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Abstract: A Picard-like approach which has been used to solve a cla¥sltfrra integro-differential equations, is extendedhist
manuscript to solve fuzzy fractional differential equaso Such technique uses quadrature rules and Picard’satesan the fuzzy
context. In spite of this, it is conceived to become a nonxgige scheme, in terms of operational matrices, in thalinegime. Some
properties of the method are thoroughly discussed, and samerical examples are provided in order to illustrate ffectveness of
the approach.
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1 Introduction Fuzzy fractional initial-value problems under fuzzy
fractional derivatives of the Caputo type were solved by
The use of fractional calculus has been incorporated irmeans of a modified fractional Euler method Q]
many branches of mathematics, engineering and scienc8lso, the shifted Legendre operational matrix of fuzzy
to provide more accurate deterministic descriptions offractional derivatives was used if][to solve numerically
physical phenomenal[10,18]. However, in reality, the FFDEs. More recently, FFDEs with Caputo derivatives
presence of uncertainties needs to be considered twere used in4] to model the kinetics behavior of the
achieve a higher level of reliability1p,23]. In this  diluted acid hydrolysis in oil palm frond. In that work, the
manuscript, the notion afincertaintywill be interpreted FFDEs were solved numerically by means of a fuzzy
asfuzzines$28§]. Fuzziness is an important characteristic operational matrix of generalized Laguerre polynomials.
to be considered in realistic decision process@s ip Also, FFDEs with Caputo derivatives were solved by the
regression analysid fl], efficient data classifier2p] and,  differential transform method (DTM) in2]. Moreover,
in general, in modeling complex problems in science andhomotopy techniques have been used for solving fuzzy

engineering11]. fractional diffusion equations with Caputo derivatives
With those considerations in mind, Agarwal et &} [ [24], and related initial-value problemg][
introduced the notion of Fuzzy Fractional Differential In the present work, the following problem governed

Equations (FFDES). To that end, fractional operators suctby a FFDE is considered for eaghe | = [0,T| and 0<
as the Riemann-Liouville and the Caputo derivatives have < 1:

been adapted to the fuzzy scenario. Various works have °DPY(x) = F(§) + §(X),
investigated these models using the Riemann-Liouville {subject toy[0) = &o.
derivatives ¥,27]. The analytical solution, its existence

and its uniqueness for a class of FFDEs with CaputoHere,T is a positive numbegg’is a fuzzy numbery(X) is
derivatives were discussed i6][ However, the aim of the  the unknown fuzzy functiorf () a functional form iny;
present work is to solve numerically FFDEs employing andd(x) is in general a given fuzzy-valued function. Note
Caputo-type derivatives. that the FFDE of 1) may be seen as the fuzzification

1)
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through the Zadeh’s extension principle of the sameThe notationd], = [u(a),T(a)] is employed if such form
equation but without fuzzy variable2§]. is available.

The purpose of this work is to solvé)(following an
approach analogous to that used 5] which was  Definition 4.A fuzzy numbeii is calledtriangularif there
employed to solve a class of integro-differential equation exist real numbersd d. and ck, such that
and recently a class of partial differential equatiob§].[
More precisely, a numerical scheme combining 4)
qguadrature rules and a Picard-like recursion is studied
here from the perspective of fuzzy fractional derivatives.for eacha < [0, 1]. If that is the case thed is identified
Some properties are formally discussed. Numericalby the ordered triplefdc,d.,dr), and the numbersqd d.
results obtained through this technique are compare@nd ck are called thecentey theleft and theright spreads

[Olg = [dc+ (o —1)di,dc + (1 - a)dR],

against analytical and numerical solutions available & th
literature, obtaining satisfactory results.

This manuscript is sectioned as follows. Some basic

definitions are provided in Sectidh Section3 is devoted

to introducing the proposed Picard-like method to solve

(). Some analytical results are derived in Sectidn
Meanwhile, Sectio is devoted to show simulations and

respectively.

