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Abstract: This paper presents and compares the performance of nanks&imation filters for the inertial SLAM (Simultaneous
Localization and Mapping) integrated navigation systemiuding the extended Kalman filter, the unscented Kalmaerfiind
the particle filter. A computer simulation is conducted talsme the navigation accuracy as well as the capability af-tiene
implementation by individual filter using a monocular visibased navigation model. The detail model for the lineaerfittesign
and the initial delayed localization of the target featwese investigated. Simulation results show that the urisddfalman filter has
better performance in perspective of both the navigatisfop@ance and the feasibility of real-time implementation
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1 Introduction vision sensor employs a series of coordinate
transformations and trigonometric functions, it inhehgnt
Due to the development of a high performance processoincorporates nonlinear model equations. Thus nonlinear
and a small-sized vision sensor, active researches hawestimation is adapted for implementing the monocular
been conducted in the field of vision based navigation.vision aided integrated navigation system.
Especially, in mobile robot application, the SLAM
(Simultaneous Localization and Mapping), which is a  Typically, the extended Kalman filter (EKF), the
technology that generates a map and identifies its positiomnscented Kalman filter (UKF) and patrticle filter (PF) are
when the surroundings remain unknown, is widely the most common filters for nonlinear estimation.
adapted with the advances on these processors arfspecially, there are various cases that use the UKF for a
sensors],2]. Focused on the fact that it does not require nonlinear and non-Gaussian noise system. Huajg |
any prior information on the surroundings and robotadapted the UKF as a navigation filter to study the
position, so the SLAM technology can be utilized as aobservability in a planar environment. Wardj applied it
navigation method for the unmanned aerial vehicle (UAV)to feature points tracking problem by applying the
that performs surveillance missions for a long period ofunscented particle filter for the integration. Baileyj [
time in a vast range of areas. employed the Rao-Blackwellized patrticle filter (RBPF) to
Monocular vision system provides only relative cope with the nonlinearity. Besides, Xianzhon§] [
angular measurements between the sensor and the objdaotroduced the UKF to further enhance Bailey’s RBPF
in image. Even though it does not give range performance. These previous researches show that UKF
measurements, the system is simple, low-cost, andhas been widely used for vision based navigation system
compact compared with other systems that contain rangsince it reflects the nonlinear characteristics sufficientl
sensors such as sonar sensor, lidar, and laser range findetowever, these researches are not suitable for a 3D
To take these advantages, this paper uses monoculaavigation, because they considered only planar cases. On
vision system. As the observation model of the monocularthe other hands, Kim and Sukkarie®, T] constructed a

* Corresponding author e-magksung@konkuk.ac.kr

(@© 2016 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.18576/amis/100205

414 NS 2 D. H. Won et al. : System modeling and non-linear estimation.

vision based SLAM in 3D environment by using EKF, 2.1 Process Model
followed by Chun 8], where the particle filter is

employed. Generally, the particle filter decreasesThe process model consists of the vehicle dynamic model

estimation error and is suitable for various noise types;and the feature point model. A linearized low grade

however, it may be inappropriate for a real-time jnertial navigation system (INS) model is used as the

implementation since it needs large computational poweigynamic model for vehicle, while the feature point

compared with other nonlinear filters]{ position is assumed to be a fixed point and its error is
In this paper, based on the previous works, a completéherefore modeled as a random constant. A state vector is

model derivation and performance comparison betweerset to vehicle positionf"), velocity ("), attitude (/")

nonlinear filters are studied for the monocular vision and feature point position{) in navigation frame. In

based integrated navigation system. Specifically, tohere, the superscriptandk denote the navigation frame

characterize the EKF application on the integratedand the time index. A general low-grade inertial

navigation system, a strict mathematical development ornavigation model is given as

linearization is presented for the strong nonlinear

observation model. Also the detailed description on the Pe.1= Pg+ Vi At 1)

delayed initialization for feature point initial positiomy

is provided. Based on the mathematical model, the

estimation result of EKF is analyzed and the performance Vi1 = Vit - At )

is compared with other nonlinear filters. For the

performance comparison, this paper also investigates the n n n

application of UKF to the given navigation system model. U1 = U+ o - At 3)

Assumed a high nonlinearity in the observation.model,wherefn, " and At are specific force, angular velocity

non-Gaussian .and' non-additive noise model, this PaPeLn time interval, respectively.

addresses navigation performances from three nonlinear For an indirect filter structure, the error state and its

filters and illustrates computation burdens quantitayivel model should be defined. Equatiof) lenotes the system

In section 2, a vision aided integrated navigation Systemmyy, e of the vision and INS integrated navigation system
and delayed initialization is introduced. Then nonllnear[13 14

estimation filers are shown in section 3 with the
linearization process. In section 4, simulations are

conducted with performance analysis. Finally, aherew, is the process noise, a#dandB is defined as
conclusion is made in section 5.

