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Abstract: Two-parameter growth models of exponential tyfide a,b) = g(t)exp(a+ bh(t)), wherea andb are unknown parameters
andg andh are some known functions, are frequently employed in mafigrdnt areas such as biology, finance, statistic, medicine
ect. The unknown parameters must be estimated from the(data yi), i = 1,...,n, wheret; denote the values of the independent
variable,y; are respective estimates of regression functioand w; > 0 are some data weights. A very popular and widely used
method for parameter estimation is the method of least sguém practice, to avoid using nonlinear regression, timd kf problems
are commonly transformed to linear, which is not statiffifgastified. In this paper we show that for strictly posgig and strictly
monotoneh original nonlinear problem has a solution. Generalizaiiothe |, norm (1< p < «) and some illustrative examples are
also given.
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1 Introduction Given models range from generally applied to very
specifically used.

In this paper we will investigate parameter estimation

problem for the models of the type:

f(tab) — g(t)eono, " 2.1 Exponential regression

wherea andb are unknown parameters agcandh are | we assume that the average rate of change of the

some known functions. This type of models are oftenPopulation P) over an interval of time is proportional to

used in applied research, such as biology, ecologyth€ size of the population (se®,18]), we have the

political science, psychology, economics and finance (Segollowmg differential equation model:

e.g. [L0,16,235,25)). 4P
The structure of the paper is as follows. In Section 2 — =kP,

we briefly describe few models of typ&)( In Section 3 dt

we formulate ordinary least squares (OLS) fitting here (for growthk is a positive constant.

problem for this type of models. In Section 4 we present 14 gsolve it, we can rewrite equatior)(and get a
our main result (Theorem 1) which guarantees thefollowing equation

existence of the least squares estimate (LSE), provided

the data satisfy natural conditions. lllustrative numairic dP

examples are given in Section 5. P kdt

(2)

Integration of both sides of the last equation yields
2 Some useful models of typel] INP=kt+C,

Now we will give brief descriptions of some models of or
type (), which are commonly used in applied research. Pt) = e,
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P(t) 2.3 Fox surplus-yield model

This model is mainly used in fishery sciences for
estimating the maximum sustainable vyield. It was
proposed by Fox in 1970. (sed]). The equilibrium
harvest or sustainable yield occurs when a fish stock’s
harvest ratéd equals its growth rat& (see f]), and that

- is when
—— R dN
> dt
The Fox model assumes a Gompertz growth of the

Fig. 1: Plots of the exponential model for some valuek a@ind underlying stock size in the absence of harvest
C

G(N) — H(E,N) = 0. 3)

G(N) =N n (%)

This model is sometimes also called log-level or
log-linear model (or regresion), since when dependen
variable is log transformed relation becomes linear.
Depending on the sign of paramekeit can be increasing
or decreasing. Figurd gives some examples of the
exponential model.

wherer is the intrinsic growth rate anl is the carrying
Eapacity of the environment. Another assumption of the
Fox model is that harvest rate is proportional to fishing
effort and the biomass of the stock; that is

H(E,N) = gEN,

. whereq is the catchability coefficient. Then, fror8)( the
2.2 Power regression equilibrium biomas&* satisfies the relation

Assumption that percentage increases in independent
variable t leads to constant percentage changes in
dependant variablg(see e.g.19,16]) implies:

rN*In (%) —gEN"=0

which implies that the nonzero equilibrium is given by
dy | dt
= k_a 9
y t N*(E) =Ke 7-.

and a simple calculation gives Therefore, the sustainable yield is

v =e Y(E) = qEN' — gKEe '€ —E&E*C. (4
This model has a property of scale invariance (see e.qg.

sustainable yield occurs when

dY q _QE
y(t) E:qK(l——E)e E=0.
The corresponding optimal level of effort is given by

r
Emsy = —.
q

Substituting this value of effort in4j, the maximum
sustainable yield is

-1
t Ymsy = Kre ! = TR
Fig. 2: Plots of the power model for some valueskaindC
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Fig. 3: Plots of the Fox model for some valueskodindC

2.4 Schumacher equation

Next model was proposed independently by Terazaki

[24], Johnson 14], Schumacherd1] and Michailoff [17].

data weights which describe the assumed
accuracy of the data.

