a2 + 6α4a2
1

p3

+
∞

∑
m=2

[

−
1

α0(m+ 1)(m+ 2)

(

α1

m

∑
k=0

(k+ 1)

× (m− k+ 1)(m− k+ 2)ak+1am−k+2

+α2

m

∑
k=0

k+1

∑
i=1

i(k− i+ 2)aiak−i+2am−k

+α3

m

∑
k=0

k

∑
j=0

j

∑
i=0

(m− k+ 1)aia j−i

× ak− j−iam−k+1 +α4

m

∑
k=1

k

∑
i=0

(m− k+ 1)

× (m− k+ 2)aiak−iam−k+2

)

]

pm+2,

m = 2,3,4,5, · · · (32)

with ai,(i = 0,1,2, . . .) regarded as arbitrary constants. It
is noteworthy to declare here that approximate structure of
(32) can be expressed as

u(t,x,y,z) = a0 + a1(ϑ(ν − 1)x−ϑγνt+(γϑ −ν + 1)y

+(ν − 1)z)−
α2a0a2

1 +α3a3
0a1

2α0 + 2α1a1 + 2α4a2
0

× (ϑ(ν − 1)x−ϑγνt+(γϑ −ν + 1)y

+(ν − 1)z)2 −
4α2a1a2

2 + 2α3a3
1a2

6α0 + 12α1a2 + 6α4a2
1

× (ϑ(ν − 1)x−ϑγνt+(γϑ −ν + 1)y

+(ν − 1)z)3 + · · · . (33)

4 Conservation laws of (1+3)-D extKPle (2)

In this section, we do the computation of conserved vectors
for (2) by exploiting the Ibragimov’s theorem [50, 51] for
conserved quantities. In doing that, we first supply some
salient characteristics of the technique.

Preliminaries
Contemplate a system expressed in the structure

Hα(x,u,u(1), . . . ,u(q)) = 0, α = 1, . . . ,m, (34)

which is a qth-order system of partial differential
equations existing with n independent variables
x = (x1,x2, . . . ,xn) as well as m dependent variables

u = (u1,u2, . . . ,um). In this case, we have
u(1),u(2), . . . ,u(q) connoting the collections of all first,
second up until the qth-order partial derivatives, which
implies, uα

i = Di(u
α), uα

i j = D jDi(u
α
i ), ..., accordingly

where we have total derivative operators expressed with
regards to xi as

Di =
∂

∂xi
+ uα

i

∂

∂uα
+ uα

i j

∂

∂uα
j

+ · · · , i = 1, ...,n (35)

The Euler-Lagrangeoperator, for each α included in
(35), is given as

δ

δuα
=

∂

∂uα
+ ∑

s≥1

(−1)sDi1 . . .Dis

∂

∂uα
i1i2...is

, (36)

α = 1, . . . ,m, (37)

with the Lie-Bäcklund operator expressed as

X = ξ i ∂

∂xi
+ηα ∂

∂uα
, ξ i,ηα ∈ A , (38)

where the space A is taken as the space of differential
functions and operator (38) can be presented as

X = ξ i ∂

∂xi
+ηα ∂

∂uα
+ ∑

s≥1

ζi1i2....is

∂

∂uα
i1i2...is

, (39)

with

ζ α
i = Di(W

α)+ ξ juα
i j,

ζ α
i1...is

= Di1 ...Dis(W
α)+ ξ juα

ji1...is
, s > 1. (40)

In this case, we express the Lie characteristic function W α

as
W α = ηα − ξ iuα

j . (41)

Consequently, the Lie-Bäcklund operator (39) in a
characteristic structure can be presented as

X = ξ iDi +Wα ∂

∂uα
+ ∑

s≥1

Di1 ...Dis(W
α)

∂

∂uα
i1i2...is

. (42)

Assuming we associate the system of adjoint equations to
(34) as

H∗
α(x,u,v, . . . ,u(q),v(q)) = 0, α = 1, . . . ,m, (43)

with H∗
α given as

H∗
α(x,u,v, . . . ,u(q),v(q)) =

δ (vβ Hβ )

δuα
, α,= 1, . . . ,m,

v = v(x), (44)

where v = (v1,v2, ...,vm) are newly-introduced dependent
variables. Suppose that (34) admits the symmetry
generator (38), it follows that system (44) also admits the
operator

Y = ξ i ∂

∂xi
+ηα ∂

∂uα
+ηα

∗

∂

∂vα
, ηα

∗ =−[λ α
β +vαDi(ξ

i)],

(45)
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with Y in (45) serving as an extension of (38) to the new
variable vα . Besides, λ α

β can be achieved from the relation

X(Hα) = λ
β
α Hβ . (46)

Thus, we give Ibragimov’s theorem for conserved vectors.