X1 = AX + B 4)

Olzxe3 0 O O 0 0
0 0 [fpx]0---0 cl o
00 0 O0 O 0 —-C)
. o A=]l00 0 0 o0,B=|0 o0
2 Vision Based Navigation System
0 N
00 0 000Q 0 0

It is essential to extract easy-to-track feature pointsnfro |n here, 3,3 and f, are 3-dimensional identity matrix and

image information obtained from the vision sensor and toforce in the body frame. Note that in this, state vector is
track these feature points within the images from defined as error state iB)

consecutive image sequences. Algorithms1f,11] are
generally used for extracting and tracking feature points. x=[5p" V" Sy Sk - 5, }T (5)
Normally, feature point is fixed within local frame and the 1 N

movements of feature points are correlated only with A [otation matrix from the body frame to the

fnavi ation frame is denoted . For the feature point
the vision sensor is fixed on the vehicle and its installedthe t?me update relationship i?)?holds. P '

location is known, the movements of feature points can be

used reversely in estimating the position and attitude of S (k+1) = dr'(K) (6)

the vehicle 1]. Figure 1 shows a structure of integrated

navigation system. In the implementation, the inertial

sensors provide angular velocity and acceleration such .

that navigation solutions are preliminarily computed. 2-2 Observation Model

Then, the computed solution is compensated by the

tracked feature point data from vision sensor. As visionThe bearing and elevation of the feature points are
tracking rate is relatively low, an indirect filter struotlis  utilized to configure an observation model, and these
adapted for the syster2,8,12]. values are determined by both the attitude of the vehicle
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Fig. 1: An indirect estimation filter is constructed to generatertaeigation solution. Error state is updated through therisided
navigation data and combined through master INS algoritlitim w update rate relatively.

and the relative position between the vehicle and feature
points.

n

Y

Z = {gt] =H (X, Nk) (7)

where ¢y is bearing angle ak-th epoch,6y is elevation
angle atk-th epoch, andnx is a measurement noise.
Equation ¥) is calculated on image frame (denoted by
superscripts), thus a coordinate transformation i8) (is
required to compute a solution in the navigation frame.

Fig. 2. Conceptual diagram for the feature point position on

X3 b delayed initialization method. Through the triangulatadiLOS
= Y| = CS (Cn (mn - pC) - ps) (8) vectors, initial feature point position is estimated. Thierage of
z two closest points regards as the position.

where ps is a lever arm vectorC] is direction cosine
matrix from body frame to navigation frame, ap is _ _ -
vehicle position vector in navigation frame, amf) is ~ computed by two different vehicle positiong; and y'

feature point position vector in each frame. and two LOS vectorsjg anduy.
Observations are obtained as the following equation 1
of (9), which is obtained by using the geometric relation m' = (13(') = 3 (Yo + )0+ poug + puuiy) (10)
in the image planeg, 15]. Due to the trigonometric form, =3(Q+Q)
the equation is highly nonlinear, thus conventional linear N ~neb
estimation is not suitable to estimate the state vector. y'=P"+CiPy, (11)
tan? ({—Z) u" = CCOPS, (12)
tarrl 5 + Nk (9)
()" +(y%)? B cos(¢)cos(9)
PS.= | sin(¢)cos(d 13
Generally, it is difficult to compute the feature point ms (sq?rz(ﬁ)( ) (13)
position using monocular vision. To resolve the problem
of distance calculation, this paper adopts tietayed Qo=Y2+ potld, Q=Y+ pu (14)

initialization method [16], which finds out an intersection
point of two line-of-sight vector (LOS) between time

intervals. Using this triangulation method enables to Up-v=0, u'-v=0 (15)
compute a 3 dimensional feature point position from two
vehicle positions; however, it does not guarantee to fix the