There is no unigue way to estimate the unknown
parameters in a nonlinear regression function and many
different methods have been proposed in literature (see
e.g. [1,2,3,11,12,20,22)).

If the errors in the measurements of the independent
variable are negligible, and the errors in the
measurements of the dependent variable are independent
random variables following the normal distribution with
expectancy zero, i.e. that

relative

yi = f(ti;a,b) + &, i=1,...,n,

then in practical applications the unknown parameters
andb of model ) are usually estimated in the sense of the
least squares (LS) method by minimizing the functional

Fz(av b) = ._iiwi £i2 = -_iiWi [f (ti ,a, b) — y,} 2

The model assumes that the relative growth rate increasesy the set# (R x (—,0], R x [0,—c) or R2. A point

linearly with the squared inverse of time (s€§){

1dy 1

ydt  t2

This leads us to model

This model is primarily employed for timber growth
and yield modeling (see e.g4,[L3)]).

3 Formularization of the problem

Parametersaa and b of models of type 1) have to be

(a",b%) € & such that(a*,b*) = infgp)c » F2(a,b) is
called the least squares estimate (LS estimate), if it@xist

Special numerical methods have been developed for
the purpose of solving nonlinear LS problems (see e.g.
[7]). However, prior to minimization itself difficult
questions are posed referring to the existence and
uniqueness of the LS estimate as well as the problem of
determining a good initial approximation. In the next
section we will prove existence result.

Models od type 1) belong to the class of models that
can be linearized by transforming the dependent
variables. This kind of transformation changes the error
structure, as well as the influences of the data values.
Because of that, it is not clear in which sense resulting
parameters would be optimal. However, result obtained

) . g from transformed data usuall ives a good initial
estimated from the experimental or empirical data y 9 9

(Wi,t,vi), i =1,....,n, n > 3, wheret; <t) <--- <ty
denote the values of the independent variailare the
respective measured function values amd> 0 are the

y(t)

Fig. 4: Plots of the Schumacher model for some valueS ahd
k

approximation for iterative minimization methods.

Models od type 1) also belong to the family of the
quasilinear regression models. Recent result on parameter
estimation problem for quasilinear models can be found in

(13-
4 The existence result
In this section we consider the existence of the bgst

norm (1< p < «) estimator in regression model of the
form (1) wherea andb are the unknown parameters, with

(5)

The next lemma will be used in the proof of Theorem

F(a,b) = _Zwi |g(t;)er o) —y;| P

1.

Lemma 1. Suppose we are given datéw,ti,Vi),
i=1....n, n>3, such thatt; <t < ... <t, and
wi,yi >0,i=1,...,n.
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A If his strictly increasing, then: suchthat; <ty <... <tpandw,y, >0,i=1,...,n, then
(i) There exists a point inR x (—,0) at which  there exists a poin@a*,b*) € & such that
functional F defined by §) attains a value less
thanzinzzwiyip_ F(a*,b*)= inf F(ab).

(i) There exists a point inR x (0,00) at which (@bje
functional F defined by §) attains a value less ) ) .
thany " twiyP. Proof. The proof will be carried out for the case whiers
BIf his stri(I:ﬂy de(I:reasing, then: strictly increasing. The proof for the second cakeig

(i) There exists a point inR x (0,0) at which  Strictly decreasing) is essentially identical, so it wig b

functional F defined by §) attains a value less Omitted here. _ _ _
thany! ,wyP. Since functionaF is nonnegative, there exisks" :=

(i) There exists a point iR x (—c0,0) at which inf.(a,b>€L@F(a, b). It should be shown that there exists a
functional F defined by §) attains a value less point(a®,b*) € & such thaf(a*,b*) = F*.

