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Abstract: It is known that there exists a formulation of the quantum Riemann surface with a value of the deformation parameter related
to the genus. A specific value of̄h may be derived from breaking of the quantum symmetry. The partition function for string theory is
generalized to include a sum over quantum surfaces. A Fock space is constructed at the ideal boundary consisting of a countable set of
points.
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1 Introduction

Quantum commutation relations for operators
representing position and metric variables would
introduce noncommutative coordinates into the geometry.
The characterization of theC∗ algebras for various
manifolds has been developed for Riemann surfaces that
arise in the sum over string histories in the expansion of
the scattering matrix. There it is found that the
deformation parameter is quantized in inverse units of
2g−2 for hyperbolic surfaces with genusg ≥ 2 [1]. This
result also has been derived through a consideration of the
maximal uncertainty in the area resulting from the
generalization of the commutation relations of the
position and momentum operators to the Riemann surface
[2].

The deformation parameter first occurs in the
quantization of Lie algebras. Consider a groupG and
A = Fun(G) = {smooth f unctions on G|G is a Lie
group} with f : G×G → G introducing comultiplication
in the Hopf algebra∆ : A → A⊗A andSpec A being the
quantum space corresponding toA.

A simple Lie algebra can be quantized by considering
the universal enveloping algebraUg ⊂ (C∞(G))∗,
Ug = {φ ∈ C−∞

0 |Supp(φ) ⊂ {e}}. Then Uh(g) is
generated byhi, X+

i andX−
i , such that

[a1,a2] = 0 [a,X+
i ] = αi(a)X

+
i [a,X−

i ] =−αi(a)X
−
i [X+

i ,X−
i ] = 2δi jh

−1

(1)

with a1,a2 ∈ h andi, j = 1,2.,3, ...,ord{Xi} and

q = exp

[

h
2
〈Hi,Hi〉

]

(2)

m

∑
k=1

(−1)m
(n

k

)

q−k(n− k)
2

(X−
i )kX+

j (X+i+)n−k = 0.

(3)
n

∑
k

(−1)k
(n

k

)

q−
k(n−k)

2 (X−
i )kX−

j (X
−
i )n−k = 0

(4)
(n

k

)

q
=

(qn −1)(qn−1−1)...(qn−k+1−1)
(qk −1)(qk−1−1)...(q−1)

.

The comultiplication [3] is defined by

∆(a) = a⊗1⊕1⊗ a (5)

∆(X−
i ) = X+

i ⊗ exp

(

h
Hi

4

)

+ exp

(

−h
Hi

4

)

⊗X−
i

∆(X−
i ) = X−

i ⊗ exp

(

h
Hi

4

)

+ exp

(

−h
Hi

4

)

⊗X−
i

The algebra(Uh(g),∆) is a quantization ofg for which
there exists a cocommutative Hopf subalgebraC ⊂ A and
a mappingθ : A → A such that the mappingC/hC → Ug,
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C =Uh[[h]], is injective and its image is equal toUh, while
θ (X+

i ) = −Xi, θ (X−
i ) = −X+

i , θ |h = −id, θ 2 = id,
θ (C) = 0.

The commutation relations between the roots in the
Chevalley basis of a Lie algebra

[hi,h j] = 0 [hi,X
±
j ] = α±

i j X±
j [X+

i ,X−
i ] = δi jh j (6)

are replaced by

[X+
i ,X−

i ] = δi j
qh j − q−h j

q− q−1 (7)

in the quantum algebra Uq(g) [4]. If
q = 1+ q1h̄+ q2h̄2 + ..., the commutators would tend to

δi jh j

(

1−
(

1
2q1− q2

q1

)

h̄+O(h̄2)
)

and h̄ would represent

a deformation parameter of the root system.
Therefore, the deformation parameter may be

computed from the quantum symmetries of the theory.
The string path integral can be generalized by including a
summation over quantum surfaces. Then the correction
will be determined by the value of the deformation
parameter. The expansion of the scattering matrix is given
in Theorem 1 of §3. The coefficients at genusg ≥ 2 are
changed according to the replacement ofh̄ by a multiple
of 1

2g−2. The terms at genus 0 and 1 are left invariant to
corroborate the phenomenologically realistic calculations
of string amplitudes. A theoretical explanation for these
values through symmetries and Hilbert space methods is
introduced.

The noncommutativeC∗ algebras of the ends of
Riemann surfaces is developed to establish the form of
the Hilbert space at the ideal boundary with a countable
number of components. It is found in Theorem 2 of §4
that the Fock space is second countable and isomorphic to
a multiplier algebra defined with respect to theC∗

algebra. Therefore, the the physical states can be prepared
in the neighbourhood of the boundary through
conventional methods of quantum field theory.

