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Abstract: A Picard-like approach which has been used to solve a class ofVolterra integro-differential equations, is extended in this
manuscript to solve fuzzy fractional differential equations. Such technique uses quadrature rules and Picard’s iterations in the fuzzy
context. In spite of this, it is conceived to become a non-recursive scheme, in terms of operational matrices, in the linear regime. Some
properties of the method are thoroughly discussed, and somenumerical examples are provided in order to illustrate the effectiveness of
the approach.
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1 Introduction

The use of fractional calculus has been incorporated in
many branches of mathematics, engineering and science
to provide more accurate deterministic descriptions of
physical phenomena [1,10,18]. However, in reality, the
presence of uncertainties needs to be considered to
achieve a higher level of reliability [16,23]. In this
manuscript, the notion ofuncertaintywill be interpreted
as fuzziness[28]. Fuzziness is an important characteristic
to be considered in realistic decision processes [9], in
regression analysis [14], efficient data classifiers [26] and,
in general, in modeling complex problems in science and
engineering [11].

With those considerations in mind, Agarwal et al. [3]
introduced the notion of Fuzzy Fractional Differential
Equations (FFDEs). To that end, fractional operators such
as the Riemann-Liouville and the Caputo derivatives have
been adapted to the fuzzy scenario. Various works have
investigated these models using the Riemann-Liouville
derivatives [7,27]. The analytical solution, its existence
and its uniqueness for a class of FFDEs with Caputo
derivatives were discussed in [6]. However, the aim of the
present work is to solve numerically FFDEs employing
Caputo-type derivatives.

Fuzzy fractional initial-value problems under fuzzy
fractional derivatives of the Caputo type were solved by
means of a modified fractional Euler method in [20].
Also, the shifted Legendre operational matrix of fuzzy
fractional derivatives was used in [5] to solve numerically
FFDEs. More recently, FFDEs with Caputo derivatives
were used in [4] to model the kinetics behavior of the
diluted acid hydrolysis in oil palm frond. In that work, the
FFDEs were solved numerically by means of a fuzzy
operational matrix of generalized Laguerre polynomials.
Also, FFDEs with Caputo derivatives were solved by the
differential transform method (DTM) in [22]. Moreover,
homotopy techniques have been used for solving fuzzy
fractional diffusion equations with Caputo derivatives
[24], and related initial-value problems [2].

In the present work, the following problem governed
by a FFDE is considered for eachx ∈ I = [0,T] and 0<
β < 1:

{

cDβ ỹ(x) = F(ỹ)+ g̃(x),
subject to ˜y(0) = ã0.

(1)

Here,T is a positive number, ˜a0 is a fuzzy number, ˜y(x) is
the unknown fuzzy function,F(ỹ) a functional form in ˜y,
andg̃(x) is in general a given fuzzy-valued function. Note
that the FFDE of (1) may be seen as the fuzzification
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through the Zadeh’s extension principle of the same
equation but without fuzzy variables [28].

The purpose of this work is to solve (1) following an
approach analogous to that used in [25], which was
employed to solve a class of integro-differential equations
and recently a class of partial differential equations [15].
More precisely, a numerical scheme combining
quadrature rules and a Picard-like recursion is studied
here from the perspective of fuzzy fractional derivatives.
Some properties are formally discussed. Numerical
results obtained through this technique are compared
against analytical and numerical solutions available in the
literature, obtaining satisfactory results.

This manuscript is sectioned as follows. Some basic
definitions are provided in Section2. Section3 is devoted
to introducing the proposed Picard-like method to solve
(1). Some analytical results are derived in Section4.
Meanwhile, Section5 is devoted to show simulations and
numerical comparisons against some results available in
the literature in order to illustrate the performance of our
technique. Finally, this work closes with a section of
concluding remarks.

2 Preliminaries

Throughout, the setU will represent a nonempty and fixed
(though arbitrary) closed interval ofR. The termcrispwill
mean ‘not fuzzy’.

Definition 1.A fuzzy number ˜u is defined by a membership
function µu(x) : U → [0,1] which satisfies the following
properties:

•ũ isnormal, meaning thatsupx∈U µu(x) = 1,
•ũ isconvexon U, that is,

µu(αx+(1−α)y)≥ min(µu(x),µu(y)) (2)

for each x,y∈U and eachα ∈ [0,1],
•ũ is upper semi-continuous, and
•[ũ]0 = cl({x ∈ U : µu(x) > 0}) is compact. Herecl
denotes closure in the standard topology of U.