thanz{‘;lwiyf. Before continuing the proof, let us note that Lemma 1.
) ) implies that
Proof. We first prove A(i). Leta(b) := In(%) —bh(ty).
It is easy to verify that f(t;;a(b),b) = y; and . L n-1
limp_, o« f(ti;a(b),b) = 0 for eachi = 2,....n. Fr< mm{%wiyip, ZiWiyip}- (6)
By definition of the limit there exists a point = =
bo € (—,0) such that for alb & (—, bo), Let (ay, by) be a sequence i, such that
0< f(ti;a(b),b) <y, 1=2,...,n. N
*— | — i Aot ) ek tbch(t) . [P
Therefore, it follows that F _;!m':(ak’bk) _llmi;w.|g(tl)e “ y.| :
n n )
F(a(b),b) = lei|f(ti;a(b),b)—yi|p < ;Wiyip Without loss of generality, in further consideration we
i= =

may assume that sequendeg) and (by) are monotone.

for all b € (—o,byg), and therefore claim A(i) holds. Thk|)s is possible bbecausehtheh seqtljlerﬁ_a% b has a
A(ii) The proof is similar to that of part A(i). Let subsequence(ay; by), such that all its ) component
a(b) := In(2L) — bh(t,). It is easy to check that sequences(a,) and (by) are monotone; and since
9(tn) e im0 F(ay,,by,) = limy_o F (a, bx) = F*.
f(th;a(b),b) = yn. Since lim.. f(ti;a(b),b) = O for Since each monotone sequence of real numbers

eachi =1,...,n—1, there exists a poirtlp € (0,%) such  ¢onyerges in the extended real number syskerdefine
that for allb € (b, »),

0< f(t;a(b),b) <y, i=1,...,n—1 = fim & b*:= lim by.
Therefore, for everyb € (bp,) we have that Note that—c < a*,b* < co.
F(a(b),b) = 5, wi| f(ti;a(b),b) —yi|P < Epz‘llwiyip. To complete the proof it is enough to show that
The rest of the proof is similar, so it is omitted. (a",b*) € 2, i.e. that—o < @ < o and —co < b* < o,

Theorem 1.Let & be one of the set® x (—,0], R x Indeed, the continuity of function& will then imply that
[0,00) andR2. If the data(wi,ti,yi),i=1,...,n,n>3,are  F* =M F(a,b) =F(a,b").

0.2 04 0.6 0.8 1.0 12 0.2 04 0.6 0.8 1.0 12

Fig. 5: Plots of f(t;a(b),b) used in the proof of claim A(i) in  Fig. 6: Plots of f(t;a(b),b) used in the proof of claim A(i) in
Lemma 1. Lemma 1.
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It remains to show tha* andb* are real numbers. To

do this, let us denote
[ := lim (ax + beh(ti)), i=1,...,n
k—00

Note thatl’ # o for eachi = 1,...,n. Indeed, ifl} = o
for somei, then it would follow from @) that F* = oo,
which is impossible. Also note th&t # —o for at least
one indexi because otherwise it would follow front)(
that F* = 3", wiyP, which contradicts&). Let indexio
be such thak, € R. Then only one of the following three
cases can occur: (i) = 1, (i) ip = n, or (i) 1 <ig < n.
Now we are going to show that andb* are real numbers

