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Abstract: In this paper, we establish recurrence relations for single and product moments based on progressively Type-II censored

from three parameters lindley Weibull distribution (LWD) and doubly truncated LWD. Also, we can use it to compute all the means,

variances and covariances of lindley Weibull progressive Type-II censored order statistics.
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1 Introduction

The most common right censoring schemes are Type-I and Type-II censoring, but the traditional Type-I and Type-II
censoring schemes do not have the flexibility of allowing removal of units at points other than the final point of the
experiment. So, a more general censoring scheme called progressive Type-II right censoring is suggested. Under this
general censoring scheme, n units are placed on test. only m are completely observed until failure.At the time of the first
failure, R1 of the n−1 surviving units are randomly removed (or censored)from the test. At the time of the next failure, R2

of the n− 2−R1 surviving units are removed from the test at censored, and so on. Finally, at the time of the m-th failure,
all the remaining Rm = n−R1 −R2 − ...−Rm−1 −m surviving units are censored. The m ordered observed failure times

denoted by X
(R1,...,Rm)
1:m:n ,X

(R1,...,Rm)
2:m:n , ...,X

(R1,...,Rm)
m:m:n are called progressively Type-II right censored order statistics of size m

from a sample of size n with progressive censoring scheme (R1, ...,Rm) It is clear that n = m+∑m
i=1 Ri. The special case

when R1 = R2 = ... = Rm−1 = 0 so that Rm = n−m is the case of conventional Type-II right censored sampling. Also
when R1 = R2 = ... = Rm = 0, so that m = n, so in this case, the progressively Type-II right censoring scheme reduces
to the case of no censoring (ordinary order statistics). Many authors have discussed inference under progressive Type-
II censored using different lifetime distributions, see for example, [1,2,3,4,5,6,7,8,9] and [10]. A thorough overview
of the subject of progressive censoring and the excellent review article is given in [11]. [12] developed an algorithm to
simulate general, progressively Type-II censored samples from the uniform or any other continuous distribution. The joint
probability density function for progressively Type-II censored sample of size m from a sample of size n is given by, for
details see [13]

fx1:m:n,...,xm:m:n(x1, ....,xm) =Cn,Rm−1

m

∏
i=1

f (xi)[1−F(xi)]
Ri , (1)

-∞ < x1 < x2 < .. . < xm < ∞,

where

Cn,Rm−1
= n(n−R1− 1)(n−R1−R2 − 2)...(n−R1−R2 − ...−Rm−1−m+ 1), (2)
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The probability density function (PDF), cumulative distribution function (CDF), reliability function S(x), and hazard rate
function h(x) of the LWD are given respectively, by

f (x) =
β θ 2

θ + 1
[αβ xβ−1 +α2β x2β−1]exp[−θ (αx)β ], (3)

F(x) = 1− exp[−θ (αx)β ][1+
θ

θ + 1
(αx)β ], (4)

S(x) = exp[−θ (αx)β ][1+
θ

θ + 1
(αx)β ], (5)

and

h(x) =

β θ 2

θ+1
[αβ xβ−1 +α2β x2β−1]

[1+ θ
θ+1

(αx)β ]
, (6)

also, the characterizing differential equation given by

f (x) =
β θ 2[αβ xβ−1 +α2β x2β−1][1−F(x)]

θ + 1+θ (αx)β
, (7)

From Eq. (2), we see that if α = 1 and β = 1; then LWD reduces to lindley distribution. with parameter θ .
This paper is organized as follows: In Sections (2,3) the recurrence relations for single and product moments of
progressive Type-II censored order statistics from LWD are derived. Finaly, in section 4 is devoted to get recurrence
relations for the single and product moments of progressive Type-II right censored order statistics from the doubly
truncated LWD. In this paper, we derive new recurrence relations satisfied by the single and product moments of the
progressively Type-II censored order statistics from the LWD and doubly truncated LWD. Several authors have been
developed new recurrence relations satisfied by the single and product moments for different distributions. [14] have
established recurrence relations for moments of generalized order statistics within a class of doubly truncated
distributions. [15] have established recurrence relations for single and product moments of order statistics from a
generalized logistic distribution. [16] have established recurrence relations for moments of progressively censored order
statistics from logistic distribution. [17] have established recurrence relations and identities for moments of order
statistics.