Definition 2.Letα ≥ 0. Theα-cutof the fuzzy number̃u is
the crisp set

[ũ]α = {x∈U : µu(x)≥ α} (3)

whenα > 0, otherwise[ũ]0 is given as in Definition1.

Definition 3.Theparametric formof the fuzzy number̃u is
a pair of functions u(α),u(α) : U →R for eachα ∈ [0,1],
which satisfy the following properties:

1.u(α) is a bounded, left-continuous, monotonic
increasing function,

2.u(α) is a bounded, left-continuous, monotonic
decreasing function, and

3.u(α)≤ u(α).

The notation[ũ]α = [u(α),u(α)] is employed if such form
is available.

Definition 4.A fuzzy number̃u is calledtriangularif there
exist real numbers dC, dL and dR, such that

[ũ]α = [dC+(α −1)dL,dC+(1−α)dR] , (4)

for eachα ∈ [0,1]. If that is the case theñu is identified
by the ordered triplet(dC,dL,dR), and the numbers dC, dL
and dR are called thecenter, theleft and theright spreads,
respectively.

In the sequel, f̃ (x) will denote a continuous and
Lebesgue-integrable fuzzy-valued function on[a,b]⊂ R.

Definition 5.The fuzzy Riemann-Liouville integralof
orderβ of f̃ (x) is given as

Jβ f̃ (x) =
1

Γ (β )

∫ x

0
(x− s)β−1 f̃ (s)ds, (5)

where Γ represents the Gamma function. According to
[20], the α-cut representation of Jβ f̃ (x) is provided by

[Jβ f̃ (x)]α = [Jβ f (x,α),Jβ f (x,α)]. (6)

Definition 6.Let f(x) be a crisp continuous function, and
0< β < 1. TheCaputo fractional derivativeof orderβ of
f is defined in [21] as

Dβ f (x) =
1

Γ (1−β )

∫ x

0
(x− s)−β d f

dx
(s)ds. (7)

The concept of strong generalizedH-differentiability
studied in [8] was extended in [20] to the context of
fractional derivatives. In the latter work, the following
definition of differentiability was considered.

Definition 7.Let 0 < β < 1. The fuzzy-valued function
f̃ (x) is a Caputo fuzzy fractional differentiable function
of orderβ at x0 ∈ I if either

f̃ ′(x0) = lim
h→0+

f̃ (x0+h)⊖ f̃ (x0)

h

= lim
h→0+

f̃ (x0)⊖ f̃ (x0−h)
h

(8)

or

f̃ ′(x0) = lim
h→0+

f̃ (x0)⊖ f̃ (x0+h)
−h

= lim
h→0+

f̃ (x0−h)⊖ f̃ (x0)

−h
,

(9)

and

cDβ f̃ (x0) =
1

Γ (1−β )

∫ x0

0
f̃ ′(s)(x0− s)−β ds, (10)
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wherecDβ f̃ (x0) denotes the Caputo fuzzy fractional
derivative of f̃ atx0.

Let 0≤ α ≤ 1. Following [20], the α-cut form of the
Caputo fuzzy fractional derivative is

[cDβ f̃ (x0)]α =







[cDβ f (x0,α),c Dβ f (x0,α)], for (8),

[cDβ f (x0,α),c Dβ f (x0,α)], for (9).
(11)

For briefness, in the following we will refer to the first
equation of (11) to illustrate our numerical approach.

Let ỹ(x) be a fuzzy function. Using [12], one may
readily check that[ỹ(x)]α =

[

y(x,α),y(x,α)
]

. As shown
in [20], problem (1) is equivalent to

{

cDβ Y(x,α) = F(Y(x,α),α)+G(x,α),
Y(0,α) = A(α),

(12)

where

F(Y(x,α),α)T = (F(y(x,α),y(x,α),α),

F(y(x,α),y(x,α),α)), (13)

Y(x,α)T = (y(x,α),y(x,α)), (14)

G(x,α)T = (g(x,α),g(x,α)) (15)

3 Methodology

In this section, the approach employed in [25] is extended
in order to solve the FFDE of (12). Letting γ = 1

Γ (β ) ,

applying the operatorJβ to both sides of that equation
and arguing as in [20], one obtains