P g v=Q-Q (16)

feature point all the time since the measurement may not

be observable in such case when the vision sensor moves In many practical cases, two LOS vectors may not
to the optical axis direction. Figutzshows basic concept meet at one point as there exist various error sources such
of this method, in which the intersection point is as image distortion or sensor miss-alignment, and etc.
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Therefore, it finds the closest poin@ and Q; which is

orthogonal tov. Then the average of two closest points in 0Gz = [Z_g’ g_g’} (25)
Equation (7) and (8 regards as the feature point
position. where each partial derivative is represented by the
following equation,
Y —Yp) x up) - (ug < uf
Po = ((t 0) ) 2( 0 ) (17) 0 Uy _UIy
‘un X utn‘ (ugxu) n
0 WZ —Uz; 0wy Uy
oG 1 cle Uy —Ux O
—yM xud) - (uf x up - _z y 26
pr = ((yg y{]) - O)n Z(UI 0) (18) dPos 2 ( nxun) 0 Uoy _UOy ( )
‘ul x UO‘ - ur: n02 —Ug; O upx |W
|up<ug| Uoy —Uox 0
3 Estimation Filter Modeling and G _, -
I mplementation ovel 27)
. 0G 1 /0dpp du apy ouf
3.1 Extended Kalman Filter (EKF e L n 2
(EKF) oAt~ 2 (dut oAt 0" oup dAtt (28)
Basic structure of EKF is similar to conventional Kalman aG
filter; however, it uses a partially linearized model so it P (29)
; ; . JoFP
can cope with non-linear model. Even though it has
simple structure and low computation load, it cannot —sin(¢)cos(9) —cos(@)sin(d)
guarantee filter stability under highly non-linear model Z_B?CQ cos(¢)cos(d) —sin(¢)sin(F) | uj
and non-Gaussian noise because a basis of EKF is IineaﬂG g 0 cosd)
model P,17]. In every time step, linearization is 272 . —sin(¢)cos(d) —cos(¢)sin(J)
conducted at nominal point. Equatioh9 shows linear +‘9};'—Ut“1CQ cos(¢)cos(d) —sin(¢)sin(I)
observation model of EKF. 0 cos(d)
(30)
Zc = H (%, Uk) =~ OHix + Uk (19)
b b O 3.2 Unscented Kalman Filter (UKF)
D= | 27 % g | _ 9% M )
p ;_w f—& oMk X« EKF has several limitations; first, it cannot guarantee

convergence because it neglects the high order term in the
linearization. Also the estimate can diverge when the

) T nominal point is not close to the estimated state vector.

S*Z(YS> , — fxsf S UKF uses nonlinear equation without linearization, and
. () )*(‘SWS) (0€)%+(y) +£Z;>S 22\/ (€)°+(%) sevlereltl sigma pointsdinstegd of mear:j and covariarr:ce.
= = Multiple sigma points describe mean and covariance, then
OMZ | bIHOY ((Xs>2+(ys)2+<:?2)\/(ZXS>2+(YS)2 they are used to estimate the state vector, we call it

0 (xs>2(:()ys;r2(f()zs)2 Unscented Transform (UT)1B,19,20]. Equations from

(21) (3) to (33 show the sigma points and respective

and weights. The basic algorithm of UKF has similar two
oMg  a(C(Ce(MP—pD)—ps)) phase processes as in the EKF (Prediction-Update) case.
T T % (22) However, state vector is estimated by several sigma points

and their weights.

Delayed initialization is essential for monocular —
vision system; however, it should take complex XO_X’VVO_k/(n+k)a (31)
linearization process. Next equations are used for

covariance update by using linear model, when there is  y, — x ( /(N+K) pxx) W =1/2(n+Kk) (32)
additional feature point. i

- _[ I 0 Hp 0 H I 0 T N (VN HBx) Wi =1/2(n+K) (33)
ug —

HGx HGz | [ 0 Rz | [ HGx UGz wherey is sigma pointk € Ris a design parameter,is
the mean of state vectd®y is covariance ok, andn is
OGx = [ L& 26 96 05 ] (24)  size of state vector.
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3.3 ParticleFilter (PF) l
50m

In general, the PF generates distributed particles as state s

vector candidates based on a priori probability, and then "

130m R=10m

estimates state vector based on particle weights. Through
an individual calculation on a large number of distributed
particles, the nonlinear mapping and noise distribution
can be effectively reflected during state estimation
process 9,21]. As the number of particles is increased,
the estimation accuracy is increased and computation load
is also increased. Even though it is a powerful tool for a
nonlinear and non-Gaussian model, it contains a trade-off
feature between estimation accuracy and computational = et
load for effective estimation. The filter basically con&in

the weight calculation step as iB4), computed from the Fig. 3: Space of flight area where the feature points are randomly

me.asuremen_t and_a priori _estimates: Ther) based Offistributed during simulation demonstration (top) and hilig
weights, particles with low weight value is eliminated and trajectory (bottom).

