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Abstract: Two-parameter growth models of exponential typef (t;a,b) = g(t)exp(a+bh(t)), wherea andb are unknown parameters
andg andh are some known functions, are frequently employed in many different areas such as biology, finance, statistic, medicine,
ect. The unknown parameters must be estimated from the data(wi , ti ,yi), i = 1, . . . ,n, whereti denote the values of the independent
variable,yi are respective estimates of regression functionf and wi > 0 are some data weights. A very popular and widely used
method for parameter estimation is the method of least squares. In practice, to avoid using nonlinear regression, this kind of problems
are commonly transformed to linear, which is not statistically justified. In this paper we show that for strictly positive g and strictly
monotoneh original nonlinear problem has a solution. Generalizationin the lp norm (1≤ p< ∞) and some illustrative examples are
also given.
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1 Introduction

In this paper we will investigate parameter estimation
problem for the models of the type:

f (t;a,b) = g(t)ea+bh(t), (1)

wherea andb are unknown parameters andg andh are
some known functions. This type of models are often
used in applied research, such as biology, ecology,
political science, psychology, economics and finance (see
e.g. [10,16,23,5,25]).

The structure of the paper is as follows. In Section 2
we briefly describe few models of type (1). In Section 3
we formulate ordinary least squares (OLS) fitting
problem for this type of models. In Section 4 we present
our main result (Theorem 1) which guarantees the
existence of the least squares estimate (LSE), provided
the data satisfy natural conditions. Illustrative numerical
examples are given in Section 5.

2 Some useful models of type (1)

Now we will give brief descriptions of some models of
type (1), which are commonly used in applied research.

Given models range from generally applied to very
specifically used.

2.1 Exponential regression

If we assume that the average rate of change of the
population (P) over an interval of time is proportional to
the size of the population (see [9,18]), we have the
following differential equation model:

dP
dt

= kP, (2)

where (for growth)k is a positive constant.
To solve it, we can rewrite equation (2) and get a

following equation

dP
P

= kdt.

Integration of both sides of the last equation yields

lnP= kt+C,

or
P(t) = ekt+C.
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Fig. 1: Plots of the exponential model for some values ofk and
C

This model is sometimes also called log-level or
log-linear model (or regresion), since when dependent
variable is log transformed relation becomes linear.
Depending on the sign of parameterk, it can be increasing
or decreasing. Figure1 gives some examples of the
exponential model.

2.2 Power regression

Assumption that percentage increases in independent
variable t leads to constant percentage changes in
dependant variabley (see e.g. [19,16]) implies:

dy
y

= k
dt
t
,

and a simple calculation gives

y(t) = ek ln t+C.

This model has a property of scale invariance (see e.g.
[5,10,25]). Model is also known as power law, log-log
regression and allometric equation.

t

y(t) ✻

✲

Fig. 2: Plots of the power model for some values ofk andC

2.3 Fox surplus-yield model

This model is mainly used in fishery sciences for
estimating the maximum sustainable yield. It was
proposed by Fox in 1970. (see [8]). The equilibrium
harvest or sustainable yield occurs when a fish stock’s
harvest rateH equals its growth rateG (see [6]), and that
is when

dN
dt

= G(N)−H(E,N) = 0. (3)

The Fox model assumes a Gompertz growth of the
underlying stock size in the absence of harvest

G(N) = rN ln
(K

N

)

,

wherer is the intrinsic growth rate andK is the carrying
capacity of the environment. Another assumption of the
Fox model is that harvest rate is proportional to fishing
effort and the biomass of the stock; that is

H(E,N) = qEN,

whereq is the catchability coefficient. Then, from (3), the
equilibrium biomassN⋆ satisfies the relation

rN⋆ ln
( K

N⋆

)

−qEN⋆ = 0

which implies that the nonzero equilibrium is given by

N⋆(E) = Ke−
q
r E.

Therefore, the sustainable yield is

Y(E) = qEN⋆ = qKEe−
q
r E = EekE+C. (4)

The highest possible sustainable yield is called the
maximum sustainable yield, denotedYMSY. The maximum
sustainable yield occurs when

dY
dE

= qK
(

1−
q
r

E
)

e−
q
r E = 0.

The corresponding optimal level of effort is given by

EMSY =
r
q
.

