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Abstract: Itis known that there exists a formulation of the quantunmi@an surface with a value of the deformation parameteraelat
to the genus. A specific value bfmay be derived from breaking of the quantum symmetry. Thétjger function for string theory is
generalized to include a sum over quantum surfaces. A Faatesis constructed at the ideal boundary consisting of atablenset of
points.
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1 Introduction with a;,a, € handi, j = 1,2.,3,...,ord{X} and

Quantum commutation relations for operators h

representing position and metric variables would q:exp[§<Hi,Hi>] 2)

introduce noncommutative coordinates into the geometry.

The characterization of th&€* algebras for various m 0 K(n—K)

manifolds has been developed for Riemann surfaces that > (_1)m(k) q— (Xf)kxj*(XJFi*)”*k —o.
K=1

arise in the sum over string histories in the expansion of 2

the scattering matrix. There it is found that the (3)
deformation parameter is quantized in inverse units of n n k)

2g — 2 for hyperbolic surfaces with gengs> 2 [1]. This Z(_l)k ( ) q z (xi—)kxj— (XK -0
result also has been derived through a consideration of the k

maximal uncertainty in the area resulting from the 4)

generalization of the commutation relations of the
position and momentum operators to the Riemann surface
[2].

The deformation parameter first occurs in the o i i
quantization of Lie algebras. Consider a gro@pand  'Nhe comultiplication] is defined by
A = Fun(G) = {smooth functions on G|G is a Lie

(n) @ -y(@ 1) (g -
k/q (k—1)(dc1-1)..(q—-1)

group} with f : G x G — G introducing comultiplication Ala)=a®lolea (5)
in the Hopf algebral : A — A® A and Spec A being the H. H.
quantum space correspondingXo AX) =X @exp (hZ') +exp (—hZ') X~
A simple Lie algebra can be quantized by considering H H
the universal enveloping algebrdJy C (C*(G))*, ACX) = X ( i) ( i) _
oo . ) =X @exp|(h—)+exp| —h— | ®X
Uy — {9 © C;|Supp(g) C {e}}. Then Un(g) is =% z a)®%

generated by, X andX;", such that
The algebralUnh(g),4A) is a quantization ofj for which
Ana =0 X —a@X" [aX]=—a@X [X5X] = 28;h" there exists a cocommutative Hopf subalgebra A and
@ a mappingd : A — A such that the mapping/hC — Uy,
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C = Uy[[h]], is injective and its image is equalltly, while
0(X") = =X, 8(X7) = —X", 6l = —id, 62 =id,
6(C) =0.

The commutation relations between the roots in the (

Chevalley basis of a Lie algebra

[hi,hj] =0 [h, X =ai X" X7, X7]=385h; (6)
are replaced by
hj _ g—hj
X :5.u 7
[XI XI ] J q_q,1 ( )
in the quantum algebra Ug(g) [4]. If

q=1+qih+ qR? + ..., the commutators would tend to
&ijh; (1— (qu— —) ﬁ+ ﬁ(ﬁz)) andh would represent
a deformation parameter of the root system.

with dimU; = g+ 1 by the Riemann-Roch theorem, and
the inner product be
1A

whereC is any cycle separating frof® to P, such that
(f,g) vanishes onU; x Uy and U_ x U_ [5]. The
off-diagonal form of the inner product algebra is
isomorphic with that of the Heisenberg algebra. An
involution on the spaceU can be defined by the
antiholomorphic involution on a Schottky double,
(@f)(z2) = f(9(2)), where 8 is an antiholomorphic
involution such that3T = T. The Krichever-Novikov
basis ofU is

f,g) —Resp, (df -g) =

— Resp,(df -g) =

U =(fy,n>1) (10)
Uy = (% n< —(g+1))
Uy =(f\?, —g<n<o0).