multiple particles are reproduced in accordance with the
weight value. In the filter implementation, the
re-sampling step is also included to prevent the particle

degeneracy problem and to keep the particle diversity.  of 100 Hz. The update rate for feature points is set to 10
. Hz. In particle filter implementation, the number of
_ P (&K1 (1)) (34)  particles is set to 200 per feature point, so the maximum
Y1 P (21 () number of particles is 1400 at 7 feature points.
Figure 4 indicates the true trajectory and estimated
position by INS only navigation. ‘INS Only’ trajectory
4 Simulation and Analysis has accumulated errors which are left uncompensated and
i . diverge. By adapting the vision based navigation as
Simulation is conducted to compare and analyze thenentioned in section 2, the divergences can be greatly
estimation performance in vision aided navigation gegraded. Figuré shows the results of three estimation
system. Considering the flight settings of an unmannediiers. In all cases, the estimation accuracy is much
aerial vehicle (UAV), the S|mulatlon environment improved in comparison with ‘INS Only’ case in Figure
assumes a hexahedron as the trajectory space for the however the estimation curve with respect time has
initial feature point dlgtrlbut|on. Figurd sho'vvs-the area  mytyally different phase for 3 filters. Figufeillustrates
where 40 feature points are randomly distributed. Theghe position estimation error from the adapted filters. The
trajectory is a combination of straight flight, circular pg has the best estimation accuracy among three methods
turning, accelerating and elevating sections. With anag it can better reflect a full nonlinear model with a
initial velocity set to 10 m/s, the simulated vehicle flies sufficiently large number of particles than the sigma
along the designed path for 57.68 seconds in tdhl [ points in UKF. UKF also assumes a nonlinear model, yet
The inertial sensor used in the simulation assumes ghe number of sigma points is limited in proportional of
micro electro mechanical system (MEMS) grade inertial{he state dimension. The result of EKF shows the worst

measurement unit (IMU). A vision sensor is assumed t05¢ccyracy owing to the rough approximation in linear
be installed with a 45 degrees tilt angle from local y,odel.

horizontal plane. The maximum number of available Additionally, a random walk noise distribution is

feature points is set to seven. The specification of sensorgssymed in the observation model to analyze the effect of

used in the simulation is shown in Tatle non-Gaussian noise on filter characteristics. Figdre
presents the true and ‘INS Only’ estimation result while
Figure 8 and Figure9 show the estimated trajectory and

Starting Point

40

Alttuce ()
5

East(m)

w (i)

Table 1: Sensor specification used for simulation. error on nonlinear filters under random walk noise. PF
Sensor Parameter Value (1o) still has the best performance as the filter process is the
Inertial sensor|  Gyroscope bias instability | 1 deg/sec least affected even if the Gaussian assumption is applied.
Accelerometer bias instability 1 m/seé ‘INS Only’ result has lager error than Figuredue to
Vision sensor Field of view 50 deg random walk. As there is no absolute information for
Bearing estimation error 0.5 deg error correction, all estimation filters tends to increase

estimation errors as time elapses; yet the drift curve

differs according to the filter type. Further simulation

During the simulation, the position, velocity and result reveals that the PF is most robust in error drift
attitude are assumed to be estimated with an update rat&uppression.
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Fig. 4: Estimation result using INS only case. Itis compared with Fig. 7: Estimation result of pure INS case when the noise is

true track of flight.
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Fig. 5: Estimation result obtained from EKF, UKF, and particle
filter. Results are compared with the true trajectory
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Fig. 6: Estimation error profile during flight intervals. Pure INS
based estimation diverges with time elapse.

applied as random walk signal: (left) 3 dimensional results
(right-top) horizontal plane and (right-bottom) vertigddne.
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Fig. 8: Estimation result of nonlinear filters when the noise is
applied as random walk signal: (left-top) EKF, (left-battpPF
and (right) UKF.
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Fig. 9: Error profile of the estimated position when the noise is
applied as random walk signal.
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Table 2: Computation time (Intel Core 2 Duo 3.00 GHz, [3] G.P. Huang, A.l. Mourikis, S.. Roumeliotis, On the
MATLAB R2Q08a). Complexity and Consistency of UKF-based SLAM, Proc. of
Filter type EKF | UKF PF IEEE International Conference on Robotics and Automation,
Computation time| 7 sec| 15 sec| 72 sec Kobe, Japan, 4401-4408 (2009).
[4] X. Wang, H. Zhang, A UPF-UKF Framework for SLAM,
Proc. of IEEE International Conference on Robotics and
Automation, Roma, Italy, 1664-1669 (2007).

