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Abstract: We propose an effective method to find the inverse of symmbtack arrowhead matrices which often appear in areas of
applied science and engineering such as head-positiogstigrnss of hard disk drives or kinematic chains of indusnohlots. Block
arrowhead matrices can be considered as generalisatianoafreead matrices occurring in physical problems and exeging. The
proposed method is based bBLT decomposition and we show that the inversion of the largekbdorowhead matrices can be more
effective when one uses our method. Numerical results @septed in the examples.
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1 Introduction thermal and many others. Considered subsystems are
highly differentiated, hence formulation of uniform and

A square matrix which has entries equal zero except foélmple'mathematlcal model descrlblr_lg their static and
dynamic states becomes problematic. The process of

its main diagonal, a one row and a column, is called the . . .
reparing a proper mathematical model is often based on

arrowhead matrix. Wide area of applications causes tha! e formulation of the equations associated with
this type of matrices is popular subject of research relate . . cque ;
agrangian formalism9], which is a convenient way to

with mathematics, physics or engineering, such 8%describe the equations of mechanical, electromechanical
computing spectral decompositiod],[ solving inverse nd other n? nents. A X It’ f lication of
eigenvalue problems?], solving symmetric arrowhead i othe fCO plp ents. As tathesu t?\ ap?' C? 0 dOI
systems §], computing the inverse of arrowhead matrices dagrargge or:mad|sm, we ?eh € ma erq_a;] Ica me ed
[4], modelling of radiationless transitions in isolated escribing the dynamic of the system. e obtaine

molecules $,6], oscillators vibrationally coupled with a vrCr?iC(i:ﬁl (l,sangIl\)lsnefyre%sesce%ngso:gs{riglfeferueeﬂti?ri elgu?r;uz;)tz’x
Fermi liquid [6], modelling of wireless communication : Xp q S .
systemsT,8] notation of equation of the modelled system, it is possible

in thi imol d effecti to distinguish matrix of inertia, whose structure
n this papér we propose a simpie and efiec IVecorresponds to the structure of the real object — the
method to find the inverse of the symmetric block

arrowhead matrices. which have wide aoplications inmechatronic: system. The inertia matrices usually are
. ' ) PpiiC symmetric. Additionally, in many cases these matrices
mechatronics. In order to illustrate the significance of

. . S .can be expressed as symmetric arrowhead matrices or
arrowhead matrices in process of designing rnGmhatron'%ymmetric block arrowhead matrices. It is typical of the

systems, we should Iook at th's. in—more d(_ata|ls. mathematical models describing the following devices:
Colloquially, the mechatronic system is a combination of

different elements. It means that devices are made in

different technologies which are strongly coupled to each —electromechanical transducerd0[11,12,13]. This
other. The systems are built from following main component is included for instance in squirrel-cage
subsystems such as: mechanical, electromagnetic, induction motors, where the inertia matrix can be
electronic and informatics. Such systems can also have represented as a block arrowhead matrix. The number
subsystems associated with pneumatics, hydraulics, of blocks in the matrix depends on the number of
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harmonics of the magnetic field in the airgap and thematrix P, theA can be transformed to
number of rotor bars in a cag&Z, 13].

—electromechanical transducers with a double sta#r [ A1 0 O-- Bl
15]. This type of transducers can be successfully used 0A O - B%
as generators in production of wind energy. A—PAP"— | O 0 Az--- Bg 2)

)

—kinematic chains of industrial robot&4]. Depending
on the configuration of the open kinematic chain of an o
industrial robotic manipulator, the inertia matrix can B1B2Bs - A«
be expressed as block arrowhead matrix, which . . .
represents kinematic relationships between actuator&hereAs, A, ... A areng, n, ..., N, dimensional matrices,
and the elements of the Stewart platfort]] respectively. In particular iP is expressed as
—head-positioning systems of hard disk drives (HDD)

[18,19]. Drivetrain of a head-positioning control 00 Ik
system can be analysed as a special case of branched po | 3)
robotic manipulator18,19,20Q]. "o ly - O ’

I{0---0

The block arrowhead inertia matrices are widely used

!n modeling of .mechat_ronic systems. Its inverses haV%\/here h,l2,...,1x are identity matrices with dimensions
important meaning e.g. in: Ny, Ny ’nkjthén