In the sequel,f(x) will denote a continuous and
Lebesgue-integrable fuzzy-valued function[arb] C R.

Definition 5.The fuzzy Riemann-Liouville integralof
order 8 of f(x) is given as

numerical comparisons against some results available in

the literature in order to illustrate the performance of our
technique. Finally, this work closes with a section of

concluding remarks.

2 Preliminaries

Throughout, the séi will represent a nonempty and fixed
(though arbitrary) closed interval &. The termcrisp will
mean ‘not fuzzy'.

Definition 1.Afuzzy numbeu’is defined by a membership
function py(x) : U — [0,1] which satisfies the following
properties:

o(i isnormal, meaning thasup, ptu(X) =1,
o(i isconvexon U, that s,

Hu(ax+ (1—a)y) > min(uu(X), lu(y))  (2)

for each xy € U and eacho € [0, 1],

(i is upper semi-continuous, and

o[l]p = cl({x € U : uy(x) > 0}) is compact. Herecl
denotes closure in the standard topology of U.

Definition 2.Leta > 0. Thea-cutof the fuzzy numbeéris
the crisp set

[Olg ={xeU:p(x) =a} ®)
whena > 0, otherwis€[(]o is given as in Definitior.
Definition 3.Theparametric fornmof the fuzzy number is
a pair of functions a),t(a) : U — R for eacha € [0, 1],
which satisfy the following properties:

1.u(a) is a bounded, left-continuous, monotonic
increasing function,
20(a) is a bounded, left-continuous, monotonic

decreasing function, and
3.u(a) <T(a).

1

rB)

where I" represents the Gamma_function. According to
[20], the a-cut representation offf (x) is provided by

PBEx) = /0 "x—9B1f(9ds  (5)

[P E(X)]a = [P f(x a),3FF (x,a)]. (6)
Definition 6.Let f(x) be a crisp continuous function, and
0 < B < 1. TheCaputo fractional derivativef order 3 of

f is defined in 1] as
X o-pdf
r(1—3)/o(x 9 i

The concept of strong generalizeddifferentiability
studied in B] was extended inq0] to the context of
fractional derivatives. In the latter work, the following
definition of differentiability was considered.

DPf(x) = (sds  (7)

Definition 7.Let 0 < B < 1. The fuzzy-valued function
f(x) is a Caputo fuzzy fractional differentiable function
of orderf at xp € | if either

f'(x0) = lim
h—0t h
; £ (8)
— im X0 © T —h)
h—0+ h
or . 5
fioo) = lim. f(xo) @_frgxwh) o
_ Jim 0= S T00)
h—0t —h
and

D T00) = rry ) (900 -9Pas (10

(@© 2017 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.11, No. 1, 281-287 (2017)www.naturalspublishing.com/Journals.asp NS = 283
where°DP f(x0) denotes the Caputo fuzzy fractional and
derivative off atxp.
Let 0< a < 1. Following [20], the a-cut form of the Cf (x) ... Cﬁ x 0 ... O
. o b C(x) = B B . (23)
Caputo fuzzy fractional derivative is 0 0 CY(x)...CL(X)

°DP f (x0,a),° DPT (%o, )], for (8),

[°DP f(x0))a =
*DP T (x0, ),*DP £ (%o, 1)), for (9).
- (11)
For briefness, in the following we will refer to the first
equation of 1) to illustrate our numerical approach.
Let y(x) be a fuzzy function. Using12], one may
readily check thafy(x)], = [y(x,a),y(x,a)]. As shown
in [20], problem () is equivalent to

cnHB _
{ D :((((o g;i((v() a),a)+G(x,a), (12)
where
F(Y(x.a),a)" = (E(y(x,a),y(xa).a),
Fly(x a).y(xa),a)), (13)
Y(x.a)" = (y(xa),5(xa)), (14)
G(x.a)" = (g(x @),a(x,a)) (15)