Substituting this value of effort in (4), the maximum
sustainable yield is

YMSY= Kre−1 =−
eC−1

k
.
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Fig. 3: Plots of the Fox model for some values ofk andC

2.4 Schumacher equation

Next model was proposed independently by Terazaki
[24], Johnson [14], Schumacher [21] and Michailoff [17].
The model assumes that the relative growth rate increases
linearly with the squared inverse of time (see [4]):

1
y

dy
dt

= k
1
t2 .

This leads us to model

y(t) = eC−k1
t .

This model is primarily employed for timber growth
and yield modeling (see e.g. [4,13]).

3 Formularization of the problem

Parametersa and b of models of type (1) have to be
estimated from the experimental or empirical data
(wi , ti ,yi), i = 1, . . . ,n, n ≥ 3, wheret1 < t2 < · · · < tn
denote the values of the independent variable,yi are the
respective measured function values andwi > 0 are the

t

y(t) ✻

✲

Fig. 4: Plots of the Schumacher model for some values ofC and
k

data weights which describe the assumed relative
accuracy of the data.

There is no unique way to estimate the unknown
parameters in a nonlinear regression function and many
different methods have been proposed in literature (see
e.g. [1,2,3,11,12,20,22]).

If the errors in the measurements of the independent
variable are negligible, and the errors in the
measurements of the dependent variable are independent
random variables following the normal distribution with
expectancy zero, i.e. that

yi = f (ti ;a,b)+ εi, i = 1, . . . ,n,

then in practical applications the unknown parametersa
andb of model (1) are usually estimated in the sense of the
least squares (LS) method by minimizing the functional

F2(a,b) =
n

∑
i=1

wiε2
i =

n

∑
i=1

wi
[

f (ti ;a,b)− yi
]2

on the setP (R× (−∞,0], R× [0,−∞) or R2. A point
(a⋆,b⋆) ∈ P such thatF2(a⋆,b⋆) = inf(a,b)∈P F2(a,b) is
called the least squares estimate (LS estimate), if it exists.

Special numerical methods have been developed for
the purpose of solving nonlinear LS problems (see e.g.
[7]). However, prior to minimization itself difficult
questions are posed referring to the existence and
uniqueness of the LS estimate as well as the problem of
determining a good initial approximation. In the next
section we will prove existence result.

Models od type (1) belong to the class of models that
can be linearized by transforming the dependent
variables. This kind of transformation changes the error
structure, as well as the influences of the data values.
Because of that, it is not clear in which sense resulting
parameters would be optimal. However, result obtained
from transformed data usually gives a good initial
approximation for iterative minimization methods.

Models od type (1) also belong to the family of the
quasilinear regression models. Recent result on parameter
estimation problem for quasilinear models can be found in
[15].

4 The existence result

In this section we consider the existence of the bestlp-
norm (1≤ p < ∞) estimator in regression model of the
form (1) wherea andb are the unknown parameters, with

F(a,b) =
n

∑
i=1

wi
∣

∣g(ti)ea+bh(ti)− yi
∣

∣

p (5)

The next lemma will be used in the proof of Theorem
1.
Lemma 1. Suppose we are given data(wi , ti ,yi),
i = 1, . . . ,n, n ≥ 3, such thatt1 < t2 < .. . < tn and
wi ,yi > 0, i = 1, . . . ,n.
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A If h is strictly increasing, then:
(i) There exists a point inR × (−∞,0) at which

functional F defined by (5) attains a value less
than∑n

i=2wiy
p
i .

(ii) There exists a point inR × (0,∞) at which
functional F defined by (5) attains a value less
than∑n−1

i=1 wiy
p
i .

B If h is strictly decreasing, then:
(i) There exists a point inR × (0,∞) at which

functional F defined by (5) attains a value less
than∑n

i=2wiy
p
i .

(ii) There exists a point inR × (−∞,0) at which
functional F defined by (5) attains a value less
than∑n−1

i=1 wiy
p
i .

Proof. We first prove A(i). Leta(b) := ln( y1
g(t1)

)−bh(t1).

It is easy to verify that f (t1;a(b),b) = y1 and
limb→−∞ f (ti ;a(b),b) = 0 for eachi = 2, . . . ,n.

By definition of the limit there exists a point
b0 ∈ (−∞,0) such that for allb∈ (−∞,b0),

0< f (ti ;a(b),b)< yi , i = 2, . . . ,n.