—reduction the time of designing and development of

mentioned device models, AL 0 0 Iﬁ
—increasing efficiency of simulation of the modelled 0A 0B
systems, A—PAPT = |0 0 Ag--- B | (4)
—eliminating torsional vibrations in the drive systems. TR
Considered inertia matrices depending on the systems can B1 Bz B3 -+ A
have large sizes, hence there is a need for improvement of . .
methods for block arrowhead matrices inversion. Hence, theA consists of the same blockg, A, ..., A and

Generally, matrix inversion is not harder than matrix B1,B2,..,Bx as matrix A. If we consider permutation
multiplication [21,22]. Computational complexity of MatrixP expressed as
matrix inversion based on Gauss-Jordan elimination is

0(n?) [23]. Strassen algorithm, which can be used to 001
inverse of matrix with complexity’(n?8074[21], is more B | 5
efficient. Coppersmith and Winogra@4,25] show that “lo1...0|’ ©)
matrix multiplication can be obtained ifi(n?375%). Now, 10---0

the fastest algorithm of matrix multiplication running in
0(n?3727) time was performed by Williams2p]. Two

ine of — BABT - Ao_A
last mentioned algorithms are rarely used in practice. then entries oA = PAPT are given by = An-it1n-j+1,

wheren is a size ofA.
The form of a matrix given byl) occurs many times
in different cases e.g. during designing the mechatronic
2 Inverse of block arrowhead matrix system. Blocks of the matrix are related with the structure
of a modelled object. Hence the blocks should be
) invariant under transformation of the matrix. Expressed in
2.1 Arrowhead matrix (3) changes the structure of the matrix, but the blocks
remain unchanged.

Let A be a square block matrix given in the following way

Ay BBy By 2.2 LDL* decomposition
Bl A, 0 0
A— é; 0Ag--- O L) Let A be a Hermitian positive definite matrix.

Decomposition theA into the product of a lower
JE triangular matrix and its conjugate transpose is called
Bi ;0 0. A Cholesky decomposition. Thus, every Hermitian matrix
can be expressed as

where ng,np,..,nc are dimensions of matrices

A1, Az, ....Ax and z!‘zlni = n. By use of permutation A=LL", (6)
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wherelL is a lower triangular matrix. IA is a symmetric  wherefor 1<i<n-1
positive definite matrix, theA can be factorized inté = L
T . . - b n—
LL". If we consider §) in following way d—a. | = EI and dy = a,— z |Edk- (12)
i k=1

A=LL*=L'D?(L'D?)=L'D?(D?)*(L')*=L'D(L)*, (7)

wherel’ is a lower triangular matrix anB is a diagonal

matrix, then we geL.DL* decomposition. This variant of
Cholesky decomposition is also useful for the Hermitian
nonpositive matrixA. For real symmetric matrices, the

factorization has the formA = LDLT. The computational
complexity of Cholesky decomposition &(n®) and the

most efficient algorithms used for the factorization

require %n3 operations. The complexity ofLDL*

decomposition is the same as Cholesky decomposition.

Let A= [gj] € C™" be the Hermitian matrix. The
LDL* decomposition factorizeA into a lower triangular
matrix L = [lj] € C™", a diagonal matrix
D = [d;j] € C™" and conjugate transpose lofexpressed
asA=LDL*, where

i1
di = ai —  licliO
&1

- (8)
1 ! — L
lij :K(aij— lil jkdi), for i > j.
ji K=1
If we consider block Hermitian matrix

A = [Aj] € C™" where Aj € C"*"i, then LDL*
decomposition is expressed a8 = LDL*, where
L = [Lj;] € C™"andD = [Djj] € C"™" are given by
i-1
Dii = Ai — 3 LikDiaLik
K=1
o (©)
Lij = (Ajj _kzlLikakLTk)Dﬂla fori>j.

2.3 Decomposition of a block arrowhead matrix

Consider an arrowhead matrik € R™" given in the
following way

a0 0- b1
Oa20---b%

A— |0 Oazg - bg (10)
bibobs--- a

As a result of the factorization, we obtain matrié2sind
L expressed as

d 0 0..0 100...

