Appl. Math. Inf. Sci.11, No. 1, 33-41 (2017) %N =S¥\ 33

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/110105

Forward Stable Computation of Roots of Real
Polynomials with Real Simple Roots

Nevena Jakdsevic Stor and Ivan Slaprdar

Faculty of Electrical Engineering, Mechanical Enginegramnd Naval Architecture, University of Split, Rudjera Bogica 32, 21000
Split, Croatia

Received: 12 Mar. 2016, Revised: 20 Oct. 2016, Accepted: @52016
Published online: 1 Jan. 2017

Abstract: As showed in (Fiedler, 1990), any polynomial can be expkssea characteristic polynomial of a complex symmetric
arrowhead matrix. This expression is not unique. If the poiyial is real with only real distinct roots, the matrix casm dhosen real.
By using the accurate forward stable algorithm for commugigenvalues of the real symmetric arrowhead matrices {datkovcevic
Stor, Slapnicar, Barlow, 2015), we derive a new forwardlstalgorithm for computation of roots of such polynomiaisQ(n?)
operations. The algorithm computes each root to almosaéuailiracy. In some cases, the algorithm invokes extendetsjme routines,
but only in the non-iterative part. Our examples include atinally difficult problems, like the well-known Wilkinsé&polynomials.
Our algorithm compares favorably to other method for poigiad root-finding, like MPSolve or Newton’s method.
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1 Introduction and Preliminaries Theorem 1[7, Theorem 3] Let (x) be a polynomial of
degree n, .

Polynomials appear in many areas of scientific computing u(x) =x"+pxX" T +r(x), 1)

and engineering. Developing fast algorithms and reliable et

implementations of polynomial solvers are of constant D =diagdy,...,dn 1), (2)

interest. The famous example by James H. Wilkinson in

1963 [L8], usually referred to asVilkinson’s polynomial where d are all distinct and (d;) # 0. Let

is often used to illustrate difficulties when finding the n-1
roots of a polynomial. The polynomial of order is v(x) =1 (x—dj),
defined by a simple formula: j=1
n—-1
n . a=—-p- Y d, 3
Wa 09 = [06=1) = (= 1) (x=2) - (x—1). P Zl j ®)
1=

For example, the location of the roots \&bg is very
sensitive to perturbations in the coefficieni®][ Since ~ Where

then, many methods for finding roots of polynomials have 72 = —u(d)) — —u(d)) ' (4)
been developed (see for exam@k [8] and [L3)]). Foov(d) Tnd -
In [7], Miroslav Fiedler showed that any polynomial _I'l< j— i)

can be expressed as a characteristic polynomial of a iz
complex symmetric arrowhead matrix. This expression istpen the symmetric arrowhead matrix
not unique. If the polynomial is real with only real

distinct roots, the matrix can be chosen real. We have the

following theorem:

Dz

A:
Za

: (5)
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has characteristic polynomigh1)"u(x). To summarize, the proposed algorithm computes roots
of given polynomials with floating-point coefficients to
o almost full standard floating-point accuracy ®(n?)
~ It u(x) has only real distinct roots and thej'’d  gperations, using the double polynomial precision only in
interlace them, then A is real. the non-iterative part. The approach is original, since
Fiedler concludes his paper by stating "One can hopeiMost full accuracy and even forward stability is
to obtain, by some sophisticated special choice of the?Ptained using matrix algorithm and by limited use of
numbersd;, stable or even universal algorithms for Ngher precision.

solving algebraic equations.” The high-quality root findermpsolve from the
The eigenvalues of the arrowhead mattixrom (5) package MPSolve3] 4] computes the roots with the same
are the zeros of the secular functidrd], accuracy, but internally uses higher precision than our
. . algorithm, and does so in the iterative part. The proposed
pa(A)=a—-A—-z (D-Al)""z algorithm is clearly not as general ampsolve but

compares favorably tonpsolvefor the polynomials with

Finding root f lynomials vi lution of th o
ding roots of polynomials via solution o eoﬁhstlnctreal roots.