Theorem 41Every Lie Bäcklund, Lie point as well as

non-local symmetry (38) that is admitted by the system of

equation presented in (34) produces a conserved quantity

for the system comprising equation (34) alongside adjoint

(43) with the components of Ci of the conserved vector

C = (C1, · · · ,Cn) decided by the relation

Ci = ξ i
L +Wα δL

δuα
i

+ ∑
s≥1

Di1 . . .Dis(W
α)

δL

δuα
ii1i2...is

,

i = 1, . . . ,n, (47)

with a formal Lagrangian expressed as

L = vα Hα(x,u, . . . ,u(q)). (48)

Remark 41We remark that system (34) is self-adjoint if

the replacement v = u in the system of adjoint equation

(43) produces the same system (34). For a more detailed

understanding of the proof and more information on the

results presented here, the reader is directed to [50, 51].

4.1 Derivation of conservation laws via

Ibragimov’s theorem

This subsection presents the conservation laws of (1+3)-D
extKPle (2) by invoking Ibragimov’s theorem [51]. Using
the outlined information given earlier we have the
theorem:

Theorem 42The adjoint equation of (1+3)-D extKPle (2)

is expressed as

H∗≡ vtx−
3

2
vxu3+

3

2
vxxu2+3uxxvx+3uxvxx+vyy+vzz = 0

(49)
and the Lagrangian given as

L = vH = v

{

utx +
3

2
uxu3 +

3

2
uxxu2 + 3u2

xu+ 3uxuxx + uyy

+ uzz

}

, (50)

where

H = utx +
3

2
uxu3 +

3

2
uxxu2 + 3u2

xu+ 3uxuxx + uyy+ uzz.

(51)

It is clear from the adjoint equation (49) and remark (41)
that (1+3)-D extKPle (2) is not self-adjoint. Therefore,
using the earlier outlined information, we have the

conserved vectors associated with Lie symmetries
previously obtained as subsequently presented. Therefore,
time translation symmetry Q1 = ∂/∂ t possesses
conservation law

Ct
1 =

3

2
vuxu3 +

3

2
vuxxu2 + 3vuu2

x + vuzz+ vuyy + 3vuxuxx

+
1

2
vutx +

1

2
utvx,

Cx
1 =

3

2
utvxu2 −

3

2
vutu

3 −
3

2
vutxu2 − 3utuxuv− 3uxutxvv

−
1

2
utt + 3utuxvx +

1

2
utvt ,

C
y
1 = utvy − utyv,

Cz
1 = utvz − utzv.

The corresponding conserved vectors to generator Q2 =
∂/∂x which is a Lie point symmetry in x- translation, are

Ct
2 =

1

2
uxvx −

1

2
uxxv,

Cx
2 =

3

2
uxvxu2 + uzzv+ uyyv+

1

2
utxv+

1

2
vtux + 3u2

xvx,

C
y
2 = uxvy − uxyv,

Cz
2 = uxvz − uxzv.

Associated conservation law to y-translation Lie point
symmetry Q3 = ∂/∂y is

Ct
3 =

1

2
uyvx −

1

2
uxyv,

Cx
3 = −

3

2
uyu3v+

3

2
uyvxu2 −

3

2
uxyu2v− 3uxuyuv

− 3uxuxyv−
1

2
utyv+

1

2
vtuy + 3uxuyvx,

C
y
3 =

3

2
uxu3v+

3

2
uxxu2v+ 3u2

xuv+ uzzv+ 3uxuxxv

+ utxv+ uyvy,

Cz
3 = uyvz − uyzv.

We present the related conservation law to z-translation
symmetry Q4 = ∂/∂ z as

Ct
4 =

1

2
uzvx −

1

2
uxzv,

Cx
4 = −

3

2
uzu

3v+
3

2
uzvxu2 −

3

2
uxzu

2v− 3uxuzuv

− 3uxuxzvv−
1

2
utz +

1

2
vtuz + 3uxuzvx,

C
y
4 = uzvy − uyzv,

Cz
4 =

3

2
uxu3v+

3

2
uxxu2v+ 3u2

xuv+ uyyv+ 3uxuxxv

+ utxv+ uzvz.
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Rotation Lie point symmetry Q5 = y∂/∂ z − z∂/∂y has
conserved quantity

Ct
5 = −

1

2
yuxzv+

1

2
zuxyv+

1

2
yuzvx −

1

2
zuyvx,

Cx
5 = −

3

2
yuzu

3v+
3

2
zuyu3v+

3

2
yuzvxu2 −

3

2
zuyvxu2

+
3

2
zuxyu2v− 3yuxuzuv+ 3zuxuyuv− 3yuxuxzv

−
1

2
yutzv+

1

2
zutyv+

1

2
yvtuz −

1

2
zvtuy + 3yuxuzvx

−
3

2
yuxzu

2v+ 3zuxuxyv− 3zuxuyvx,

C
y
5 = −

3

2
zuxu3v−

3

2
zuxxu2v− 3zu2

xuv− uzv− zuzzv

− yuyzv− 3zuxuxxv− zutxv+ yuzvy − zuyvy,

Cz
5 =

3

2
yuxu3v+

3

2
yuxxu2v+ 3yu2

xuv+ uyv+ zuyzv

+ yuyyv+ 3yuxuxxv+ yutxv+ yuzvz − zuyvz.