2 Recurrence Relations for the Single Moments

Let X = (X1:m:n,X2:m:n, . . . ,Xm:m:n) be the progressively Type-II censored order statistics of size m from the sample of size
n with censoring scheme (R1,R2, ...Rm) taken from the lindley Weibull distribution whose PDF and CDF are given by (3)
and (4) .The single moments of the progressively Type-II can be written as

µ
(R1,R2,...,Rm)(k)
i:m:n =Cn,Rm−1

∫∫
0<x1<x2<...<xm<∞

∫
xk

i f (x1)[1−F(x1)]
R1

× f (x2)[1−F(x2)]
R2 .... f (xm)[1−F(xm)]

Rmdx1.....dxm.

(8)

where

Cn,Rm−1
is defined in (2).

The following recurrence relations gives the single moments of progressively Type-II censored are derived on the
basis of the Lindley Weibull distribution .

Theorem 1. For 2 ≤ m ≤ n, k,β > 0 and θ > 0,

µ
(R1,R2,...,Rm)(k+β )
1:m:n =

−(θ + 1)(β θ )

[R1+1
k+β (θ + 1)β θ + 1]

[
n−R1− 1

k+β
µ
(R1+R2+1,R3,...,Rm)(k+β )
1:m−1:n

+αβ n−R1− 1

k+ 2β
µ
(R1+R2+1,R3,...,Rm)(k+2β )
1:m−1:n +αβ R1 + 1

k+ 2β
µ
(R1,R2,R3,...,Rm)(k+2β )
1:m:n ].

(9)
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Proof. From (8), we have

µ
(R1,R2,...,Rm)(k)
1:m:n =Cn,Rm−1

∫∫
0<x1<x2<...<xm<∞

∫
xk

1 f (x1)[1−F(x1)]
R1

× f (x2)[1−F(x2)]
R2 .... f (xm)[1−F(xm)]

Rmdx1.....dxm.

(10)

By using (7) we get,

µ
(R1,R2,...,Rm)(k)
1:m:n =Cn,Rm−1

∫∫
0<x1<x2<...<xm<∞

∫ x2

0
I(x2) f (x2)

× [1−F(x2)]
R2 .... f (xm)[1−F(xm)]

Rmdx2.....dxm,

(11)

where

I(x2) =

∫ x2

0
xk

1β θ 2[αβ xβ−1 +α2β x2β−1][1−F(x1)]
R1+1dx1.

Integrating by parts, we get

∫ x2

0
xk

1β θ 2[αβ xβ−1 +α2β x2β−1][1−F(x1)]
R1+1dx1 =

β θ 2αβ

k+β
x

k+β
2 [1−F(x2)]

1+R1

+
β θ 2αβ (R1 + 1)

k+β

∫ x2

0
x

k+β
1 f (x1)[1−F(x1)]

R1dx1

+
β θ 2α2β

k+ 2β
x

k+2β
2 [1−F(x2)]

1+R1

+
β θ 2α2β (R1 + 1)

k+ 2β

∫ x2

0
x

k+2β
1 f (x1)[1−F(x1)]

R1dx1.

(12)

Substituting the above expression into (11) we get (9) .

Theorem 2. For 2 ≤ i ≤ m− 1, k,β > 0 and θ > 0,

µ
(R1,R2,...,Rm)(k+β )
i:m:n =

−(θ + 1)(β θ )

[Ri+1
k+β (θ + 1)β θ + 1]

[
(n−R1−R2 − ...−Ri− i)

k+β
µ
(R1,....,Ri+Ri+1+1,...,Rm)(k+β )
i:m−1:n

−
(n−R1 −R2 − ...−Ri−1− i+ 1)

k+β
µ
(R1,....,Ri−1+Ri+1,...,Rm)(k+β )
i−1:m−1:n

+αβ (n−R1−R2 − ...−Ri− i)

k+ 2β
µ
(R1,....,Ri+Ri+1+1,...,Rm)(k+2β )
i:m−1:n

−αβ (n−R1−R2 − ...−Ri−1− i+ 1)

k+ 2β
µ
(R1,....,Ri−1+Ri+1,...,Rm)(k+2β )
i−1:m−1:n

+αβ (Ri + 1)

k+ 2β
µ
(R1,R2,...,Rm)(k+2β )
i:m:n ].