corresponding secular equation is not a new idea, see, f
example, #] and the references therein. The organization of the paper is the following. In
In [11], the authors developed a forward stable Section 2, we describe our algorithm nametdotsah
algorithm for computing eigendecomposition of a real (polynomial ROOTS via ArrowHead eigenvalues). In
symmetric irreducible arrowhead matrix, which is exactly Section3, we analyze the accuracy of the algorithm and
the matrixA given by Theorent if the polynomialu(x) give forward error bounds — in Sectidhl, we analyze
has only distinct real roots, and the diagonal elements othe accuracy of the computed matix and in Section
the matrixD interlace those roots. 3.2, we analyze the accuracy of the computed inverse of
The arrowhead matriA is irreducible if d; are all ~ the shifted matrix A. In Section 3.3 we discuss
distinct andz; # 0, j = 1,...,n— 1 [11]. More precisely, implementations of increased precision (double standard
the algorithm from 11] computes each eigenvalue and all precision and double polynomial precision): extended
individual components of the corresponding eigenvectomrecision routines from €, Compensated Horner's
of a given arrowhead matrix of floating-point numbers to method from 8, Algorithm 4] and JuliaBi gFl oat
almost full accuracy irO(n) floating point-operations, a floating-point type. Finally, in Sectio#, we illustrate our
feature which no other method has. algorithm with several numerically demanding examples
In this case, we are interested only in the rootsiof and compare it to the methods frorg,4] and [8]. The
that is, in the eigenvalues @&ffrom (5), each of which is  implementation ofrootsah and needed subroutines is
computed independently of the othersd(n) operations.  publicly available in the Julia 12] package
This, together with independent computation of elementsAr r owhead. j | [2] (file src/ arrowhead7.j | ).
of z, makes our algorithm suitable for parallel computing.
Let us define floating-point precisions: tiséandard
precision or machine precision is
em = 27°3 ~ 1.1102- 10%® (see P, Chapter 2] for
details). The double standard precisiordenotes the
precisiongy = 2719 ~ 1.2326. 1032, The polynomial
precision ep is the precision needed to store the
coefficients of the polynomial to full accuracy, and the
double polynomial precisioris 3. We assume that
ep < &v. Letu(x) defined by {) be a real polynomial with only real
In this paper, we propose a new two-step algorithm:distinct roots, and let the matrik be the real symmetric
given a polynomiali with only distinct real roots of the arrowhead matrix from5), where the diagonal elements
form (1) whose coefficients are given floating-point of the matrixD interlace the roots af(x).
numbers:

2 The algorithm

The forward stable algorithm for solving EVP of
1.compute the generalized companion maifrom (5), arrowhead matrices1l] computes all eigenvalues to
where the elements afanda need to be computed in almost full accuracy. The algorithm is based on
double polynomial precision, and then shift-and—invert strategy. Led; be the pole which is
2.compute the roots afas the eigenvalues #fby using ~ nearesttol. Let A be the shifted matrix,
modified version of the forward stable algorittaineig
from [11, Algorithm 5].

D;0 07

1 Inareport by Corless and Lit6], the matrixA from theorem 0 0 0¢
1is referred to ageneralized companion matrix not expressed in A =A—dl = 0 0Dy » 6)

monomial basisln this case, the basis is the barycentric basis. ZI 14 z; a
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Algorithm 1
where A = rootsah(u, D)
o . _ _ % Computes the roots of the polynomialu(x) from
Dy =diag(d; —d;,...,di—1—d), % (1) of ordern, with distinct real roots.
D, =diagdi;1—di,...,dn—1—di), % Entries ofD must interlace the roots of(x),
n=[0L Zifl]T, @) % see Sectiod for examples.