Therefore, the deformation parameter may be
computed from the quantum symmetries of the theory.The difference in the dimensions of the spaces defined by
The string path integral can be generalized by including ahe creation and annihilation operators is indicative of an
summation over quantum surfaces. Then the correctiofnherent particle creation connected with the curvature of
will be determined by the value of the deformation the genug-surface.
parameter. The expansion of the scattering matrix is given  The action of the classical groufJ(1,1) can be
in Theorem 1 of §3. The coefficients at gerqis 2 are  rotated in the two-dimensional complex plane to that of
changed according to the replacemenhdfy a multiple 39U (2). The quantum groufUq(2) may be represented as
of ==. The terms at genus 0 and 1 are left invariant to
corroborate the phenomenologically realistic calculaio b cd
of string amplitudes. A theoretical explanation for these A(R)/(TcT°qe™ =
values through symmetries and Hilbert space methods is 0
introduced. Eab = <_i

The noncommutativeC* algebras of the ends of va
Riemann surfaces is developed to establish the form of
the Hilbert space at the ideal boundary with a countableThe set of generatorgr} of SUq(2) would be separated
number of components. It is found in Theorem 2 of 84 jnto the generatorf@”g = St 2T, } Of the subalgebra
that the Fock space is second countable and isomorphic tgf eyven elementsS0O5(q), where
a multiplier algebra defined with respect to ti&
algebra. Therefore, the the physical states can be prepared

%) (11)

in the neighbourhood of the boundary through (0%)" = 0% =S0"s (12)
conventional methods of quantum field theory. (@)AB%\Iisfia relationsof A(Ry) where
(Ry)"Bcp = (R™H)YPL, g ROV o RP1P 54 RO% 4
: : - : (R = (R
2 Dimensions of Hilbert Spaces on Riemann
Surfaces
and the generator of odd elemergik |t can be embedded
Let in Lg, a quasitriangulag-Hopf algebra with arR-matrix

that satisfies the quantum Yang-Baxter equations, since

there is an isomorphism
U = space of meromor phic functions on Swhich are holomor phic S {P, P }

® p:Lg— SLg(2:C) =Ug(2) x Wg(2). (13)
=UpdUsdUspU,
u- The rotatiomdgiSaf 1, 1) into SUg(2) and the embedding
Us into the=quaatupuLorentz group provides a method for
U = {f| dr@rslatingriher fiperent quantum fluctuations in string
(© 2018 NSP
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dynamics to the uncertainty in the description of respectto the uniformizing groug]f The quantum group

scattering in Minkowski space-times.

parameter for Riemann surfaces is found to coincide with

Quantizations of graded Hope algebras and affinethis value following the conditions on the coefficients of

Kac-Moody algebras involve commutation relations of automorphy of
quantum generators with classical limits that arey](y(Z)) 2

weight r,

Y (Qvnv(v) = (np) () tv(kp),

generators of the classical algebras. There exists &hich have solutions when= 2 - [8]. A similar result

representationg : Up(d (n)) — Mat(n, C[[h]]) [7] that
p(Hi) =6i—&i1i1 (14)
(x| )=¢ i1
. h
p(X) = 2h~* sinh <§> CEEN
_h .
PijPic =€ 2Piepij j<t
h .
Pijpxj =€ 2pjpij 1<K
PicPxj = PxjPie 1<K £>]
and the commutation relations
[Pie; Pxj] = (€@ —edpipe  i>k(>] (15

and the defining relation

z P1iy ---Prin - (—e‘g)e(ilt“'i" =1 (16)
i1imin

where((iq,...in) = # of inversions. Then(Un(sl(n)))* is

has been derived in quantum mechanlcs on a quotient of
two-dimensional anti-de Sitter space by a discrete
subgroup 080(2,1), where the image of the relation is

9 ) )
v |lg.gbigflgf1 = emio-y)
<i= c aj by

in the discrete representatio@j*, which requires
+£s— j = g5 Wwith U(ge) € Dg, the discrete
representation ins [9]. Therefore, althought it is
conventional to fix the value ofi, there is a basis for
identifying in a relative sense with this function of the
genus. A fixed value of the deformation parameter to be
identified withh'in this formalism can be achieved only if
the quantization is developed for the disk as a universal
cover with isometry groufJ (1,1). The deformation of a
root system in a quantum algebra therefore would be
given by the genus-dependent valgre; . It follows that
the classical Lie algebra is recovered in the infinite-genus
limit.