(13)
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Proof. Making use of (7) and (8), yields

µ
(R1,R2,...,Rm)(k)
i:m:n =Cn,Rm−1

∫∫
0<x1<x2<...<xi−1<xi+1<...<∞

∫
I(xi−1,xi+1)× f (x1)[1−F(x1)]

R1 ....

f (xi−1)[1−F(xi−1)]
Ri−1 f (xi+1)[1−F(xi+1)]

Ri+1

× .... f (xm)[1−F(xm)]
Rmdx1...dxi−1dxi+1...dxm,

(14)

where

I(xi−1,xi+1) =
∫ xi+1

xi−1

xk
i β θ 2[αβ xβ−1 +α2β x2β−1][1−F(xi)]

Ri+1dxi.

Integrating by parts, we get

I(xi−1,xi+1) =
β θ 2αβ

k+β
[x

k+β
i+1 [1−F(xi+1)]

1+Ri − x
k+β
i−1 [1−F(xi−1)]

1+Ri ]

+
β θ 2αβ (Ri + 1)

k+β

∫ xi+1

xi−1

x
k+β
i f (xi)[1−F(xi)]

Ridxi

+
β θ 2α2β

k+ 2β
[x

k+2β
i+1 [1−F(xi+1)]

1+Ri − x
k+2β
i−1 [1−F(xi−1)]

1+Ri ]

+
β θ 2α2β (Ri + 1)

k+ 2β

∫ xi+1

xi−1

x
k+2β
i f (xi)[1−F(xi)]

Ridxi.

(15)

Substituting the above expression into (14) we get (13) .

Theorem 3. For 2 ≤ m ≤ n, k,β > 0 and θ > 0,

µ
(R1,R2,...,Rm)(k+β )
m:m:n =

−(θ + 1)(β θ )

[Rm+1
k+β (θ + 1)β θ + 1]

[
−(n−R1−R2 − ...−Rm−1−m+ 1)

k+β
µ
(R1,....,Rm−1+Rm+1)(k+β )
m−1:m−1:n

−αβ (n−R1−R2 − ...−Rm−1−m+ 1)

k+ 2β
µ
(R1,....,Rm−1+Rm+1)(k+2β )
m−1:m−1:n

+αβ (Rm + 1)

k+ 2β
µ
(R1,R2,...,Rm)(k+2β )
m:m:n ]

(16)

Proof. Using (7) and (8), we can write

µ
(R1,R2,...,Rm)(k)
m:m:n =Cn,Rm−1

∫∫
0<x1<x2<...<xm−1<∞

∫
I(xm−1) f (x1)[1−F(x1)]

R1 × f (x2)[1−F(x2)]
R2 ...

× f (xm−1)[1−F(xm−1)]
Rm−1dx1dx2.....dxm−1.

(17)

where

I(xm−1) =

∫ ∞

xm−1

xk
mβ θ 2[αβ xβ−1 +α2β x2β−1][1−F(xm)]

Rm+1dxm.
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Integrating by parts, we obtain

I(xm−1) =−
β θ 2αβ

k+β
x

k+β
m−1[1−F(xm−1)]

1+Rm

+
β θ 2αβ (Rm + 1)

k+β

∫ ∞

xm−1

xk+β
m f (xm)[1−F(xm)]

Rmdxm

−
β θ 2α2β

k+ 2β
x

k+2β
m−1 [1−F(xm−1)]

1+Rm

+
β θ 2α2β (Rm + 1)

k+ 2β

∫ ∞

xm−1

xk+2β
m f (xm)[1−F(xm)]

Rmdxm.

(18)

Substituting the above expression into (17) we get (16) .

3 Recurrence Relations for the Product Moments

For any continuous distribution, we can write the (i,j)-th product moment of progressively Type-II censored order statistics
are derived on the basis of the Lindley Weibull distribution

µ
(R1,R2,...,Rm)
i, j:m:n = E[X

(R1,R2,...,Rm)
i:m:n X

(R1,R2,...,Rm)
j:m:n ]

=Cn,Rm−1

∫∫
0<x1<x2<...<xm<∞

∫
xix j f (x1)[1−F(x1)]

R1

× f (x2)[1−F(x2)]
R2 .... f (xm)[1−F(xm)]

Rmdx1.....dxm.