z=[{+1 {42 - Zn_l]T, % Compute the values ofx) in the interpolating points
a=a—d. % dj using double polynomial precision.
forj=1:n—-1
Then, . Sdcci)uble(j) =u(d(j))
en
A= v +di, % Compute vectov from Theoreml using double
f% pplynomial precision.
forj=1:n—-1
Vaouble§) = M1(d(j) —d(L: ]~ 1,j+1:n-1)
Dirl Wl OT 0 S/nd tear f Th ml using doubl I ial
: 6 computea from Theoremil using double polynomia
Al=(A-dl) = V\(I)l v\tl)z Svfl 1{)4 , (8w precEsion. . ’ POy

0 1/ 0 O Adouble=—P— 3 dj
=

where % compute vector from Theoreml using double
1 % polynomial precision.
w, = —D7lz =, for j :1.:n—1 . .
! 14 {double(}) = \/_Sdouble(l)/vdouble(l)
o1 end
w2 =—Dy"2—, % call modified algorithmaheig
1 G fork=1:n
b= z (—~a+27 D1tz + 2D, %). (9) e?“(jk) = aheigmod(D, Zgouble Adouble K)
|

Notice that all elements of the matrid ! are
computed with high relative accuracy, except that in some
cases the elemerti needs to be computed in double _ _ _ _
polynomial precision (for details seelf]). Also, the The difference between algorithraheig and its
elements ofz (Horner's method) anda (the trace mod|f|cat|onahe!gmod|s that_the latter algorithm and its
preservation formu|a) oA need to be Computed in double needed subroutines take as Input elements of the vector
polynomial precision. Notice that our algorithm requires and scalara from (5) computed in double polynomial
computation in higher precision only in the finite part, Precision. This is necessary in order to compute the roots
unlike a|gorithms from :B,B], which require usage of INn the forward stable manner, as shown by the error

wherev is either the largest or the smallest eigenvalue o
the matrix

higher precision in the iterative part. analysis in the following section. The detailed
The described procedure is implemented in theimplementation of the algorithmeotsahandaheigmod
algorithmrootsah is publicly available in the packag® r owhead. j | [2]

The algorithmaheigmodis a simple modification of ~ (file src/ arrowhead7. j I, functionsrootsahandeig,
the algorithm aheig from [11, Algorithm 5]. The  respectively).
algorithmaheigand its subroutines are analyzed in detail ~ As already mentioned, algorithmsaheig and

in [11]. The algorithm is essentially based on the gheigmodcompute eigenvalues of the arrowhead matrix
assumption that all elements of the mat#ix* from (8) by shifting the matrixA to the nearest pole and inverting,
can be computed with high relative accuracy, that is,and computing the absolutely largest eigenvalue of the
FIOA ) = [A Y5 (1+ Kjiew), for some modeskj.  resulting arrowhead matrix8] by bisection. This is
For all elements oAi‘1 butb, this accuracy is achieved by always one of the extreme (outer) eigenvalues, so one
computing them in standard precision using the standargboint of the starting interval is either leftmost or the
precision copies of and a. If, according to the theory rightmost pole of the matrix fromBj, and the other point
from [11], the elemenb needs to be evaluated in double is computed by using Gershgorin theorem. The
standard precision, formul®) is evaluated usinggouple  iMmplementation is given in the functiohisect in the
and agouple in order to obtain full possible accuracy. The package Arrowhead. j | [2] (file
detailed implementation of the algorithraheig and  src/arrowhead3.j1). The stopping criterion for
needed subroutines is publicly available in the Julig [ bisection is relative, and, since we are computing
package Arrowhead. j | [2] (file absolutely largest eigenvalue, it takes about 50 stepk unti
src/arrowhead3. ). convergence to standard precision.
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3 Accuracy of the algorithm 3.1 Accuracy of A