3 Methodology

In this section, the approach employed 2%][is extended
in order to solve the FFDE of1@Q). Letting y = ﬁ

applying the operatod® to both sides of that equation
and arguing as in0], one obtains

Y(xa) = A(a)+y/0X[F(Y(x,a),a)+

(16)
G(x,a)|(x—s)P1ds
Let N be a positive integer and consider a (not
necessarily uniform) partition of0,T] consisting ofN
points and partition norm equal kp say,

O=x1<X<...<xXn=T. a7
Then (L6) may be rewritten as
Y(xa)=A(a)+yC(X)[F(Y(a),a)+Q(a)], (18)
in which
F(Y(a),a)T = (F(Ylv )a E(YN,G),
F(Yy,a ),...F(YN,O{)), (19)
YT = (y(x, @), y(x,a)), (20)
A(a)" = (go(@),30()), (21)
QT(G) = (Q(Xla )7 Q(XNa )a
G(lea)v"'vg(XNa ))7 (22)

Here, foreachh=1,2,... N,

X
P00 = [ (9)(x—9) tds @4
0
with 1i(s) being the ith Lagrange polynomial. By
successive approximations, the solutiofx, a) is
Y(xa) = Yi(xa), (25)
K=0

where eachY[ (x,a) has to be determined recursively
using the formulas

Yo(x,a) = A(a) +yC(x)Q(a), (26)
Yk+1(xv a) = VC(X)F(Yk(a)a a)' (27)
On the other hand, truncating%) at thepth term yields

p—-1
YPl(x.a) = Yo(x.a) +vC(x) 3 F(Yk(a),a). (28)
K=1
Note that 27) reduces toYy,1(x,a) = wC(X)Yk(a)
whenF (y) is a linear function, where
Yi(@)T = (Y (0, @), ..y, O, ), 29)
(X1, @), V(xn, a0))

andyy is a constant. LeD be the matrix whose entries are
Dij = Cj(x). SinceY(a) = DYy _1(a) = ¥DKYo(a),
the truncation of25) after p terms becomes

Y (x, ) = Yo(x, a) + yC(x z WD Yo(a).  (30)

4 Properties

The present section summarizes the main properties of
the method of SectioB. For the remainder, the spectral
radius of the matriXD will be represented by (D), and

the symbol will denote the identity matrix of sizeN2

Lemma 1If F(§) is linear and p(D) < ﬁ then the
solution of (25) is approximated by

Y(x,a) = Yo(x,a)+wCX (I —wD) tYo(a). (31)

ProofThe proof follows as that of Theorem 1 ir24],
considering a geometric series approximatior3®) fvith
matrices and taking then the limit when— . O
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Table 1: Values ofy(1,a) andy(1,a), for various values ofx (@)
and several methods. The FFDE and the parameters used are 8
described in Exampli.

VALUES OF y(1,a) 0.025

Present  Present Method Method Method [
a 7GCL 15GCL of[5] of[20 of[22 Exact 0.02C

0.0 0.196543 0.196554 0.1962  0.183 0.1967 0.1966 [
0.1 0216197 0.216209 0.2159  0.201 0.2164 0.2162 0.01% .-~

0.2 0.235851 0.235864 0.2355  0.219 0.2360 0.2359 b
0.3 0.255505 0.255520 0.2551  0.238  0.2557 0.2555
0.4 0.275160 0.275175 0.2747  0.256 0.2754 0.2752
0.5 0.294814 0.294831 0.2944 0274  .2950 0.2948 [
0.6 0.314468 0.314486 0.3140  0.293 0.3147 0.3145 0.0050
0.7 0.334122 0.334141 0.3336  0.311 0.3344 0.3341 i
0.8 0.353777 0.353797 0.3532  0.329  .3540 0.3538 X
0.9 0.373431 0.373452 0.3729  0.348 0.3737 0.3735 e e e SR

0.01CH

1.0 0393085 0.393107 0.3925  0.366 0.3934 0.3931 0.2 0.4 0.6 0.8 1.0
VALUES OF y(1,a) (b)