2 Dimensions of Hilbert Spaces on Riemann
Surfaces

Let

U = space o f meromorphic f unctions on S which are holomorphic S {P0,P∞}
(8)

= U0⊕U1⊕U1⊕U+

U− = { f | ordP0 f ≥ 1}
U+ = { f |ordP∞ ≥ 1}
U1 = { f | ordP0 f ≥ 0 and ord P∞ f ≤ 0}

with dim U1 = g+1 by the Riemann-Roch theorem, and
the inner product be

( f ,g) = ResP0(d f ·g) =−Res P∞(d f ·g) = 1
2π i

∫

C
d f ·g

(9)
whereC is any cycle separating fromP0 to P∞, such that
( f ,g) vanishes onU+ × U+ and U− × U− [5]. The
off-diagonal form of the inner product algebra is
isomorphic with that of the Heisenberg algebra. An
involution on the spaceU can be defined by the
antiholomorphic involution on a Schottky double,
(Θ f )(z) = f (ϑ(z)), where ϑ is an antiholomorphic
involution such thatϑT = T̄ . The Krichever-Novikov
basis ofU is

U− = 〈 f (0)n , n ≥ 1〉 (10)

U+ = 〈 f (0)n , n ≤−(g+1)〉
U1 = 〈 f (0)n , − g ≤ n ≤ 0〉.

The difference in the dimensions of the spaces defined by
the creation and annihilation operators is indicative of an
inherent particle creation connected with the curvature of
the genusg-surface.

The action of the classical groupSU(1,1) can be
rotated in the two-dimensional complex plane to that of
SU(2). The quantum groupSUq(2) may be represented as

A(R)/(τcτb
dεcd = εab) (11)

εab =

(

0 1√
q

− 1√
q 0

)

.

The set of generators{τ} of SUq(2) would be separated
into the generators{Θ A

B = Sτb0a0τa1b1} of the subalgebra
of even elements,SO3(q), where

(Θ A
B)

∗ =Θ Ā
B̄ = SΘ A

B (12)

(Θ)A
Bsatis f ies relations o f A(R1) where

(R1)
AB

CD = (R−1)γb1
a0β Rc0α

γb0Ra1β
δd1

R̃δd0
c1α

(R̃) = ((Rt)−1)t

and the generator of odd elements [6]. It can be embedded
in Lq, a quasitriangular∗-Hopf algebra with anR-matrix
that satisfies the quantum Yang-Baxter equations, since
there is an isomorphism

ρ : Lq → SLq(2 :C) = SUq(2)× SUq(2). (13)

The rotation ofSUq(1,1) into SUq(2) and the embedding
into the quantum Lorentz group provides a method for
translating the inherent quantum fluctuations in string
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dynamics to the uncertainty in the description of
scattering in Minkowski space-times.

Quantizations of graded Hope algebras and affine
Kac-Moody algebras involve commutation relations of
quantum generators with classical limits that are
generators of the classical algebras. There exists a
representationsρ : Uh(sl(n))→ Mat(n,C[[h]]) [7] that

ρ(Hi) = eii − ei+1,i+1 (14)

ρ(X+
i ) = ei,i+1

ρ(X−
i ) = 2h−1 sinh

(

h
2

)

ei+1,i

ρi jρiℓ = e−
h
2 ρiℓρi j j < ℓ

ρi jρk j = e−
h
2 ρk jρi j i < K

ρiℓρk j = ρk jρiℓ i < k, ℓ > j

and the commutation relations

[ρiℓ,ρk j] = (e
h
2 − e−

h
2 )ρi jρkℓ i > k, ℓ > j (15)

and the defining relation

∑
i1,...in

ρ1i1...ρnin · (−e−
h
2 )ℓ(i1,...in = 1 (16)

whereℓ(i1, ...in) = # o f inversions. Then(Uh(sl(n)))∗ is
the quotient of the ring of noncommutative power seris in
ρ̄i j = ρi j − δi j by the ideal generated by these relations.

3 The Planck Constant as a Deformation
Parameter

It has been demonstrated that there is a quantum Riemann
surface, defined by the quantization of the isometry group
of the hyperbolic disk by a group, and the deformation
parameter, which may be selected to be the Planck
constant, can be identified with a function of the genus.