The error analysis of the algorithaeheigis given in [L1, A . .
Sections 3 and 4]. This analysis assumes #has the ,I&let AtthEOte the matrixA computed according to
matrix of floating-point numbers in the standard precision gorthm L, 5d)
evw. Here, howeverA is computed by using formulas A— [ D z
(1-5), which must be taken into account. @NT a@
Let us first consider the errors in the polynomial 4d) ~(d) ) )
evaluation. The classical method for evaluating Here 2% and a'® are computed in double polynomial

polynomialu(x) is Horner’s methodg, Section 5.1]. Let  Precision which we denote by supersciig}. Let

n T
i 5(d 5(d) 3(d 5(d
) = 3 2. 10 29— 404 0]
=
and let By combining @) and (2), the standard first order
§ ail |X|i error analysis in double precisi@n gives
cond(u,x) = i:On 1T |EE§§| : (11) - (d) —u(dj)(1+Kq €2)
3 ax e : (1+e5)(1+ea),
Notice thatcond(u,x) > 1 - 'I-l(dj Sra)rnm9e)
3 Z L =1
Let Horner(x,u) denote the value ofi(x) computed 7l (16)
with precision € by Horner's method. Depending on < g2
whetherey or & is used to store the coefficients u(fx), wherelei2a4| < 7. Therefore,
we sete = gu or € = &p, respectively. - (d) ) 2
Then, the relative error in the computed value is (i =itk E%), 17)
bounded by9, Section 5.1
lu(x) — Horner (u,x)| where, by using13),
W] < cond(u,x) x 2ne. ke |+ (- 1) )
@ < BT 7T 1 < ncondu,di) + 2=
Thus, whenHorner(u,x) is evaluated in double ’KZJ' ’ - 2 s du.d;)+ 2

recisiong, the relative error is bounded b o . . .
P y Similarly, applying the standard first order error analysis

u(x) — Hornergoupid U, X)| in double precisior to (3), gives

< cond(u,X) x 2ne2.

Ju(x)] ) o
Therefore, a9 =a(1+kg ' e?),
Hornergoubld U, X) = (1 -+ Kxe?)u(X), (12)  where
where n—1
|Kx| < cond(u,x) x 2n. (13) 2|+ j; |dj|

Notice that, ifcond(u,x) is uniformly bounded, Ka'| < T(” —1)=Ks(n-1). (18

cond(u,x) < %, (14)
then 3.2 Accuracy of A

|Kx| < 2n. (15)

Two other possible ways to evaluate polynomial suchLet At denote the matrixy * computed according to
that the bounds similar td2,13) hold are: to evaluate all Algorithm 1 from the matrixA. All elements ofA* but
parts of the respective formulas by using extendedpossiblyb, are computed in the standard precision using
precision routines from @], or to use Compensated the standard precision copiesz?) anda@. Let {j and
Horner’'s method from§, Algorithm 4] (see Sectio3.3
for details).

We now consider the accuracy of the compute
matricesA, A; andA 1 from (5), (6) and @).

X ~(d A

a denote(,—< ) and a@ rounded to the nearest standard
dprecision number, respectively. Let = min{ev,&p}.
Then

2 Ink[8,9], the bounds are expressed in terms of quantities Zj ={ (1+ K¢, EM) , J=1,...,n=1 (19)
Y = 1—fk— For the sake of simplicity, we use standard first order N
approxir%ations,k ~ke. 0 =a(l+Katm), (20)
(@© 2017 NSP
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where, by using17)—(18),

‘KZJ.‘ < (W) ev+1 j=1....n—-1
|Ka| <Kg(n—1)gy+ 1.
Further, according tol@)-(15), if
cond(u,dj)gé, i=1...,n—1 (21)
then (@9) holds with
‘sz‘gmrz, j=1,...n-1, (22)
and if L
Ka < 3. (23)
then Q0) holds with
[Ka| <n. (24)