(19)

Theorem 1. For 1 ≤ i < j ≤ m− 1, m ≤ n, β ,θ > 0,

µ
(R1,R2,...,Rm)
i, j:m:n =

−(θ + 1)(β θ )

[1+θ (θ + 1)(1+R j)]
[
n−R1−R2 − ...−R j − j

β
µ
(R1,R2,...,R j+R j+1+1,..,Rm)(β )

i, j:m−1:n

−
n−R1 −R2 − ...−R j−1− j+ 1

β
µ
(R1,R2,...,R j−1+R j+1,R j+1,...,Rm)(β )

i, j−1:m−1:n

+αβ n−R1−R2 − ...−R j− j

2β
µ
(R1,R2,...,R j+R j+1+1,R j+2,...,Rm)(2β )

i, j:m−1:n

−αβ n−R1−R2 − ...−R j−1− j+ 1

2β
µ
(R1,R2,...,R j−1+R j+1,R j+1,...,Rm)(2β )

i, j−1:m−1:n

+αβ 1+R j

2β
µ
(R1,R2,...,Rm)(2β )
i, j:m:n ]

(20)
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Proof

µ
(R1,R2,...,Rm)
i:m:n = E[X

(R1,R2,...Rm)
i:m:n {X

(R1,R2,...Rm)
j:m:n }

0

]

=Cn,Rm−1

∫∫
0<x1<x2<...<x j−1<x j+1<...<xm<∞

∫
xiI(x j−1,x j+1)

× f (x1)[1−F(x1)]
R1 ..... f (x j−1)[1−F(x j−1)]

R j−1 f (x j+1)[1−F(x j+1)]
R j+1

× .... f (xm)[1−F(xm)]
Rmdx1....dx j−1dx j+1.....dxm,

(21)

where

I(x j−1,x j+1) =

∫ x j+1

x j−1

x0
jβ θ 2(αβ x

β−1
j +α2β x

2β−1
j )[1−F(x j)]

R j+1dx j.

Integrating by parts, we get

I(x j−1,x j+1) = θ 2αβ [x
β
j+1[1−F(x j+1)]

1+R j − x
β
j−1[1−F(x j−1)]

1+R j ]

+θ 2αβ (R j + 1)

∫ x j+1

x j−1

x
β
j f (x j)[1−F(x j)]

R j dx j

+
θ 2α2β

2
[x

2β
j+1[1−F(x j+1)]

1+R j − x
2β
j−1[1−F(x j−1)]

1+R j ]

+
θ 2α2β (R j + 1)

2

∫ x j+1

x j−1

x
2β
j f (x j)[1−F(x j)]

R j dx j.

(22)

Substituting the above expression into (21) we get (20) .

Theorem 2. For 1 ≤ i ≤ m− 1, m ≤ n, β ,θ > 0,

µ
(R1,R2,...,Rm)
i,m:m:n =

−(θ + 1)(β θ )

[1+θ (θ + 1)(1+Rm)]
[
−(n−R1−R2 − ...−Rm−1−m+ 1)

β
µ
(R1,R2,...,Rm−1+Rm+1)(β )
i,m−1:m−1:n

−αβ n−R1−R2 − ...−Rm−1−m+ 1

2β
µ
(R1,R2,...,Rm−1+Rm+1)(2β )
i,m−1:m−1:n

+αβ 1+Rm

2β
µ
(R1,R2,...,Rm)(2β )
i,m:m:n ]

(23)

Proof.

µ
(R1,R2,...,Rm)
i:m:n = E[X

(R1,R2,...,Rm)
i:m:n {X

(R1,R2,...,Rm)
m:m:n }

0
]

=Cn,Rm−1

∫∫
0<x1<...<xm1

<∞

∫
xiI(xm−1)

× f (x1)[1−F(x1)]
R1 ..... f (xm−1)[1−F(xm−1)]

Rm−1dx1dx2.....dxm−1,

(24)
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where

I(xm−1) =
∫ ∞

xm−1

x0
mβ θ 2(αβ xβ−1

m +α2β x2β−1
m )[1−F(xm)]

Rm+1dxm.

Integrating by parts, we get

I(xm−1) =−θ 2αβ [x
β
m−1[1−F(xm−1)]

1+Rm ]

+θ 2αβ (Rm + 1)
∫ ∞

xm−1

xβ
m f (xm)[1−F(xm)]

Rmdxm

−
θ 2α2β

2
[x

2β
m−1[1−F(xm−1)]

1+Rm

+
θ 2α2β (Rm + 1)

2

∫ ∞

xm−1

x2β
m f (xm)[1−F(xm)]

Rmdxm.