Therefore, it follows that

F(a(b),b) =
n

∑
i=1

wi | f (ti ;a(b),b)− yi|
p <

n

∑
i=2

wiy
p
i

for all b∈ (−∞,b0), and therefore claim A(i) holds.
A(ii) The proof is similar to that of part A(i). Let

a(b) := ln( yn
g(tn)

) − bh(tn). It is easy to check that

f (tn;a(b),b) = yn. Since limb→∞ f (ti ;a(b),b) = 0 for
eachi = 1, . . . ,n−1, there exists a pointb0 ∈ (0,∞) such
that for allb∈ (b0,∞),

0< f (ti ;a(b),b)< yi , i = 1, . . . ,n−1.

Therefore, for everyb ∈ (b0,∞) we have that
F(a(b),b) = ∑n

i=1wi | f (ti ;a(b),b)− yi|
p < ∑n−1

i=1 wiy
p
i .

The rest of the proof is similar, so it is omitted.�

Theorem 1.Let P be one of the setsR× (−∞,0], R×
[0,∞) andR2. If the data(wi , ti ,yi), i = 1, . . . ,n, n≥ 3, are

0.2 0.4 0.6 0.8 1.0 1.2

2

4

6

8

Fig. 5: Plots of f (t;a(b),b) used in the proof of claim A(i) in
Lemma 1.

such thatt1 < t2 < .. . < tn andwi ,yi > 0, i = 1, . . . ,n, then
there exists a point(a⋆,b⋆) ∈ P such that

F(a⋆,b⋆) = inf
(a,b)∈P

F(a,b).

Proof. The proof will be carried out for the case whenh is
strictly increasing. The proof for the second case (h is
strictly decreasing) is essentially identical, so it will be
omitted here.

Since functionalF is nonnegative, there existsF⋆ :=
inf(a,b)∈P F(a,b). It should be shown that there exists a
point(a⋆,b⋆) ∈ P such thatF(a⋆,b⋆) = F⋆.

Before continuing the proof, let us note that Lemma 1.
implies that

F⋆ < min
{

n

∑
i=2

wiy
p
i ,

n−1

∑
i=1

wiy
p
i

}

. (6)

Let (ak,bk) be a sequence inP, such that

F⋆ = lim
k→∞

F(ak,bk) = lim
k→∞

n

∑
i=1

wi
∣

∣g(ti)e
ak+bkh(ti)− yi

∣

∣

p
.

(7)
Without loss of generality, in further consideration we
may assume that sequences(ak) and (bk) are monotone.
This is possible because the sequence(ak,bk) has a
subsequence(alk,blk), such that all its component
sequences(alk) and (blk) are monotone; and since
limk→∞ F(alk,blk) = limk→∞ F(ak,bk) = F⋆.

Since each monotone sequence of real numbers
converges in the extended real number systemR, define

a⋆ := lim
k→∞

ak, b⋆ := lim
k→∞

bk.

Note that−∞ ≤ a⋆,b⋆ ≤ ∞.
To complete the proof it is enough to show that

(a⋆,b⋆) ∈ P, i.e. that−∞ < a⋆ < ∞ and−∞ < b⋆ < ∞.
Indeed, the continuity of functionalF will then imply that
F⋆ = limk→∞ F(ak,bk) = F(a⋆,b⋆).
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Fig. 6: Plots of f (t;a(b),b) used in the proof of claim A(ii) in
Lemma 1.
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It remains to show thata⋆ andb⋆ are real numbers. To
do this, let us denote

l⋆i := lim
k→∞

(ak+bkh(ti)), i = 1, . . . ,n.

Note thatl⋆i 6= ∞ for eachi = 1, . . . ,n. Indeed, if l⋆i = ∞
for somei, then it would follow from (7) that F⋆ = ∞,
which is impossible. Also note thatl⋆i 6= −∞ for at least
one indexi because otherwise it would follow from (7)
that F⋆ = ∑n

i=1wiy
p
i , which contradicts (6). Let index i0

be such thatl i0 ∈ R. Then only one of the following three
cases can occur: (i)i0 = 1, (ii) i0 = n, or (iii) 1 < i0 < n.
Now we are going to show thata⋆ andb⋆ are real numbers
in each of these three cases, and so complete the proof of
the theorem. Sincel i0 = limk→∞(ak + bkh(ti0)) ∈ R, note
that it will be enough to show thatb⋆ is real. To do this, we
will use the following identities

ak+bkh(ti)= ak+bkh(ti0)+bk(h(ti)−h(ti0)), i = 1, . . . ,n.
(8)

Case(i): i0 = 1. If b⋆ = ∞, then it would follow from (8)
that l⋆i = ∞, i = 2, . . . ,n, which is impossible. Ifb⋆ =−∞,
then it would follow from (8) that l⋆i = −∞, i = 2, . . . ,n,
and consequentlyF⋆ ≥ ∑n

i=2wiy
p
i , which contradicts (6).