Forj ¢ {i,n}, similarly as in [L1, Proof of Theorem 4],

the standard first order error analysis gives

~ 1 1
1= = i < 2.
(A5 =l (dj—di> dj—di(1+K”£M)’ Kjj| <2

Similarly, assuming that2(l) and @2) hold, for j ¢ {i,n}
we have

o —j(1+ K¢ em)
A = FIIA i) =1l <<dj -di>zi<1+Kzi8M>>

analysis of 9) gives

. 1
b= fl <7Zi2(1+ <o)’ (a(1+ Ka&m) —di

+n§ 22+ szsM)Z»
& di—d
J#i
= b(1—|— KbEM),

where

|Kp| < (N+2+max{2 r}]zmzj |, |Ka|})-Kp+2|Kz |+ 3.

Additionally, if (21) and @3) hold, then 22) and @4) hold,
as well, and

|Kp| < (BN+6)-Kp+2n+7.

Second, if
Kb>>1,

then, according to the theory froni]], the elementb

needs to be computed in double precisouising fj @

and @@ in order to obtain full possible accuracy. The
standard first order error analysis 09)(in double
precisione gives

b — i (—1 @ (a(1+ kiVe?)
{P(1+k, €2)?
anjz(l-f-Ké?)EZ)z))
_|_ . —
J; dj —di
i#
=b(1+kye?),

—;
:m(l-i-Kjigm), [Kji| < (2n+7). where
(d) d)) ,(d) (d)
Ky | < (N+2+max2maxk, |, |K ‘Kp+2|K, |+ 3.
FinaIIy, | b |7( { j;éix| g | | a |}) b | I |
Finally, let
~ ~ 1 )
A= 1A ) = 1 (e
Gi(1+Kgém) kY = max{2 max|ng)|, k3. (26)
— L1t kew), ki < (03 ) e
Y mEM T = ' If, in addition to @1) and @3),
We now analyze the accuracy of the computed element Ky < 1 (27)
b. Let -’
d
al+|di| + |z Dy 1z | + |z D5 1z an
ko= G BBy B E 2D 2] () K9 Ky < 2, (28)
| —a+2zD; z1+2,D, 2| £
i then
whereD1, Dy, 73, z anda are defined by¥). We have two b= fl (5(d>) = b(1+ Kpem),
cases. First, if where

Kp % 1,

thenb is computed in standard precision usif;gand a.

|Kp| <n+5.
The above results are summarized in the following

Letb denote the computdd The standard first order error lemma:

(@© 2017 NSP
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Lemma 1Let (21) and 23) hold, and let i be defined by
(25). For all non-zero elements of the matriﬂ\from @®)
computed according to Algorithm 1 and Remark 1, except
for the elementA 1, we have

A = [A i (1+ Kiagm),

For the computed element b [A(l]ii we have the
following: if Ky 3% 1, then

-in Inteli f ort FORTRAN compiler L], convert all
guantities from standard 64 HREAL( 8) to 128 bit
REAL( 16) and then evaluate the respective formulas
—this is only 3 times slower,

-in Matlab, convert all quantities to variable precision
commandsy mwith parametet f’ , and then evaluate
the respective formulas — this is 300 to 1000 times
slower than standard precision.

|Ki| < (2n+7).

The evaluation of the polynomial(x) can also be
successfully performed by Compensated Horner’'s method
from [8, Algorithm 4], where both quantitigsandc from
this algorithm must be preserved for subsequent
computations by extended precision routines.

If polynomial coefficients cannot be stored as

b=b(1+Kpem), |Kp| < (3n+6)-Kp+2n+7.
If Kp > 1 and if 27) and 28) hold, then
b=b(1+Kpem), |Ko] <n+5.