(25)

Substituting the above expression into (24) we get (23) .

Theorem 3. For 1 ≤ i < j ≤ m− 1, m ≤ n, β ,θ > 0,

µ
(R1,R2,...,Rm)(r,s+β )
i, j:m:n =

−(θ + 1)(β θ )

[1+ θ(θ+1)
s+β β (1+R j)]

[
n−R1−R2 − ...−R j − j

s+β
µ
(R1,R2,...,R j+R j+1+1,...,Rm)(r,s+β )

i, j:m−1:n

−
n−R1−R2 − ...−R j−1− j+ 1

s+β
µ
(R1,R2,...,R j−1+R j+1,R j+1,...,Rm)(r,s+β )

i, j:m−1:n

+αβ n−R1−R2 − ...−R j − j

s+ 2β
µ
(R1,R2,...,R j+R j+1+1,R j+2,...,Rm)(r,s+2β )

i, j:m−1:n

−αβ n−R1−R2 − ...−R j−1− j+ 1

s+ 2β
µ
(R1,R2,...,R j−1+R j+1,R j+1,...,Rm)(r,s+2β )

i, j:m−1:n

+αβ 1+R j

s+ 2β
µ
(R1,R2,...,Rm)(r,s+2β )
i, j:m:n ]

(26)

Proof

µ
(R1,R2,...,Rm)(r,s)
i, j:m:n = E[X

(R1,R2,...,Rm)(r)
i:m:n {X

(R1,R2,...,Rm)(s)
j:m:n

=Cn,Rm−1

∫∫
0<x1<x2<...<x j−1<x j+1<...<xm<∞

∫
x

r

i I(x j−1,x j+1)

× f (x1)[1−F(x1)]
R1 ..... f (x j−1)[1−F(x j−1)]

R j−1

× f (x j+1)[1−F(x j+1)]
R j+1 ..... f (xm)[1−F(xm)]

Rm dx1dx2...dx j−1dx j+1...dxm,

(27)
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where

I(x j−1,x j+1) =
∫ x j+1

x j−1
xs

jβ θ 2(αβ x
β−1
j +α2β x

2β−1
j )[1−F(x j)]

R j+1dx j

Integrating by parts, we get

I(x j−1,x j+1) =
β θ 2αβ

s+β
[x

s+β
j+1 [1−F(x j+1)]

1+R j − x
s+β
j−1 [1−F(x j−1)]

1+R j ]

+
β θ 2αβ (R j + 1)

s+β

∫ x j+1

x j−1

x
s+β
j f (x j)[1−F(x j)]

R j dx j

+
β θ 2α2β

s+ 2β
[x

s+2β
j+1 [1−F(x j+1)]

1+R j − x
s+2β
j−1 [1−F(x j−1)]

1+R j ]

+
β θ 2α2β (R j + 1)

s+ 2β

∫ x j+1

x j−1

x
s+2β
j f (x j)[1−F(x j)]

R j dx j.

(28)

Substituting the above expression into (27) we get (26) .

4 The Doubly Truncated lindley Weibull Distribution

In this section, we present recurrence relations for the single and product moments of progressively type-II censored order
statistics from the doubly truncated lindley weibull distribution. PDF of the doubly truncated LWD is given by:

ft(x) =
β θ 2

(P−Q)(1+θ )
[αβ xβ−1 +α2β x2β−1]exp[−θ (αx)β ], (29)

0 < Q1 < x < P1, α,θ ,β > 0, x ≥ 0,
where

Q = Ft(Q1) = 1− exp[−θ (αQ1)
β ][1+

θ

θ + 1
(αQ1)

β ],

P = Ft(P1) = 1− exp[−θ (αP1)
β ][1+

θ

θ + 1
(αP1)

β ].