Since there is no change in the dimensions of a
boundary identified with a point, the physical state would

(19)

the quotient of the ring of noncommutative power seris inrepresent a particle that does not have a finite width in a

pij = Pij

3 The Planck Constant as a Defor mation
Parameter

— §j by the ideal generated by these relations.

semiclassical theory. The neutrino, for example, is a
particle with no ap%arent dimension. The wavelength of
light is given by E B’ and yet it cannot be a
characteristic of th dimensions of the photon at any
instant in time because the lower bound in the uncertainty
in the momentum Ap, increases indefinitely by
ApAXx > > 5 as the position is restricted to a point. The
width of the resonance is equal to the inverse of the
lifetime. Given that the lifetimes of the photon and the

It has been demonstrated that there is a quantum Riemarmeutrino are indefinite, the width in the energy spectrum
surface, defined by the quantization of the isometry groupvould be reduced to be infinitesimal.

of the hyperbolic disk by a group, and the deformation

The external state particles in a string scattering

parameter, which may be selected to be the Planckdiagram are given by semi-infinite cylinders, which may

constant, can be identified with a function of the genus.

be conformally mapped to punctured disks on the surface.

The variation in the area of a Riemann surfag [ By contrast, a conformal transformation of a surface of
based on a curved-space generalization of the uncertaintiyfinite genus causes the handles to accumulate to a finite

principle is
27 2. a7)
Furthermore, the relative uncertainty is
2m-2 1
= (18)
2m-2g—2 g-1

It follows thath can be identified withL; and3 would be
equivalenttoZQL72
TheC* algebra of the surfacd /" would be defined

endpoint. Any neighbourhood of this accumulation point
resembles a cusp. When the fundamental domain of the
uniformizing Fuchsian group has a cusplike end, and the
Hausdorff dimension of the ideal boundary is null, the
escape rate of a random walk to infinity vanishes, while
the spectrum of the Laplacian of a quantum field on the
surface yields a lower bound for the imaginary part of the
eigenvalue of% — 0, whered is the Hausdorff dimension

of the limit set of the Fuchsian group which would equal
% for this domain, and represent a non-zero deddy. [
Suppose that the cusplike region is conformally expanded

by the set of automorphic functions on the disk with after a scattering process. The decay of a point like
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particle produced at the boundary point would be surfaces with a weighting factor defined by', wherel

consistent with vanishing width and an indefinite lifetime, is the sigma model action for the theory,

provided that complex eigenvalues are not introduced into

the spectrum of the Hamiltonian. The relative uncertainty _ /

tends to zero ag — o corroborating the triviality in the ViVz)dassart. = (OV1V20) +§ch9 v dhig(OVIV2g)-

transformation from the vacuum state to the infinite-genus (23)

state in a free fermion theory allowing the preparation ofwhereh is set equal to 1 in the formula (15). If quantum

states of definite momentuni]]. There would be no deformations of the surface are included, there is another

corrections from a quantum deformation of this surface. contribution to the amplitudes arising from these surfaces
The calculation of a energy and width of a resonanceh replaced bygfll. Adding this fraction tong1 gives the

are affected by radiative corrections. Rigorously, themultiplicative factor 1+ —L- and the expansion

value of the mass in the quantum propagators in the g-1

perturbative diagrams at each order must be left arbitrary

until it is determined through the renormalization (Vi(z1)V2(22))quantum surf. = (O[V1V2|0) 4 €1(0[V1V2|1)

procedure. The mass of a resonance may be deduced

classically from momentum space transform of the Green (24)

function or the inverse of the differential operator 1

representing the wave equation for the field. It receives + ) Cg (1+ —1) /_dug<OIV1V2|g>-