Present  Present Method Method Method
a 7GCL 15GCL  of[5] of [20] of[22] Exact 0.04)-

0.0 0589627 0.589661 0.5887  0.549 0.5901 0.5897
0.1 0569973 0.570005 05691  0.534 0.5704 0.5700 [
0.2 0.550319 0.550350 0.5495  0.513 0.5507 0.5504 0.03f-
0.3 0530664 0.530694 05298  0.494 05311 0.5307 r
0.4 0511010 0511039 05102  0.476 05114 0.5110
0.5 0.491356 0.491384 0.4906  0.458 0.4917 0.4914 t
0.6 0.471702 0.471728  0.4710 0439  0.4721 0.4717 0.02-
0.7 0.452047 0.452073 0.4514  0.421  0.4524 0.4521 [
0.8 0.432393 0.432418 04317  0.403 0.4327 0.4324
0.9 0412739 0412762 04121  0.384 0.4130 0.4128

1.0 0.393085 0.393107 0.3925 0.366 0.3934 0.3931 0'015

. O‘.2 0.4 0.6 0.8 l‘.O
The generalized Taylor's formula under the Caputo

fractional derivative was established BO]. That formula  Fig. 1: Absolute errors with respect to the exact solution for the
will be a useful tool in the next results. In the sequel, thecalculated values ofa) y(1,a) and (b) y(1,a) for a € [0,1],

exact solution of the FFDE inl@) will be represented by  using the present method (solid), the method uses|ifashed),
Y(x,a) = [y(xt,a),y(x,a)]. The norm ofL., will be  and thatemployed ir20] (dotted). The FFDE and the parameters
employed next in view of the continuity of the functions used are described in Examgle

involved (see13)). So, in what follows,

eoo(xj,a):HY[p](xj,a)—Y(xj,a)Hm. (32)

Theoremilet 0 < B < 1 and 0 < a < 1. Let for somey € [0, T]. Using (12), the following inequality
E(Y(xa),a), F(Y(xa),a), ga) and g(a) be results for each nodqg and eacha € [0, 1]:
continuous2B-times differentiable crisp functions with

respect to x. The following bound holds for @&y h < 1: p—1
& (Xj, @) < [[VC(x)) Y F(Y(a),a)
K=1
el = Z e 7)(? [F(Y(0,a),a) )
(j— )ﬁhﬁ (33) “TBE+Y @)
TrEey FYO@O@ £6(0,0)].+ 20¢P)

+G(0,a)]]l., + &(h%),

For eachj = 1,...,N, note thatx; = x; + (j —1)h or
ProofThe truncation of the generalized Taylor expansionXj < X1 + (j — 1)hin the case of uniform and nonuniform
of Y (x,a) aroundx = O at the first two terms is partitions, respectively. The conclusion of the theorem
readily follows now. O

B
Y(x.a) = A(a) + ——DPY(0,a)
r(g+1) (34) o
28 x2B Theoreml implies that the error tends to zero when
+DFY (X, a) r2f+1)’ h — 0, and that the approximation error has orfér
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Table 2: Values and errors of(1,a) andy(1,a), for various &
values ofa and several methods. The FFDE and the parameters L
. . l
used are described in Examfde 0.0000¢]:
VALUES OF y(1,a) N
[
Present .EHOI' 0.0000¢ \
a 11GCL Exact Error with [ 5] L ‘\
0.0 0.720607 0.7206 7.6A0° 1.44<10°* F
0.1 0722132 07221 32505 1.44x10* 0.000041
0.2 0.723657 0.7237 4.260° 1.45¢<10°* | s
0.3 0.725182 0.7252 1.780° 1.45¢10°* Eoo P
0.4 0726707 0.7267 7.280° 1.46x10* o.0000z- -7 LT Tl
0.5 0.728232 0.7282 3.220° 1.47x10°* I - ' o
0.6 0.729757 0.7298 4.240°° 1.47x10°*
0.7 0.731282 0.7313 1.3&0° 1.48<10* ! : — ‘ = a
0.8 0.732807 0.7328 6.960° 1.49<10°* 0.2 0.4 0.6 0.8 10
0.9 0.734332 0.7343 3.3A0° 1.49<10°* . . )
1.0 0.735856 0.7359 4.320°5 1.50x10* Fig. 2: Absolute errors with respect to the exact solution for
VALUES OF y(1,a) the calculated values §f1, a) for a € [0,1], using the present
- . - method (dashed) and the method %j (dotted). The FFDE and
resen rror - .
o 11GCL Exact  Eror with [ 5] the parameters used are described in Exarple