The variation in the area of a Riemann surface [2]
based on a curved-space generalization of the uncertainty
principle is

2π ·2. (17)

Furthermore, the relative uncertainty is

2π ·2
2π ·2g−2

=
1

g−1
(18)

It follows thath̄ can be identified with 1
g−1 and h̄

2 would be

equivalent to 1
2g−2.

TheC∗ algebra of the surface∆/Γ would be defined
by the set of automorphic functions on the disk with

respect to the uniformizing group [1]. The quantum group
parameter for Riemann surfaces is found to coincide with
this value following the conditions on the coefficients of
automorphy of weight r,
γ ′1(γ2(ζ ))−

r
2 γ ′(ζ )ν(γ1)ν(γ2) = (γ1γ2)

′(ζ )−
r
2 ν(γ1γ2),

which have solutions whenr = n
2g−2 [8]. A similar result

has been derived in quantum mechanics on a quotient of
two-dimensional anti-de Sitter space by a discrete
subgroup ofSO(2,1), where the image of the relation is

V

(

g

∏
i=1

gaigbig
−1
ai

g−1
bi

)

= e4π i(g−1) j (19)

in the discrete representationD+
j , which requires

±s − j = n
2g−2 with U(gα) ∈ D±

s , the discrete
representation ins [9]. Therefore, althought it is
conventional to fix the value of̄h, there is a basis for
identifying in a relative sense with this function of the
genus. A fixed value of the deformation parameter to be
identified withh̄ in this formalism can be achieved only if
the quantization is developed for the disk as a universal
cover with isometry groupSU(1,1). The deformation of a
root system in a quantum algebra therefore would be
given by the genus-dependent value1g−1. It follows that
the classical Lie algebra is recovered in the infinite-genus
limit.

Since there is no change in the dimensions of a
boundary identified with a point, the physical state would
represent a particle that does not have a finite width in a
semiclassical theory. The neutrino, for example, is a
particle with no apparent dimension. The wavelength of
light is given by h̄c

E = h̄
p , and yet it cannot be a

characteristic of th dimensions of the photon at any
instant in time because the lower bound in the uncertainty
in the momentum ∆ p, increases indefinitely by
∆ p∆x ≥ h̄

2 as the position is restricted to a point. The
width of the resonance is equal to the inverse of the
lifetime. Given that the lifetimes of the photon and the
neutrino are indefinite, the width in the energy spectrum
would be reduced to be infinitesimal.

The external state particles in a string scattering
diagram are given by semi-infinite cylinders, which may
be conformally mapped to punctured disks on the surface.
By contrast, a conformal transformation of a surface of
infinite genus causes the handles to accumulate to a finite
endpoint. Any neighbourhood of this accumulation point
resembles a cusp. When the fundamental domain of the
uniformizing Fuchsian group has a cusplike end, and the
Hausdorff dimension of the ideal boundary is null, the
escape rate of a random walk to infinity vanishes, while
the spectrum of the Laplacian of a quantum field on the
surface yields a lower bound for the imaginary part of the
eigenvalue of12 − δ , whereδ is the Hausdorff dimension
of the limit set of the Fuchsian group which would equal
1
2 for this domain, and represent a non-zero decay [10].
Suppose that the cusplike region is conformally expanded
after a scattering process. The decay of a point like
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particle produced at the boundary point would be
consistent with vanishing width and an indefinite lifetime,
provided that complex eigenvalues are not introduced into
the spectrum of the Hamiltonian. The relative uncertainty
tends to zero asg → ∞ corroborating the triviality in the
transformation from the vacuum state to the infinite-genus
state in a free fermion theory allowing the preparation of
states of definite momentum [11]. There would be no
corrections from a quantum deformation of this surface.

The calculation of a energy and width of a resonance
are affected by radiative corrections. Rigorously, the
value of the mass in the quantum propagators in the
perturbative diagrams at each order must be left arbitrary
until it is determined through the renormalization
procedure. The mass of a resonance may be deduced
classically from momentum space transform of the Green
function or the inverse of the differential operator
representing the wave equation for the field. It receives
quantum corrections in string theory through the
higher-genus correlation functions〈0|V1V2|g〉. The sum of
the terms at each genus yields

〈V1V2〉class. sur f . = 〈0|V1V2|0〉+∑
g

cg

∫

M̄g
∑
g≥1

〈0|V1V2|g〉.

(20)

The coefficient in superstring theory would decrease as a
Bg

f (g) , wheref (g) is a function that interpolates between an
exponential and a factorial function of the genus [12].

Quantum deformations of the Riemann surfaces would
alter the formula for the two-point correlation fucnction.