Y(x,α) = A(α)+ γ
∫ x

0
[F(Y(x,α),α)+

G(x,α)](x− s)β−1ds.
(16)

Let N be a positive integer and consider a (not
necessarily uniform) partition of[0,T] consisting ofN
points and partition norm equal toh, say,

0= x1 < x2 < .. . < xN = T. (17)

Then (16) may be rewritten as

Y(x,α) = A(α)+ γC(x) [F(Y(α),α)+Q(α)] , (18)

in which

F(Y(α),α)T = (F(Y1,α), . . . ,F(YN,α),

F(Y1,α), . . . ,F(YN,α)
)

, (19)

YT
i = (y(xi ,α),y(xi ,α)), (20)

A(α)T = (a0(α),a0(α)) , (21)

QT(α) =
(

g(x1,α), . . . ,g(xN,α),

g(x1,α), . . . ,g(xN,α)) , (22)

and

C(x) =

(

Cβ
1 (x) . . . Cβ

N(x) 0 . . . 0

0 . . . 0 Cβ
1 (x) . . . Cβ

N(x)

)

. (23)

Here, for eachi = 1,2, . . . ,N,

Cβ
i (x) =

∫ x

0
l i(s)(x− s)β−1ds, (24)

with l i(s) being the ith Lagrange polynomial. By
successive approximations, the solutionY(x,α) is

Y(x,α) =
∞

∑
k=0

Yk(x,α), (25)

where eachYT
k (x,α) has to be determined recursively

using the formulas

Y0(x,α) = A(α)+ γC(x)Q(α), (26)

Yk+1(x,α) = γC(x)F(Yk(α),α). (27)

On the other hand, truncating (25) at thepth term yields

Y[p](x,α) = Y0(x,α)+ γC(x)
p−1

∑
k=1

F(Yk(α),α). (28)

Note that (27) reduces toYk+1(x,α) = γ0C(x)Yk(α)
whenF(ỹ) is a linear function, where

Yk(α)T = (y
k
(x1,α), . . . ,y

k
(xN,α),

yk(x1,α), . . . ,yk(xN,α))
(29)

andγ0 is a constant. LetD be the matrix whose entries are
Di j = Cj(xi). SinceYk(α) = γ0DYk−1(α) = γk

0DkY0(α),
the truncation of (25) after p terms becomes

Y[p](x,α) = Y0(x,α)+ γ0C(x)
p−1

∑
k=0

γk
0DkY0(α). (30)

4 Properties

The present section summarizes the main properties of
the method of Section3. For the remainder, the spectral
radius of the matrixD will be represented byρ(D), and
the symbolI will denote the identity matrix of size 2N.

Lemma 1.If F (ỹ) is linear and ρ(D) <
1
|γ0|

then the
solution of (25) is approximated by

Y(x,α) = Y0(x,α)+ γ0C(x)(I − γ0D)−1Y0(α). (31)

Proof.The proof follows as that of Theorem 1 in [25],
considering a geometric series approximation of (30) with
matrices and taking then the limit whenp→ ∞. ⊓⊔
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Table 1: Values ofy(1,α) andy(1,α), for various values ofα
and several methods. The FFDE and the parameters used are
described in Example1.

VALUES OF y(1,α)

Present Present Method Method Method
α 7 GCL 15 GCL of [5] of [20] of [22] Exact

0.0 0.196543 0.196554 0.1962 0.183 0.1967 0.1966
0.1 0.216197 0.216209 0.2159 0.201 0.2164 0.2162
0.2 0.235851 0.235864 0.2355 0.219 0.2360 0.2359
0.3 0.255505 0.255520 0.2551 0.238 0.2557 0.2555
0.4 0.275160 0.275175 0.2747 0.256 0.2754 0.2752
0.5 0.294814 0.294831 0.2944 0.274 .2950 0.2948
0.6 0.314468 0.314486 0.3140 0.293 0.3147 0.3145
0.7 0.334122 0.334141 0.3336 0.311 0.3344 0.3341
0.8 0.353777 0.353797 0.3532 0.329 .3540 0.3538
0.9 0.373431 0.373452 0.3729 0.348 0.3737 0.3735
1.0 0.393085 0.393107 0.3925 0.366 0.3934 0.3931

VALUES OF y(1,α)