The forward error of the computed roots is bounded as

follows: floating-point numbers in the standard precisignto full
. accuracy, we have following options:
Theorem 2Let (21) and 23) hold, and let K be defined
by (25). Let -in Matlab, convert all quantities to variable precision

A =A(1+Krem)

be the root of (x) computed according to Algorithm 1 and
Remark 1. If I§ 3% 1, then

commandsy mwith parameter f ' , and then evaluate
the respective formulas,
-in Julia, we store the coefficients as 256 bit mantissa

Bi gFl oat numbers, with
[Ka| <3VN[(3n+6)-Kp+2n+7]+3.18n(vn+1) +4, gp = 27255~ 1.727-10°7". The double precisioay
. is obtained by command
and if K, >> 1 and 7) and @8) hold, then set _bi gfl oat _preci si on(512). This

solution is slower than using extended precision
routines, but timings compare favorably to the ones
for MPSolve, see Exampl&

|Ky| < (6n+21)y/n+3.180(v/n+1)+4.

ProofUsing the same notation as 11, §3], the first
summand in the above bound fej follows from [11,
Theorems 5 and 6], while the second summand is the

for bisection froml| A]1.0 .
error bound for bisection fromip, §3.1] 4 Numerical Examples

3.3 Implementation of increased precision In this section we shall compare the following algorithms:

—rootsah- the Julia 2] implementation of Algorithm

If the polynomial coefficients are stored as floating-point
numbers in the standard precisigy to full accuracy, then
double standard precision can be implemented as follows:

-in general, one can evaluate the respective formulas
by using extended precision routinasld2, sub2,
nmul 2, di v2, andsqrt 2 from [6] — this is O(10)
times slower. In these routines, double standard
precision is simulated by keeping each number as a

1, publicly available in the Julia package
Arrowhead. j | [2], with double standard precision

implemented using Julia package
Doubl eDoubl e.jl [2], and the polynomial
precision and double polynomial precision

implemented aBi gFl oat numbers,

—oots - Matlab or Julia standard command which

computes roots of polynomials as eigenvalues of the

pair consisting of higher and lower part of mantissa.

companion matrix. Both, Matlab and Julia versions
For example, let

give the same results.

—Math- Mathematica20] Rootsroutine with 100 digits
of precision rounded to 16 decimal digits.

—mpsolve-multiprecision polynomial root finder from
the package MPSolvg3,4].

—NewtonCHS- Newton method with Compensated
Horner’s method from§, Algorithm 6].

(2,27 = add2(x, XXy, YY)

where all quantities are floating-point numbers wtith
binary-digits mantissa. Then

|2+ 22— [(x-+309 + (y+YY)]| < (X434 + |y+yy)2 2.

If xx= 0 andyy =0, then (exactlyy+ zz=x+y. We We illustrate our algorithm with three examples. Some
see that this is nearly equivalent to using doublemings are given in Exampltg

standard precision (the precision ﬁ,\z,, instead of
e,a). Julia implementation of these routines is part of 3 We have used version 3.1.4 with the following command line
the packag®oubl eDoubl e. j | [2]. parameterspsol ve -as -Ga -015.

(@© 2017 NSP
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Example IThe coefficientsag,...,a;g of Wilkinson’s

polynomialWig are, row-wise! Since for every root, the corresponding quantity
Ky % 1, the algorithmrootsahcomputes fully accurate
roots, using the double standard precision (approximately
equivalent to 32 decimal digits) to compute the entries of
the matrixA and only the standard precision to compute

the corresponding matri>§\i‘1 and its absolutely largest

6402373705728000-22376988058521600
340122495938227206-30321254007719424
17950712280921504—7551527592063024

2353125040549984 —557921681547048

102417740732658 —14710753408923 ;
1661573386473 147560703732 eigenvalue. . .
10246937272 549789282 The mpsolve performs computations using 231
22323822 662796 decimal digits (and 462 decimal digits for one root) to
13566 _171 guarantee and obtain 15 accurate digits. However, if the
1 requirement for accurate digits is only slightly relaxed to

requiring 14 accurate digits, mpsolve performs
computations using only 19 decimal digits.