Table 2 shows computation time for each filter. As [5] C. Xianzhong, An Adaptive UKF-Based Particle Filter for
expected, the computational burden of PF is heavier than placeMobile Robot SLAM, Proc. of International Conference
others, despite advantage in estimation accuracy. Note on Artificial Intelligence, Hainan, China, 167-170 (2009).
that the flight time is about 58 sec, thus the estimation[6] J. Kim, S. Sukkari, SLAM aided GPS/INS Navigation in GPS
using PF (72 sec) cannot meet the requirement of Denied and Unknown Environments, Proc. of International
real-time operation. Meanwhile, UKF uses only 20% of _ Symposium on GNSS/GPS, Sydney, Australia (2004).

the time spent by the PF and can satisfy real-timel71J. Kim, S. Sukkari, Autonomous Airborne Navigation
estimation performance. in Unknown Terrain Environments, IEEE Transaction on

Aerospace and Electronic SysteAts 1031-1045 (2004).
[8] S. Chun, Performance Improvement of INS/GPS Using
. Multiple Vision Sensors, Konkuk University PH.D Thesis
5 Conclusion (2007).

) o _[9] B. Ristic, Beyond the Kalman Filter, Artech House (2004)
Th|S paper analyzed performance Of the VISIOh-aIded[]_o] G. Wang’ H. Zhang’ Good |mage Feature for Bearing_
integrated navigation system via various nonlinear only SLAM, Proc. Of IEEE/RSJ International Conference on
estimation filters. To compute navigation solution under |ntelligent Robots and Systems, Beijing, China, 2576-2581
nonlinear and non-Gaussian noise model, three nonlinear (2006).
filters including the EKF, UKF and PF are adapted and[11] C. Tomasi, T. Kanade, Detection and Tracking of Point
position accuracy along with computational load is  Features, Technical Report CMU-CS-91-132 (1991).
analyzed via computer simulation. [12] D.H. Titterton, Strapdown Inertial Navigation Techogy,

In viewpoint of the accuracy, PF has the best Peter Peregrinus Ltd. (1997).
performance due to enough particles to reflect nonlineat13] M. Bryson, S. Sukkarieh, Bearing-Only SLAM for an
property of model and non-Gaussian noise distribution, ~Airborne Vehicle, Proc. Of Australasian Conference on
which, in turn, suffers from heavy computational burden. ~ Robotics and Automation, Brisbane, Australia (2007).

EKF typically generates fastest estimation result with thel14] T- Vidal-Calleja, M. Bryson, S. Sukkarieh, On the
lightest computation burden, yet the estimation accuracy Observability of Bearing-only SLAM, Proc. Of IEEE

is the worst due to strong nonlinearity in the model. Internauorlwal Conference on Robotics and Automation,
Meanwhile, UKF compromises the accuracy and the Roma, ltaly, 4114-4119 (2007).

computation time. By adapting a limited number of well [15]D.H. Won, S. Chun, S. Sung, T. Kang and Y.J. Lee,
P - BY pting Improving Mobile Robot Navigation Performance using

Chosen detﬁrmlnﬁtlﬁ sigma pglnts and p_a_ssmg tlhed Vision based SLAM and Distributed Filters, Proc. Of
covariance through the unscented transform, it is reveale International Conference on Control, Automation and

to provide comparable accuracy with that of PF under  gyqtems 2008, Seoul, Korea, 186-191 (2008).
non-Gaussian noise environment for the vision-aidedie) 7. Bailey, Constrained Initialization for bearingdgn
integrated navigation problem. Also when considering the 5| Am, Proc. Of IEEE International Conference on Robotics
feasibility in real-time implementation, the computatibn and Automation, Taipei, Taiwan (2003).
burden of UKF is fairly acceptable. [17] G. Welch, G. Bishop, An Introduction to the Kalman Filte
UNC-Chapel Hill, TR 95-041 (2006).
[18] S.J. Julier, J.K. Uhlmann, New extension of the Kalman
Acknowledgement filter to nonlinear systems, Proc. SPBDE8, 182-193 (1997).
[19] E.A. Wan, R. Merwe, The Unscented Kalman Filter for
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