Y
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g. 7: The data, initial fit (blue), and optimal fit (red)

in each of these three cases, and so complete the proof of

the theorem. Sinck, = limy_..(ax + bh(ti,)) € R, note
that it will be enough to show théat is real. To do this, we
will use the following identities

ax+bkh(t) = a+beh(tiy) +be(h(t) —h(t,)), 1=1,. ( ,)n.
8
Case(i): ip = 1. If b* = oo, then it would follow from 8)
thatl; = o, i =2,...,n, which is impossible. 1b* = —oo,
then it would follow from @) thatly = —0, i =2,...,n,
and consequently* > 5" ,wy’, which contradicts®).
Case(ii): ig = n. If b* = 0, then it would follow from @)
that [* —00, | 1,...,n—1, and consequently
F*> zi”;llwiyip, which contradicts@). If b* = —o, then
it would follow from (8) that I =, i =1,...,n—1,
which is impossible.
Case(iii): 1 <ig < n. If b* = oo, then it would follow from
(8) thatIﬁJJrl = oo, wWhich is impossible. I[b* = —o, then it
would follow from (8) thatlﬁ)_1 = oo, Which is impossible.
Herewith we completed the proafl

5 Numerical examples

Further in the text, we will give few illustrative examples.
Example 1.

Let us consider data set given in the Table

This data represent observed average height

Cryptomeria Japonica of quality | in the Main Island and

Kiushu (source 24]). To fit this date, we will use
following two-parameter model:

y(t) = aet.

Optimal parameters will be obtain in the sense of
(unweighted) least squares, i. e. by minimizing functional

29

Flab)=3 (e )"

As a initial approximation, we use the result of

linearized model

(a°,b°) = (26.77,—23.46),

with F(a% %) = 1.966131.

The results of nonlinear LS are given in TaBle

Table 2: Least squares parameter estimates and the
corresponding value of functiongl
ar b*

27.37 | -24.18

Fl@,b)
1.44361

The data and graphs of inital and optimal fit are shown
in Figure?.

Example 2.

In this example we will illustrate influence of weights
to resulting fit. We will consider the population growth of
the United States of America in the period between 2000
and 2013. We will use the data from the period between
2000 and 2010 to build an exponential growth model
(exponential regression) using few different sets of
weights. The data from 2011 to 2013 will be used to test
how well obtained model fit the data few years in
?dvance. Let us present the data in Teble

o' Besides unweighted least squares where all weights are
equal 1 (°), we will use following sets of (normalized)
weights:

—inear v!): w = 1?‘ ,
> X
=1
)(1.2
—square\\?): w; = T
X
=1
) g4/2
—exponential\W®): w; = m ,
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Table 1: The observed average height
Age (tj) 12 13 14 15 16 17 | 18 | 19 20 22 24 25 26 27 28
Height(y;) || 4.1 | 45 | 4.8 54 | 62| 6.6 7 8 86 | 9.2 10 | 104 | 10.6| 111 | 114
Age (tj) 30 32 33 35 37 40 | 46| 48 50 56 60 70 75 100
Height(y;) 12 | 12.7| 132 | 135| 14 | 148 | 16 | 16.5| 16.6 | 17.8 | 185 | 19.5| 19.7| 22.1
Table 3: US population (Source: United States Bureau of the Census)
Year () 2000 2001 2002 2003 2004 2005 2006
Population ;) || 282162411| 284968955| 287625193| 290107933| 292805298| 295516599| 298379912
Year ¢;) 2007 2008 2009 2010 2011 2012 2013
Population y;) || 301231207 304093966| 306771529| 309326295| 311582564| 313873685| 316128839
. . e . -
—modified exponentialf™):  w; = , Table 4: Least squares parameter estimates and the
1, corresponding prediction errors
2, [ [ = [ & [ 7]
k=1
fori=1,...,11. w? [ -12.8227] 0.00923279] 7.37169
The results are given in Tabfe where prediction error
(PE) is calculated as wl -12.8226| 0.00923274| 7.37054
PE — 2 (D _y)2, w? | -12.8225| 0.00923268| 7.36939
k=12
. we -12.5298 | 0.00908687| 5.48948
for all sets of weights.
_ , _ wme || -10.9354| 0.00829343| 1.47465
We can conclude that for this particular data, weights
w™Me give the best prediction. That could be interpreted in
a way that the more recent data have a bigger influence for
the data in the near future. References

The data and graphs of inital and optimal fit with

weightsw™® are shown in Figuré.
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