(30)

Here, 1-P is the proportion of right truncation on the LWD and Q is the propotion of the left truncation.Thus CDF of
doubly truncated LWD can be put in the form

Ft(x) =
1

P−Q
{exp[−θ (αQ1)

β ][1+
θ

θ + 1
(αQ1)

β ]− exp[−θ (αx)β ][1+
θ

1+θ
(αx)β ]}. (31)

So, the characterizing differential equation for this distribution is given by

ft (x) =
β θ 2

θ + 1+θ (αx)β
[αβ xβ−1 +α2β x2β−1][

1−P

P−Q
+[1−Ft(x)]]. (32)

Thus, we can conclude new recurrence relations for the single and product moments of progressively type-II censored
order statistics from the doubly truncated lindley Weibull distribution.
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4.1 Recurrence Relations for the Single Moments based on Truncated Lindley Weibull Distribution

Relation 1. For 2 ≤ m ≤ n− 1 and β ,θ > 0

µ
(R1,R2,...,Rm)(k+β )
1:m:n =

−(θ + 1)(β θ )

[1+ θ(θ+1)
k+β β (1+R1)]

[(
1−P

P−Q
)(

n−R1 − 1

k+β
µ
(R1+R2,...,Rm)(k+β )
1:m−1:n−1 − n

Q
k+β
1

k+β

+
R1

k+β
µ
(R1−1,R2,...,Rm)(k+β )
1:m:n−1 +αβ n−R1− 1

k+ 2β
µ
(R1+R2,...,Rm)(k+2β )
1:m−1:n−1 −αβ nQ

k+2β
1

k+ 2β

+αβ R1

k+ 2β
µ
(R1−1,R2,...,Rm)(k+2β )
1:m:n−1 )+

n−R1− 1

k+β
µ
(R1+R2+1,R3,...,Rm)(k+β )
1:m−1:n

−
nQ

k+β
1

k+β
+αβ n−R1− 1

k+ 2β
µ
(R1+R2+1,R3,...,Rm)(k+2β )
1:m−1:n −αβ nQ

k+2β
1

k+ 2β

+αβ (1+R1)

k+ 2β
µ
(R1,R2,R3,...,Rm)(k+2β )
1:m:n ]

(33)

Relation 2. For 2 ≤ i ≤ m− 1 and β ,θ > 0

µ
(R1,R2,...,Rm)(k+β )
i:m:n =

−(θ + 1)(β θ )

[1+ θ(θ+1)
k+β β (1+Ri)]

{(
1−P

P−Q
)(

n−R1 − ...−Ri− i

k+β
µ
(R1,...,Ri+Ri+1,...,Rm)(k+β )
i:m−1:n−1

−
n−R1− ...−Ri−1− i+ 1

k+β
µ
(R1,...,Ri−1+Ri,Ri+1,...,Rm)(k+β )
i−1:m−1:n−1 +

Ri

k+β
µ
(R1,...,Ri−1,...,Rm)(k+β )
i:m:n−1

+αβ n−R1− ...−Ri− i

k+ 2β
µ
(R1,...,Ri+Ri+1,...,Rm)(k+2β )
i:m−1:n−1

−αβ n−R1− ...−Ri−1− i+ 1

k+ 2β
µ
(R1,...,Ri−1+Ri,Ri+1,...,Rm)(k+2β )
i−1:m−1:n−1

+αβ Ri

k+ 2β
µ
(R1,...Ri−1,...,Rm)(k+2β )
i:m:n−1 )+

n−R1− ...−Ri− i

k+β
µ
(R1,...,Ri+Ri+1+1,...,Rm)(k+β )
i:m−1:n

−
n−R1− ...−Ri−1− i+ 1

k+β
µ
(R1,...,Ri−1+Ri+1,Ri+1,...,Rm)(k+β )
i−1:m−1:n

+αβ n−R1− ...−Ri− i

k+ 2β
µ
(R1,..,Ri+Ri+1+1,...,Rm)(k+2β )
i:m−1:n

−αβ n−R1− ...−Ri−1− i+ 1

k+ 2β
µ
(R1,...,Ri−1+Ri+1,Ri+1...,Rm)(k+2β )
i−1:m−1:n +αβ 1+Ri

k+ 2β
µ
(R1,...,Rm)(k+2β )
i:m:n }

(34)
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Relation 3. For 2 ≤ m ≤ n− 1 and β ,θ > 0

µ
(R1,R2,...,Rm)(k+β )
m:m:n =

−(θ + 1)(β θ )

[1+ θ(θ+1)
k+β β (1+Rm)]

{−(
1−P

P−Q
)[

n−R1− ...−Rm−1−m+ 1

k+β
µ
(R1,...,Rm−1+Rm)(k+β )
m−1:m−1:n−1

−
Rm

k+β
µ
(R1,...,Rm−1)(k+β )
m:m:n−1 +αβ n−R1− ...−Rm−1−m+ 1

k+ 2β
µ
(R1,...,Rm−1+Rm)(k+β )
m−1:m−1:n−1

−αβ Rm

k+ 2β
µ
(R1,...,Rm−1)(k+2β )
m:m:n−1 ] −

n−R1− ...−Rm−1−m+ 1

k+β
µ
(R1,...,Rm−1+Rm+1)(k+β )
m−1:m−1:n

−αβ n−R1 − ...−Rm−1−m+ 1

k+ 2β
µ
(R1,...,Rm−1+Rm+1)(k+2β )
m−1:m−1:n

+αβ 1+Rm

k+ 2β
µ
(R1,...,Rm)(k+2β )
m:m:n }.