Theorem 1. The shift in the mass resulting from the
quantum string theory perturbation expansion is given by
the residue of the Fourier transform of

〈0|V1V2|0〉+c1

∫

M̄1

〈0|V1V2|1〉+
∞

∑
g=2

cg

∫

M̄g

(

1+
1

g−1

)

〈0|V1V2|g〉

.

Proof. The perturbative expansion of the partition function
of a field theory is

Z[φ ] =
∫

D[φ ]eiI[φ ]. (21)

The power series inh̄ defines the order of the
diagrammatic formula for the scattering matrix which is
defined by functional derivatives of the partition function

〈φ(k1)...φ(kn)〉=
δ

δJ(k1)
...

δ
δJ(kn)

Z[φ ,J] (22)

whereZ[φ ,J] is the partition function with a source term.
The string perturbation series in the Euclidean

formalism would be given by a sum over Riemann

surfaces with a weighting factor defined bye−I, whereI
is the sigma model action for the theory,

〈V1V2〉class sur f . = 〈0|V1V2|0〉+∑
g

cgh̄g
∫

M̄g

dµg〈0|V1V2|g〉.

(23)
whereh̄ is set equal to 1 in the formula (15). If quantum
deformations of the surface are included, there is another
contribution to the amplitudes arising from these surfaces
h̄ replaced by 1

g−1. Adding this fraction to 1
g−1 gives the

multiplicative factor 1+ 1
g−1 and the expansion

〈V1(z1)V2(z2)〉quantum sur f . = 〈0|V1V2|0〉+ c1〈0|V1V2|1〉

(24)

+∑
g

cg

(

1+
1

g−1

)

∫

M̄g

dµg〈0|V1V2|g〉.

The Fourier transform

〈V1V2〉(p) =
∫

d2peip·(z1−z2)〈V1(z1)V2(z2)〉quantum sur f ..

(25)
The classical limt of the two-point correlation function is
the Green function for∆Σ − 1

4 −m2, which isG(z1,z2) =

∑γ∈Γ G0(γz1,z2), whereG0(z1,z2) =
2−2−2imΓ ( 1

2+im)√
πΓ (1+im)

cosh−1
(

d(z1,z2)

2

)

F

(

1
2
+ im,

1
2
+ im,1+2im;

cosh2
(

d(z1,z2)

2

))

[10] such that the integral transform yields1
p2−m2 in the

limit of coincidence ofz1 andz2, wherem is the mass of
the resonance. Therefore, the nonperturbative mass will
equal

1
2π i

〈V1V2〉(p) =
1

2π i
Res

∫

d2p eip·(z1−z2)〈V1(z1)V2(z2)〉quantum sur f .. (26)

The coefficients of the moduli space integrals are left
invariant at genus 0 and 1 in the series expansion of the
scattering amplitudes. A non-zero value of the
deformation parameter affects the symmetry algebra and
the conformal symmetries on the sphere and the torus.
The measure can be defined through a factorization by the
volume of the conformal group and it is not possible to
preserve the form of the moduli space without setting the
parameter equal to zero. Furthermore, the dimensions of
the subspaces of the Hilbert space defined by the
Krichever-Novikov basis of meromorphic functions is

given by U− = 〈 f (0)n | n ≥ 1〉,
U+(g = 0) = 〈F (0)

n | n ≥ −1〉,
U+(g = 1) = 〈 f (0)n | n ≤ −2〉, U1(g = 0) = 〈 f (0)n | n = 0〉
andU1(g = 1) = 〈 f (0)n | n = −1, 0〉, where the functions
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f (0)n have poles of ordern. The Hilbert spaceU1 for g = 0
consists of only constant functions and cannot be
deformed, while the space of meromorphic functions with
simple poles wil yield fixed expectation values of
opertators upon normalization.

Unlike the perturbative diagrams of the point-particle
field theories, where the momentum-space propagator
with non-zero mass is required in the evaluation of the
amplitudes, it is not necessary in the moduli space
integral. Instead, the fundamental masses are given by
vibrational modes of the string and the energies of the
excitations are derived by the action of the Virasoro
algebra on the sphere and the Krichever-Novikov algebras
on higher-genus surfaces.

4 Conformal Field Theory on Quantum
Surfaces

The physical states are prepared by performing a path
integral for the conformal field theory on a Riemann
surface with an ideal boundary. The boundary may have
zero harmonic measure and be identified with a point or
the capacity can be non-zero and the state is identified
with a configuration of non-zero linear extent or a string
[13].