The NewtonCHSalso computes the roots d¥;g to
full accuracy as described ir8[ Theorem 6]. However,
the starting pointxy which satisfy the conditions ofg[
Theorem 6], must be chosen with greater care and must
é)e relatively close to the desired root (for example,
Xo = 17.1 to obtainA, = 17, orxg = 1.1 to obtain1g = 1.
Since the Accurate Newton’s method takes on average 6
steps to convergence for each root, it needs approximately
12n? effective extended precision computations, while
our algorithm needs in this cas@®extended precision
computations to compute the matAx

The results fok\,g are similar.

Coefficients ofWg are stored to full accuracy in the
standard precisioay, So heree = gy = &p.

Finding values ofij; which interpolate roots is not an
easy task. In this example, the interpolating pointk
were computed as roots off(x) with the roots
command from Matlab or Julia. Those methods cannot b
used directly to accurately compute the rootd\g§, but
the computed interpolating points are sufficiently
accurate.

We have

maxKp = 2145 3% 1,

max{condu,d;)} = 7.29- 10",
) Example 2Z2onsider the polynomial of degree 5 with the

Ka = 35, coefficients

—6.1897001964269@0+ 26
4.1813897247244%+ 42
—6.277101735386680+ 57
7.136238463529739+ 44

so by Theoren?, the roots 0¥V, g are computed bgootsah
to (almost) full accuracy, in a forward stable manner.

The roots computed byoots rootsah mpsolveand
Math are, respectively:

—2.02824096036516&# 31

) (roots) ) (rootsahmpsolveMath) 1.0000000000000G+- 00
18.00001193040660 18
16.99987506992020 17 or, in Julia'sBi gl nt format,
16.00057853967064 16
14.99841877954789 15 —618970019642690000010608640
14.00282666587300 14 4181389724724490601097907890741292883247104
12.99649084561071 13 —627710173538668006693750196912569324311
12.00308090986650 12 ...1159424202737451008
10.99809154207482 11 713623846352979940529142984724747568191373312
10.00081885564820 10 —20282409603651670423947251286016
8.999776556759201 9 1
8.000029075840132 8
7.000002735870642 7 The coefficients ofi(x) are stored to full accuracy in the
5.999998227088450 6 standard precisiogy, so here alse = gy = &p. The
5.000000283698958 5 interpolating pointsd; were computed as the roots of
3.999999981972712 4 U (x) usingrootscommand additionally corrected by one
3.000000000132610 3 step of the Weierstrass—Durand—Kerner methidd [The
2.000000000018936 2 valuesd; andcond(u,d;) from (11) are given in Tabld.
0.999999999999808 1 For the decreasingly ordered roots ofi, A,

4 We useéW,g since all its coefficients are exactly stored as 64-

bit floating-point numbers.

k=12,3,4,5, the corresponding quantiti&g from (25),
K(f_j) from (26) and their respective products fro2gj, all

rounded up, are given in Tablg. We see that the
condition @7) is always fulfilled. AlsoKy = 1 from (18),
so @3 is fulfilled. The condition 28) does not hold

5 For example, the abstract off] states, “The efficiency of
computing an initial approximation resists formal studyd dhe
users rely on empirical data.”
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Table 1: Interpolating pointsl; andcondu,d;).
j| d; | cond(u,d))
1 | 5.277655813324802e+1 4

1.759218604441599e+13 3.58- 106

6.253878705847983e-1 124

2.627905491153268e-1 46.4

A wWN

Table 2: ValuesKy, K<A?) and K<A:j) Kp.
K W |

1 3.6-1017

3.01-10%
3.01-10%

4.7-10?
47102

3.58-10%
3.58-10%

126
126

a s~ wWN PP X

literally. However, we haV&(é? -Kp % iM which is

sufficient to obtain almost full accuracy.
The roots computed byoots rootsah mpsolveand
Math are, respectively:

) (roots)