Case(ii): i0 = n. If b⋆ = ∞, then it would follow from (8)
that l⋆i = −∞, i = 1, . . . ,n − 1, and consequently
F⋆ ≥ ∑n−1

i=1 wiy
p
i , which contradicts (6). If b⋆ = −∞, then

it would follow from (8) that l⋆i = ∞, i = 1, . . . ,n− 1,
which is impossible.
Case(iii): 1 < i0 < n. If b⋆ = ∞, then it would follow from
(8) thatl⋆i0+1 = ∞, which is impossible. Ifb⋆ =−∞, then it
would follow from (8) thatl⋆i0−1 = ∞, which is impossible.

Herewith we completed the proof.�

5 Numerical examples

Further in the text, we will give few illustrative examples.
Example 1.

Let us consider data set given in the Table1.

This data represent observed average height of
Cryptomeria Japonica of quality I in the Main Island and
Kiushu (source [24]). To fit this date, we will use
following two-parameter model:

y(t) = ae
b
t .

Optimal parameters will be obtain in the sense of
(unweighted) least squares, i. e. by minimizing functional

F(a,b) =
29

∑
i=1

(ae
b
ti − yi)

2.

As a initial approximation, we use the result of
linearized model

(a0,b0) = (26.77,−23.46),

20 40 60 80 100
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t

y ✻

✲

Fig. 7: The data, initial fit (blue), and optimal fit (red)

with F(a0,b0) = 1.966131.

The results of nonlinear LS are given in Table2

Table 2: Least squares parameter estimates and the
corresponding value of functionalF

a⋆ b⋆ F(a⋆,b⋆)
27.37 -24.18 1.44361

The data and graphs of inital and optimal fit are shown
in Figure7.

Example 2.

In this example we will illustrate influence of weights
to resulting fit. We will consider the population growth of
the United States of America in the period between 2000
and 2013. We will use the data from the period between
2000 and 2010 to build an exponential growth model
(exponential regression) using few different sets of
weights. The data from 2011 to 2013 will be used to test
how well obtained model fit the data few years in
advance. Let us present the data in Table3.

Besides unweighted least squares where all weights are
equal 1 (w0), we will use following sets of (normalized)
weights:

–linear (w1): wi =
xi

11

∑
k=1

xk

,

–square (w2): wi =
x2

i
11

∑
k=1

x2
k

,

–exponential (we): wi =
exi/2

11

∑
k=1

exk/2

,

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp
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Table 1: The observed average height
Age (ti) 12 13 14 15 16 17 18 19 20 22 24 25 26 27 28
Height(yi) 4.1 4.5 4.8 5.4 6.2 6.6 7 8 8.6 9.2 10 10.4 10.6 11.1 11.4

Age (ti) 30 32 33 35 37 40 46 48 50 56 60 70 75 100
Height(yi) 12 12.7 13.2 13.5 14 14.8 16 16.5 16.6 17.8 18.5 19.5 19.7 22.1

Table 3: US population (Source: United States Bureau of the Census)
Year (ti ) 2000 2001 2002 2003 2004 2005 2006
Population (yi) 282162411 284968955 287625193 290107933 292805298 295516599 298379912

Year (ti ) 2007 2008 2009 2010 2011 2012 2013
Population (yi) 301231207 304093966 306771529 309326295 311582564 313873685 316128839

–modified exponential (wme): wi =
ex2

i

11

∑
k=1

ex2
k

,

for i = 1, . . . ,11.
The results are given in Table4, where prediction error

(PE) is calculated as

PE=
14

∑
k=12

(ea⋆+b⋆ti − yi)
2,

for all sets of weights.

We can conclude that for this particular data, weights
wme give the best prediction. That could be interpreted in
a way that the more recent data have a bigger influence for
the data in the near future.

The data and graphs of inital and optimal fit with
weightswme are shown in Figure8.
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Fig. 8: Plots of the data (blue dots), test data (green dots), initial
fit (blue) and optimal fit (red)

Table 4: Least squares parameter estimates and the
corresponding prediction errors

a⋆ b⋆ PE

w0 -12.8227 0.00923279 7.37169

w1 -12.8226 0.00923274 7.37054

w2 -12.8225 0.00923268 7.36939

we -12.5298 0.00908687 5.48948

wme -10.9354 0.00829343 1.47465
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