We computed the conservation law for generator
Q6 = 2t∂/∂ z− z∂/∂x as

Ct
6 = − tuxzv+

1

2
zuxxv+ tuzvx −

1

2
zuxvx,

Cx
6 = − 3tuzu

3v+ 3tuzvxu2 −
3

2
zuxvxu2 − 3tuxzu

2vv

− zuyyv− 6tuxuxzv− tutzv−
1

2
zutxv+ 6tuxuzvx

−
1

2
zvtux + tvtuz − 3zu2

xvx − uzv− zuzz

− 6tuxuzuv,

C
y
6 = − 2tuyzv+ zuxyv+ 2tuzvy − zuxvy,

Cz
6 = 3tuxu3v+ 3tuxxu

2v+ 6tu2
xuv+ 2tuyyv+ zuxzv

+ uxv+ 6tuxuxxv+ 2tutxv+ 2tuzvz − zuxvz.

Operator Q7 = 2t∂/∂y− y∂/∂x possesses the conserved
quantity

Ct
7 = − tuxyv+

1

2
yuxxv+ tuyvx −

1

2
yuxvx,

Cx
7 = − 3tuyu3v+ 3tuyvxu2 −

3

2
yuxvxu2 − 3tuxyu

2v

− uyv− yuyyv− 6tuxuxyv− tutyv−
1

2
yutxv

+ 6tuxuyvx −
1

2
yvtux − 6tuxuyuv− yuzzv

+ tvtuy − 3yu2
xvx,

C
y
7 = 3tuxu3v+ 3tuxxu

2v+ 6tu2
xuv+ 2tuzzv+ uxv

+ yuxyv+ 6tuxuxxv+ 2tutxv+ 2tuyvy − yuxvy,

Cz
7 = − 2tuyzv+ yuxzv+ 2tuyvz − yuxvz.

Finally, for Q8 = 3t∂/∂ t + x∂/∂x+ 2y∂/∂y+ 2z∂/∂ z−
u∂/∂u,

we calculated conserved vectors in the structure

Ct
8 =

9

2
tuxu3v+

9

2
tuxxu2v+ 9tu2

xuv+
1

2
vxu+ 3tuzzv

− zuxzv− yuxyv−
1

2
xuxxv+ 9tuxuxxv+

3

2
tutxv

+
3

2
tutvx + yuyvx + 3tuyyv− uxv+ zuzvx +

1

2
xuxvx,

Cx
8 = −

3

2
vu4 − 3zvuzu

3 − 3yvuyu
3 +

3

2
vxu3 −

9

2
tvutu

3

+ 3zuzvxu2 + 3yuyvxu2 +
3

2
xuxvxu2 − 3zvuxzu

2

+
9

2
tvxutu

2 −
9

2
tvutxu2 − 6zvuzuxu− 6yvuyuxuu

− 9tvuxutu+
1

2
vtu− 6vu2

x + xvuzz+ xvuyy + 3xu2
xvxvx

+ 6yuyuxvx − 6zvuxuxz − 6yvuxuxy − 2vut + 9tuxvxut

+ yuyvt +
1

2
xuxvt +

3

2
tutvt − zvutz − yvuty +

1

2
xvutx

− 9tvuxutx + zuzvt −
3

2
tvutt + 6zuzux + 3uxvx

− 3yvuxyu2 − 6vuxu
2,

C
y
8 = 3yuxu3v+ 3yuxxu

2v+ 6yu2
xuv+ vyu+ 2yuzzv

− xuxyv+ 6yuxuxxv− 3tutyv+ 2yutxv+ 3tutvy

+ 2yuyvy − 3uyv− 2zuyzv+ xuxvy + 2zuzvy,

Cz
8 = 3zuxu3v+ 3zuxxu2v+ 6zu2

xuv+ vzu− 3uzv

− xuxzv+ 6zuxuxxv− 3tutzv+ 2zutxv+ 3tutvz

+ xuxvz + 2yuyvz − 2yuyzv+ 2zuyyv+ 2zuzvz.

5 Concluding remarks

In this paper, we investigated an extended
(1+3)-dimensional Kadomtsev-Petviashvili-like equation
(2). We gained exact solutions of the equation with the
use of Lie symmetry reductions as well as direct
integration. We obtained a general solution of the
equation by making use of the Kudryashov’s technique.
In consequence, we gain a hyperbolic function solution of
the equation. Besides, power series solution of the
underlying equation was also found. Furthermore, we
derived conserved quantities of (2) by invoking
Ibragimov’s theorem. These conserved quantities include
the conservation of energy and momentum. We note that
the conserved vectors contain variable v which is an
indication that the extended (1+3)-dimensional
Kadomtsev-Petviashvili-like equation (2) possesses
infinite conserved vectors.
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