0.0 0.739669 0.7397 3.040° 1.51x10*
0.1 0.739288 0.7393 1.210° 1.51x10*
0.2 0.738907 0.7389 6.65.0° 1.51x10*
0.3 0.738525 0.7385 2.540° 1.51x10*
0.4 0.738144 0.7381 4.420°5 1.46x10*
0.5 0.737763 0.7378 3.%U0° 1.47x10*
0.6 0.737382 0.7374 1.830° 1.47x10*
0.7 0.737000 0.7370 4.9607 1.48<10°*
0.8 0.736619 0.7366 1.920° 1.49x10*
0.9 0.736238 0.7362 3.800° 1.49x10*
1.0 0.735856 0.7359 4.320°° 1.50x10°*

points. Figure2 shows the absolute error using the present
method (dashed line) and the technique reportedsjn [
(dotted line). The graph shows that the approximation
reported in this manuscript produces more accurate
results for values ofr € [0.05,0.6]. In any case, the order
of the error is 10°. The simulations corresponding yo
have been omitted in view that they are qualitatively
similar to those of. O

5 Simulations Example Fix B = 0.85,d. = 1, d_ = 0.04, dg = 0.01.
LetF (¥(x)) = —¥(x) andg(x) = sinx. Table2 provides the
The present section shows comparisons of known exacapproximate solutioy andy atx = 1 for several values of
solutions of () against approximations obtained vi28( a, calculated using the present method. The results show
when @1) holds. Throughout, Gauss-Tchebyshev-Lobattothat the absolute error using the present technique with 11
(GCL) grid points 7] are used, and all fuzzy numbers GCL points is substantially smaller than the error obtained
are triangular withT = 1. The exact solution of the first using the technique reported i5][ O
example was taken fron2()], and the solutions of the last
two are borrowed fromd].

6 Conclusions
Example 1Let B = 0.75, d; = 1, d. = 0.5, dgr = 0.5,
F(¥) = —¥(x), and fixg = 0. Tablel shows the solutions A Picard-like numerical scheme, which was previously
y andy atx = 1 using the method proposed in the presentemployed to solve a class of Volterra integro-differential
paper (with different number of GCL points), and other equations, has been extended in this manuscript to solve
methods available in the literature. In turn, Figute problems involving Caputo fuzzy fractional differential
shows the absolute errors of the present method and thequations.
methods of the literature with respect to the exact The proposed approach presents two main advantages:

solutions. Clearly, the present methodology yields more _j is able to reproduce exactly the initial condition;

accurate results. 0 —in the linear regime, it becomes a non-recursive

Example et B = 0.75, dc = 0, di = 1, dr = 1, and scheme in terms of known operational matrices.

consider For the general nonlinear scenario, some formal
considerations on the error have been discussed. Some

F(x) = —¥(x), (36)  numerical examples illustrate the effectiveness of the
2x2—B x1-B proposed approach. However, ongoing research is

g(x) = = 3 —X. (37)  focusing on extending the method towards piecewise

rE=p) rez-p solutions for certain classes of problems, similarly to the
The method introduced in this manuscript is used toapproach proposed il for fuzzy partial differential
calculatey(1, a) for various values ofxr using 20 GCL  equations.
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