0d 0... 0 010..
D_|00d...0|  _|001 LA

00 0...d 3. 1

The computational complexity of the factorizatiorign).

Let A= [Ajj] € R™" be a symmetric block arrowhead
matrix expressed as matrix in2)( The A can be
decomposed into a products of matridesD and LT,
where

D10 0.0 FL0O0..0
0D, 0..0 0FR0..0

D— [0 0D3... O | [0 0Fs...0| (13
0 0 0..Dy LiloLs... R

Matrices F; and D; are obtained as results dfDL"
decomposition of a matridy and Lj = Bi(F1)TD; %,
where 1< i < k— 1. Next, i, and Dy are results of the
factorization of a matrid, = Ax — z:‘;ll LiDiL{. Suppose
thatM(n) denotes computational complexity of inversion
of n dimensional matrix. It is possible to show that the
matrix inversion is equivalent to the matrix multiplicatio
[22], thus M(n) denotes also complexity of matrix
multiplication. Assume thainmax = max(ny, Ny, ..., Ny).
We need perfornk timesLDL" decomposition ing(n?),
which can be evaluated ag&(k-n3,,,). Hence complexity
of the proposed method of the matrix decomposition is
OK- (N2 ax + M(Nmay)). So, if N > nmax then the
presented algorithm should be faster.

2.4 Inversion of block arrowhead matrix
LetAbe a matrix given a®j andD, L be matrices received

as a result of the decomposition &f Inverse matrixA—*
is given in the following way

;' o ... 0
-1
o1 | 0 D2t 0
0 0 ..Dpt
- L (14)
Fr 0
~1
1 0 F, .. 0
R L S i ooy ) S
Hence, the inverse & can be expressed as
Al=—LHD Lt (15)

The matrix multiplication is a quite computationally
expensive operation, hence the way of obtaining the
matrix given by (5) is not effective.

(@© 2015 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

322 NS 2 W. Hotubowski et. al. : A Fast Method for Computing the Ineed...

Itis easy to check that : [ET mtmai
150 Z
(L_l)TD_lL_l 1
T @ y ) 400 800 1200
Rl 0OO0-... S+ Ull U12 Ulk—l QE)HJ”
OR O -- S% U1 Uz -+ Uxg O 16 o
0 ORs- S} . . . | (@6 N
3 + : : ' . : : 3 50
Do Uk-11Uk-12 -+ Uk-1k-1 0 P
S S S R 0 0 0 - 0 B i
{ 1000 2000 3000 4000 5000
dimension of matrix
where (@)
_ _ _ 2 metho
R=(F YD R oL F4 peerad s
INTh- 11y -1 e
S =—(RYHTD R ILF (17) |
(Fe ™) DR i -

400 800 1200 1600 2000

Uij = (F'LiF) "Dy FCILiFy.

avg time [s]

BlocksR;, § andU;j are obtained i (k?M (Nmay) ). Hence
the inversion of block arrowhead can be performed - &
N3 o+ KM (Nmay) ).

p---T

- —E-
PR

1000 2000 3000 4000 5000
dimension of matrix

3 Example (b)

Figure 1: Times of computing the inverse of block
Consider the following example. L&be ak dimensional  arrowhead matrix by algorithm implementediAPACK
random matrix. We create a matix= (R+R")/2 which library (solid line) and proposed in our paper (dash line).
is symmetric. It is easy to check thapIB is a symmetric  a) results for matrices with blocks of size equal to 10, b)
block diagonal matrix, where | is drdimensional identity  results for matrices with blocks of size equal to 15 .
matrix. Assume thaE is ak-| dimensional zero matrix
except lask columns with entries equal to 1. In last step,
we create block arrowhead matx= 1@ B+E+ET. It

means thaf can be expressed in following way algorithm for computing the inverse of an arrowhead
matrix. Presented method needk - n3 ., + kM (Nmax))
BOO--- 1 time. In case of large sparse matrices, the method is more
oBO--- 1 effective than other wide applied algorithms for matrix
A= |0O0B--- 1 ’ (18) inversion. Performed numerical example shows that

- : obtained acceleration of calculations can be significant.
111---B+21
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