Present Present Method Method Method
α 7 GCL 15 GCL of [5] of [20] of [22] Exact

0.0 0.589627 0.589661 0.5887 0.549 0.5901 0.5897
0.1 0.569973 0.570005 0.5691 0.534 0.5704 0.5700
0.2 0.550319 0.550350 0.5495 0.513 0.5507 0.5504
0.3 0.530664 0.530694 0.5298 0.494 0.5311 0.5307
0.4 0.511010 0.511039 0.5102 0.476 0.5114 0.5110
0.5 0.491356 0.491384 0.4906 0.458 0.4917 0.4914
0.6 0.471702 0.471728 0.4710 0.439 0.4721 0.4717
0.7 0.452047 0.452073 0.4514 0.421 0.4524 0.4521
0.8 0.432393 0.432418 0.4317 0.403 0.4327 0.4324
0.9 0.412739 0.412762 0.4121 0.384 0.4130 0.4128
1.0 0.393085 0.393107 0.3925 0.366 0.3934 0.3931

The generalized Taylor’s formula under the Caputo
fractional derivative was established in [20]. That formula
will be a useful tool in the next results. In the sequel, the
exact solution of the FFDE in (12) will be represented by
Y(x,α) =

[

y(x, t,α),y(x,α)
]

. The norm ofL∞ will be
employed next in view of the continuity of the functions
involved (see [13]). So, in what follows,

e∞(x j ,α) =
∥

∥

∥
Y[p](x j ,α)−Y(x j ,α)

∥

∥

∥

∞
. (32)

Theorem 1.Let 0 < β < 1 and 0 ≤ α ≤ 1. Let
F(Y(x,α),α), F(Y(x,α),α), g(α) and g(α) be
continuous2β -times differentiable crisp functions with
respect to x. The following bound holds for any0< h< 1:

e∞(x j ,α) ≤

∥

∥

∥

∥

∥

γC(( j −1)h)
p−1

∑
k=1

F(Yk(α),α)

−
( j −1)β hβ

Γ (β +1)
[F(Y(0,α),α)

+G(0,α)]‖∞ +O(h2β),

(33)

Proof.The truncation of the generalized Taylor expansion
of Y(x,α) aroundx= 0 at the first two terms is

Y(x,α) = A(α)+
xβ

Γ (β +1)
Dβ Y(0,α)

+D2β Y(χ ,α)
x2β

Γ (2β +1)
,

(34)

(a)

0.2 0.4 0.6 0.8 1.0
Α

0.005

0.010

0.015

0.020

0.025

ei

(b)

0.2 0.4 0.6 0.8 1.0
Α

0.01

0.02

0.03

0.04

ei

Fig. 1: Absolute errors with respect to the exact solution for the
calculated values of(a) y(1,α) and (b) y(1,α) for α ∈ [0,1],
using the present method (solid), the method used in [5] (dashed),
and that employed in [20] (dotted). The FFDE and the parameters
used are described in Example1.

for someχ ∈ [0,T]. Using (12), the following inequality
results for each nodex j and eachα ∈ [0,1]:

e∞(x j ,α) ≤

∥

∥

∥

∥

∥

γC(x j)
p−1

∑
k=1

F(Yk(α),α)

−
xβ

j

Γ (β +1)
[F(Y(0,α),α)

+G(0,α)]‖∞ +O(x2β
j ),

(35)

For each j = 1, . . . ,N, note thatx j = x1 + ( j − 1)h or
x j ≤ x1+( j −1)h in the case of uniform and nonuniform
partitions, respectively. The conclusion of the theorem
readily follows now. ⊓⊔

Theorem1 implies that the error tends to zero when
h→ 0, and that the approximation error has orderhβ .
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Table 2: Values and errors ofy(1,α) and y(1,α), for various
values ofα and several methods. The FFDE and the parameters
used are described in Example3.