guantum corrections in string theory through the 9 9= “a

higher-genus correlation functiok8|V;V2|g). The sum of

the terms at each genus yields The Fourier transform

ViVa)(p) = [ d2paP ) (Vi (2)Valzo)uartum .-
(ViVo)oass art. = (ONAVAO) + 3 cg [ 5 (ONaVlg. (25)
¢ g1 20 The classical limt of the two-point correlation function is
(20) the Green function foAs — %1 —m?, which isG(z1,2) =
The coefficient in superstring theory would decrease as G 2} wh 27272 (J4im)
, whereGo(z1,2) = ——=—+45-—+
%, wheref (g) is a function that interpolates between an%"Er olvz1,22) o(z1,22) VI (L+im)

exponential and a factorial function of the genig|[ d(z1,2) 1 1
Quantum deformations of the Riemann surfaces would cosh™? ( 2’ ) F (— +im, = +im 14 2im;

alter the formula for the two-point correlation fucnction. 2 2
d(z,z
ot (4521
Theorem 1. The shift in the mass resulting from the . . .
guantum string theory perturbation expansion is given by[10] such that the integral transform y|eld@|.s§_1—m2 in the

the residue of the Fourier transform of limit of coincidence ofz; andz, wherem is the mass of
the resonance. Therefore, the nonperturbative mass will

n [ee] " 1
<0|V1V2|0>+Cl//<0\V1V2\1>+ 2209///— (1+ ﬁ) (OV1Va|g) €qual
A = M
1

1 - )
o (V1V2)(p) = pren Rﬁ/ d?p &P A2 (V) (21)Vo(22)) quantumsur .- (26)

Proof. The perturbative expansion of the partition function . The coefficients of the moduli space integrals are left
of a field theory is invariant at genus 0 and 1 in the series expansion of the

scattering amplitudes. A non-zero value of the
ol deformation parameter affects the symmetry algebra and
Zlg| = /D[(p]e' : (21)  the conformal symmetries on the sphere and the torus.
The measure can be defined through a factorization by the

The power series inh defines the order of the volume of the conformal group and it is not possible to
diagrammatic formula for the scattering matrix which is preserve the form of the moduli space without setting the
defined by functional derivatives of the partition function parameter equal to zero. Furthermore, the dimensions of
the subspaces of the Hilbert space defined by the

1e) o Krichever-Novikov basis of meromorphic functions is
Ki)... =——.——Z[0,] 22
)00l =550 3k 2P D Gven by Ul = (190 > 1),

_ _ (0) _
whereZ[@,J] is the partition function with a source term. U+ (g o (0?) - (FaIn Z(()) 1,
The string perturbation series in the EuclideanU+(@=1)= (fa"|n<-2),U1(g=0) = (fa"[n=0)
formalism would be given by a sum over Riemann andU;(g=1) = (f,§0>| n= —1, 0), where the functions
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f,ﬁo) have poles of ordamn. The Hilbert spac&); forg=10 is countable 13|, and the space continues to have a

consists of only constant functions and cannot beHausdorff topology.

deformed, while the space of meromorphic functions with  Suppose that the ends of &g surface are labelled by

simple poles wil yield fixed expectation values of E,, n € N. The C* algebra of the product of two

opertators upon normalization. noncompace Raum spacésaindY is isomorphic taC(X)
Unlike the perturbative diagrams of the point-particle [15] . Consequently,

field theories, where the momentum-space propagator

with non-zero mass is required in the evaluation of the E

amplitudes, it is not necessary in the moduli space c |:| n

integral. Instead, the fundamental masses are given by

vibrational modes of the string and the energies of thewhereE is a representative ofEn, n € N}. SinceE C

excitations are derived by the action of the Virasoroy, g, C ®,E,,

algebra on the sphere and the Krichever-Novikov algebras

~C(E) (27)

on higher-genus surfaces.
gherd C(Cn En):c(n En> C(E). (28)
n
4 Conformal Field Theory on Quantum The C* algebraC(E) contains a Hilbert space)(E)
Surfaces because the space df? functions with prescribed

_ . boundary values is a subspaceXE).
The physical states are prepared by performing a path  Suppose that a field theory on the Riemann surface is
integral for the conformal field theory on a Riemann quantized with operatorsa(p) and a'(p) such that
surface with an ideal boundary. The boundary may havey(p)|0) = 0 anda'|0) = |p), wherep is a label that could
zero harmonic measure and be identified with a point orbe given, for example, by the momentum. Then the Fock

the capacity can be non-zero and the state is identifiedpace at the boundary of the Riemann surface is
with a configuration of non-zero linear extent or a string

[13.