(35)

4.2 Recurrence Relations for the Product Moments based on Truncated Lindley Weibull Distribution

Relation 1. For 1 ≤ i < j ≤ m− 1,m ≤ n and β ,θ > 0

µ
(R1,R2,...,Rm)(β )
i, j:m:n =

−(θ + 1)(β θ )

[1+θ (θ + 1)(1+R j)]
{(

1−P

P−Q
)[

n−R1 − ...−R j− j

β
µ
(R1,...,R j+R j+1,...,Rm)(β )

i, j:m−1:n−1

−
n−R1− ...−R j−1− j+ 1

β
µ
(R1,...,R j−1+R j ,R j+1,...,Rm)(β )

i, j−1:m−1:n−1 +
R j

β
µ
(R1,...,R j−1,...,Rm)(β )

i, j:m:n−1

+αβ n−R1− ...−R j − j

2β
µ
(R1,...,R j+R j+1,...,Rm)(2β )

i, j:m−1:n−1

−αβ n−R1− ...−R j−1− j+ 1

2β
µ
(R1,...,R j−1+R j ,R j+1,...,Rm)(2β )

i, j−1:m−1:n−1

+αβ R j

2β
µ
(R1,...R j−1,...,Rm)(2β )

i, j:m:n−1 ]+
n−R1− ...−R j − j

β
µ
(R1,...,R j+R j+1+1,...,Rm)(β )

i, j:m−1:n

−
n−R1− ...−R j−1− j+ 1

β
µ
(R1,...,R j−1+R j+1,R j+1,...,Rm)(β )

i, j−1:m−1:n

+αβ n−R1− ...−R j − j

2β
µ
(R1,..,R j+R j+1+1,...,Rm)(2β )

i, j:m−1:n

−αβ n−R1− ...−R j−1− j+ 1

2β
µ
(R1,...,R j−1+R j+1,R j+1...,Rm)(2β )

i, j−1:m−1:n +αβ 1+R j

2β
µ
(R1,...,Rm)(2β )
i, j:m:n }

(36)
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Relation 2. For 1 ≤ i ≤ m− 1,m ≤ n and β ,θ > 0

µ
(R1,R2,...,Rm)(β )
i,m:m:n =

−(θ + 1)(β θ )

[1+θ (θ + 1)(1+Rm)]
{−(

1−P

P−Q
)[

n−R1 − ...−Rm−1−m+ 1

β
µ
(R1,...,Rm−1+Rm)(β )
i,m−1:m−1:n−1

−
Rm

β
µ
(R1,...,Rm−1)(β )
i,m:m:n−1 +αβ n−R1− ...−Rm−1−m+ 1

2β
µ
(R1,...,Rm−1+Rm)(2β )
i,m−1:m−1:n−1

−αβ Rm

2β
µ
(R1,...,Rm−1)(2β )
i,m:m:n−1 ] −

n−R1− ...−Rm−1−m+ 1

β
µ
(R1,...,Rm−1+Rm+1)(β )
i,m−1:m−1:n

−αβ n−R1− ...−Rm−1−m+ 1

2β
µ
(R1,...,Rm−1+Rm+1)(2β )
i,m−1:m−1:n

+αβ 1+Rm

2β
µ
(R1,...,Rm)(2β )
i,m:m:n }.

(37)

Remark 1. Setting P= 1 and Q= 0 in Relations (33),(34),(35),(36),(37),we obtain theorems (9),(13),(16),(20),(23).

Remark 2. Setting R1 = R2 = ....= Rm = 0, so that m = n in which the case of the progressively Type-II censored order
statistics become the usual order statistics X1:n,X2:n, ...,Xn:n, the relations established for the LWD reduce to the
corresponding recurrence relations based on the usual order statistics.
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