VALUES OF y(1,α)

Present Error
α 11 GCL Exact Error with [ 5]

0.0 0.720607 0.7206 7.60×10−6 1.44×10−4

0.1 0.722132 0.7221 3.25×10−5 1.44×10−4

0.2 0.723657 0.7237 4.26×10−5 1.45×10−4

0.3 0.725182 0.7252 1.76×10−5 1.45×10−4

0.4 0.726707 0.7267 7.28×10−6 1.46×10−4

0.5 0.728232 0.7282 3.22×10−5 1.47×10−4

0.6 0.729757 0.7298 4.29×10−5 1.47×10−4

0.7 0.731282 0.7313 1.18×10−5 1.48×10−4

0.8 0.732807 0.7328 6.96×10−6 1.49×10−4

0.9 0.734332 0.7343 3.19×10−5 1.49×10−4

1.0 0.735856 0.7359 4.32×10−5 1.50×10−4

VALUES OF y(1,α)

Present Error
α 11 GCL Exact Error with [ 5]

0.0 0.739669 0.7397 3.09×10−5 1.51×10−4

0.1 0.739288 0.7393 1.21×10−5 1.51×10−4

0.2 0.738907 0.7389 6.65×10−6 1.51×10−4

0.3 0.738525 0.7385 2.54×10−5 1.51×10−4

0.4 0.738144 0.7381 4.42×10−5 1.46×10−4

0.5 0.737763 0.7378 3.70×10−5 1.47×10−4

0.6 0.737382 0.7374 1.83×10−5 1.47×10−4

0.7 0.737000 0.7370 4.96×10−7 1.48×10−4

0.8 0.736619 0.7366 1.92×10−5 1.49×10−4

0.9 0.736238 0.7362 3.80×10−5 1.49×10−4

1.0 0.735856 0.7359 4.32×10−5 1.50×10−4

5 Simulations

The present section shows comparisons of known exact
solutions of (1) against approximations obtained via (28)
when (31) holds. Throughout, Gauss-Tchebyshev-Lobatto
(GCL) grid points [17] are used, and all fuzzy numbers
are triangular withT = 1. The exact solution of the first
example was taken from [20], and the solutions of the last
two are borrowed from [5].

Example 1.Let β = 0.75, dc = 1, dL = 0.5, dR = 0.5,
F(ỹ) = −ỹ(x), and fixg≡ 0. Table1 shows the solutions
y andy at x= 1 using the method proposed in the present
paper (with different number of GCL points), and other
methods available in the literature. In turn, Figure1
shows the absolute errors of the present method and the
methods of the literature with respect to the exact
solutions. Clearly, the present methodology yields more
accurate results.⊓⊔

Example 2.Let β = 0.75, dc = 0, dL = 1, dR = 1, and
consider

F(ỹ(x)) = −ỹ(x), (36)

g(x) =
2x2−β

Γ (3−β )
−

x1−β

Γ (2−β )
+ x2− x. (37)

The method introduced in this manuscript is used to
calculatey(1,α) for various values ofα using 20 GCL

0.2 0.4 0.6 0.8 1.0
Α

0.00002

0.00004

0.00006

0.00008

ei

Fig. 2: Absolute errors with respect to the exact solution for
the calculated values ofy(1,α) for α ∈ [0,1], using the present
method (dashed) and the method in [5] (dotted). The FFDE and
the parameters used are described in Example2.

points. Figure2 shows the absolute error using the present
method (dashed line) and the technique reported in [5]
(dotted line). The graph shows that the approximation
reported in this manuscript produces more accurate
results for values ofα ∈ [0.05,0.6]. In any case, the order
of the error is 10−5. The simulations corresponding toy
have been omitted in view that they are qualitatively
similar to those ofy. ⊓⊔

Example 3.Fix β = 0.85, dc = 1, dL = 0.04, dR = 0.01.
Let F(ỹ(x)) =−ỹ(x) andg(x) = sinx. Table2 provides the
approximate solutiony andy at x= 1 for several values of
α, calculated using the present method. The results show
that the absolute error using the present technique with 11
GCL points is substantially smaller than the error obtained
using the technique reported in [5]. ⊓⊔

6 Conclusions

A Picard-like numerical scheme, which was previously
employed to solve a class of Volterra integro-differential
equations, has been extended in this manuscript to solve
problems involving Caputo fuzzy fractional differential
equations.

The proposed approach presents two main advantages:

–it is able to reproduce exactly the initial condition;
–in the linear regime, it becomes a non-recursive
scheme in terms of known operational matrices.

For the general nonlinear scenario, some formal
considerations on the error have been discussed. Some
numerical examples illustrate the effectiveness of the
proposed approach. However, ongoing research is
focusing on extending the method towards piecewise
solutions for certain classes of problems, similarly to the
approach proposed in [19] for fuzzy partial differential
equations.
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