2.0282409603651@&A- 31 2028240960365167+ 31
1.7592186297798@+ 13 1759218623050247+ 13
1.7592185890522%k+ 13 17592185858329%8+ 13
0 4.440892098500623- 16
0 2.2204460492503 ¥4 16

) (rootsahmpsolveMath)

We see that the roots computexbtsah mpsolveand
Math fully coincide. In rootsah in addition to the
elementsz® anda@ of the matrixA, the elemenb of

Table 3: Execution time (in seconds), maximal relative error and
maximal precision used foapotsahandmpsolve
Polynomial | Method | Time | Rel. error| Precision

TaooX) rootsah | 0.0182] ~10°1° 154
mpsolve| 0.184 | ~10 15 462

Tars(x) rootsah | 0.27 | ~10°16 154

375 mpsolve| 1.08 | ~1014 924

L rootsah | 0.07 | ~10°16 154
160 | psolve| 017 | ~10°14 924
Lsoo¥ rootsah | 023 | ~10° 1 154
mpsolve| 074 | ~1014 924

respectively.

The roots ofT,,(x) forn> 1 are

2k—1m
Xk COS( n 2), s ,n

(29)

Forn < 52, the coefficients of,(x) are accurately stored
in the standard precisiasi. The coefficients of,(x) for

53 < n < 375 can be accurately stored in the polynomial
precisionep = 1.727- 1077 (for example, using Julia’s
Bi gFl oat numbers).

The roots ofL,(x) for n > 1 are all real and simple
and lie in the interva{—1,1). Forn < 28, the coefficients
of Ln(x) are accurately stored in the standard precision
&m. The coefficients olLy(x) for 29 < n < 320 can be
accurately stored in the polynomial precision
g =1727-10""7,

The interpolating pointsl; were obtained using the

Agl was computed in double standard precision. Again,fact the roots ofTy(X) interlace the roots of,;1(x) and
mpsolveuses 231 decimal digits to guarantee 15 accuratéhe roots ofLy(x) interlace the roots df,1(x) forn> 1.

dlglts, and uses 19 decimal dlglts to guarantee and obtain Comparison betweeamotsahandm pso|ve'n terms of

relative accuracy of 10'. The NewtonCHS also

speed, relative error in the computed roots and the used

computes the roots to full accuracy, provided themaximal precision (number of decimal digits) is given in
respective starting points are chosen with greater caretaple3. For Chebishev polynomials, relative errors were

However, the conditions oB] Theorem 6] cannot be used
- for example, for the largest roadt, there is no starting
point Xo which satisfies the conditions, excejpt itself.
For Az, the starting poinky which satisfies the conditions
can differ fromA; in just last digit.

Example 3n this example we consider Chebishev
polynomials, T,(x), and Legendre polynomiald,s(X),
defined by the three-term recurrences

computed comparing the computed roots wRB)( Also,

we have maypcond Tz7s,di) ~ 102 and K, 3 1 for all
roots, so, by Theorerg, rootsahcomputed all roots to
almost full standard precision accuracy. For Legendre
polynomials, we have macondLygo,di) ~ 10°2,
max (cond(Lszo, di) =~ 10?3 andK, 3 1 for all roots, so,

by Theorem2 rootsahcomputed all roots to almost full
standard precision accuracy. The relative error for
mpsolves the one given by the program itself.

To(x) =1, Ti(X)=x, To conclude, we see thabotsahcomputes the roots
T () = 2XTa(x) — T a(x). n>1 v_v|th the same (or slightly better) accuracy, ar!d is sg\{era_ll
() n() =Th-1(x), n=1, times faster and uses several times less decimal digits in
and the computation thampsolve
Lo(x) =1, Li(x)=x, 5 _
Test were performed on the computer witmt el ( R)
Lnsa(X) = 2n+1x n(X) — n Lhoa(x), n>1 Core(TM i5-3470 CPU @ 3. 20GHz processor  with
n+1 n+1 ’ - four cores running Linux operating system.
(@© 2017 NSP
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