A physical state identified with a boundary of
non-zero linear extent could have a finite width resulting
from the effect of quantum fluctuations at the ideal
boundary. A superselection principle would be required
for the creation of a set of particle states, which may
follow from methods [14] that have been developed for
Hilbert spaces constructed over ideal boundaries with
fractional dimension.

The effect of quantum corrections to a surface with
ends is the blurring of the boundary. States are prepared at
points on the ideal boundary are likely to be observed to
be magnified. TheC∗ algebra of a Raum space, that has a
Hausdorff topology which is connected, locally
connected, locally compact andσ -compact, has been
defined [15]. The Raum spaces include the ends of
Riemann surfaces, and theC∗ algebra is aRaum+ algebra,
allowing an algorithmic enumeration of the ends. It has
been established that the quotient of the multiplier algebra
M(U ) of a Raum+ algebraU , M(U )/U has cardinality
ℵ [15].

Theorem 2. The Fock space of states that can be
constructed at the ends of anOG surface is isomorphic to
M(C(∪nEn))\C(En) whereC(En) is aRaum+ algebra.

Proof. The class ofOG surfaces with zero capacity has
been demonstrated to be conformally equivalent to the set
of spheres with an infinite number of handles. The
number of sequences of handles that can be placed on a
sphere without introducing a non-zero harmonic measure

is countable [13], and the space continues to have a
Hausdorff topology.

Suppose that the ends of anOG surface are labelled by
En, n ∈ N. The C∗ algebra of the product of two
noncompace Raum spacesX andY is isomorphic toC(X)
[15] . Consequently,

C

(

∏
n

En

)

≃C(E) (27)

whereE is a representative of{En, n ∈ N}. SinceE ⊆
∪nEn ⊆⊗nEn,

C(⊂n En)≃C

(

∏
n

En

)

C(E). (28)

The C∗ algebraC(E) contains a Hilbert spaceH(E)
because the space ofL2 functions with prescribed
boundary values is a subspace ofC(E).

Suppose that a field theory on the Riemann surface is
quantized with operatorsa(p) and a†(p) such that
a(p)|0〉= 0 anda†|0〉= |p〉, wherep is a label that could
be given, for example, by the momentum. Then the Fock
space at the boundary of the Riemann surface is

F (∂Σ)=∪n

{

|pi1, ..., pin〉| |p〉= a†|0〉, p∈R
2, p2

+−≥ 0

}

.

(29)
wherep2

+− = p2
τ − p2

σ . Consequently, the space of states
in the Hilber spaceH(En) all can be collected into a
single Hilbert spaceH(E). Furthermore, the union of
states inEi1, ...,Eik may be defined to be multiparticle
state|pi1, ..., pin〉 in the Fock spaceF (∪nEn).

The cardinality of the states in the Fock space, given
that the enumeration of the states in the Hilbert space
H(En) yields a countable set, would be 2ℵ0. Therefore, it
has the same cardinality asM(C(∪nEn))/C(∪nEn)). The
factorization by C(UnEn) is equivalent to the
identification of all of the vacuum states
|0〉, |0, 0〉, ..., |0, , ...,0, ...〉.

5 Perspective

The allowed values of the deformation parameter in a

quantum Riemann surface are

{

1
2g−2n

}

. The relative

uncertainty in the area on the curved space generalization
of the uncertainty relation would be2

2g−2 = 1
g−1. Given

commutation relations[x, p] = ih̄, it is customary to use
∆x∆ p ≥ h

2 which is relevant for the additional factor of 2.
It follows from this result that the parameter in the

Hopf algebra can be related to that derived in a normal
coordinate expansion on the manifold on which the group
act. For a Riemann surface, the group isSU(1,1) acting
on the hyperbolic disk factored by a Fuchsian group,
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which yields the inverse of the linear function of the
genus after quantization.

The effect of quantum surfaces on the masses and the
widths of resonances may be given by a multiplicative
factor in the perturbative expansion of the correlation
function that includes the reciprocal ofg − 1.
Consequently, ti decreases with increasing genus and the
contribution reduces to that of the classical Riemann
surfaces in the string perturbation series. The residue of
the Fourier transform fo the two-point correlation would
be sufficient to determine the nonperturbative mass.

The noncommutative theory of ends includes a result
on theC∗ algebra of the tensor product of Raum spaces
that is developed to prove a theorem on the Hilbert spaces
that can be constructed on the ideal boundaries of
effective closed surfaces in the sum over string histories.
It is concluded that a Fock space may be defined in terms
of multiparticle states with a countable basis for each
Hilbert space.
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