A physical state identified with a boundary of ﬁ(ﬁZ)ZUn{Ipil,...,pinM Ip) =a'|0), peR?, p2+>0}.
non-zero linear extent could have a finite width resulting
from the effect of quantum fluctuations at the ideal ) . (29)
boundary. A superselection principle would be requiredWherep? = pz — pg. Consequently, the space of states
for the creation of a set of particle states, which mayin the Hilber spaces)(En) all can be collected into a
follow from methods 14] that have been developed for Single Hilbert spacef(E). Furthermore, the union of
Hilbert spaces constructed over ideal boundaries withstates inEi,....E, may be defined to be multiparticle
fractional dimension. state|pi, , .., Pi,) in the Fock space” (UnEn).

The effect of quantum corrections to a surface with ~ The cardinality of the states in the Fock space, given
ends is the blurring of the boundary. States are prepared dhat the enumeration of the states in the Hilbert space
points on the ideal boundary are likely to be observed to)(En) yields a countable set, would bé® Therefore, it
be magnified. Th€* algebra of a Raum space, that has ahas the same cardinality &(C(UnEn))/C(UnEn)). The
Hausdorff topology which is connected, locally factorization by C(UnEn) is equivalent to the
connected, locally compact and-compact, has been identificaton of all of the vacuum states
defined [L5. The Raum spaces include the ends of[0),[0, 0), ..., [0, ,...,0,...).

Riemann surfaces, and tBé algebra is &aum™ algebra,

allowing an algorithmic enumeration of the ends. It has

been established that the quotient of the multiplier algebr 5 Per spective
M(% ) of aRaum* algebra7/, M(% )/ % has cardinality

0 [13]. The allowed values of the deformation parameter in a

guantum Riemann surface a%%zn . The relative

Theorem 2. The Fock space of states that can beuncertainty in the area on the curved space generalization
constructed at the ends of &) surface is isomorphic to  of the uncertainty relation would bgZ; = ;. Given

M(C(UnEn))\C(En) whereC(Ey) is aRaum* algebra. commutation relationgx, p] = ih, it is customary to use
AxAp > '—2‘ which is relevant for the additional factor of 2.
Proof. The class ofOg surfaces with zero capacity has It follows from this result that the parameter in the

been demonstrated to be conformally equivalent to the seltlopf algebra can be related to that derived in a normal
of spheres with an infinite number of handles. The coordinate expansion on the manifold on which the group
number of sequences of handles that can be placed onact. For a Riemann surface, the grouBi$(1,1) acting

sphere without introducing a non-zero harmonic measuren the hyperbolic disk factored by a Fuchsian group,
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which yields the inverse of the linear function of the
genus after quantization.

The effect of quantum surfaces on the masses and the
widths of resonances may be given by a multiplicative
factor in the perturbative expansion of the correlation
function that includes the reciprocal ofy — 1.
Consequently, ti decreases with increasing genus and the
contribution reduces to that of the classical Riemann
surfaces in the string perturbation series. The residue of
the Fourier transform fo the two-point correlation would
be sufficient to determine the nonperturbative mass.

The noncommutative theory of ends includes a result
on theC* algebra of the tensor product of Raum spaces
that is developed to prove a theorem on the Hilbert spaces
that can be constructed on the ideal boundaries of
effective closed surfaces in the sum over string histories.
It is concluded that a Fock space may be defined in terms
of multiparticle states with a countable basis for each
Hilbert space.
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