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We consider the algebraic constructions of Boehmians and pseudoquotients, explain
the motivation for these ideas, describe early developments and later modifications, and
indicate some of their applications. While the majority of applications are in the area of
generalized functions and generalized integral transforms, some recent developments
suggest that Boehmians and pseudoquotients can provide useful and versatile tools for
constructing new objects in other areas of mathematics.
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1 Introduction

This paper describes an evolution of an idea. In its simplest form, it can be traced to
the construction of rational numbers. In this case we consider ordered(pajjswhere
p € Z, the set of all integers, angd € N, the set of all positive integers. Two such pairs
(p,q) and(r, s) are called equivalent, denoted by, q) ~ (r, s), if sp = rq. The rational
numbers are defined as equivalence classes of these pairs and we write

_Pr
(P, q)] = .

in spite the fact that this notation is formally incorrect.

This construction generalizes to an integral domain. In the next section we consider one
example of such a construction, namely the operational calculus of Jan REkusiWork
in this area lead T. K. Boehme to the idea of regular operators, which in turn were gener-
alized to Boehmians. In Section 3 we describe the original construction of Boehmians and
then its abstract generalization. A special class of abstract Boehmians is the class of pseu-
doquotients (or generalized quotients) which are discussed in Section 4. Pseudoquotients
are simpler than general Boehmians and have desirable properties. We give some examples
of spaces of pseudoquotients in Section 5.
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It is our hope that this paper shows that Boehmians and pseudoquotients are natural
concepts that have good properties and interesting applications. They are worth studying
in their abstract form as well as in specific applications.

2 Operational Calculus

The main idea of the Operational Calculus of Jan Mikaki appeared in a little book-
let entitledHyperliczby(Hypernumbers) published in Poland in 1944. The work was hand-
written by Jan Mikudiski on X-ray film and printed with homemade ink. Only seven
copies were made. A monograph on the subject was first published in Polish in 1953 [25].
The first English translation was published in 1959 [26].

Consider the spacé(]0, oo)) of continuous complex-valued functions with addition
and convolution defined by

(f # 9)(x) = / " e — 9)oly)dy.

Since this is an integral domain, we can construct a quotientXieldlements ofMl are
calledMikusinski operators

Mikusifski operators are global objects. In particular, they do not have a well-defined
support and it is not possible to define equality of two operators on an open suliisebof
To address these problems, T. K. Boehme [6] identified a class of operators, called regular
operators, with desirable local properties. The key idea was to use delta sequences (also
known as approximate identities). A sequengee C([0,0)) is called adelta sequence
if

1. ¢, > 0 for everyn € N,
2. [ en(t)dt = 1 foreveryn € N,
3. supp ¢, C [0,e,] for somes,, — 0.

An operatorg € M s called aregular operatorif there exists a delta sequenge,) and a
sequence of functions, € C([0, o)) such that

f = In foralln € N.
g $n
Regular operators constitute a large subclagel@nd are sufficient for most applica-

tions. Since regular operators are elementlpthey are restricted tf), co). It turns out
that this restriction is not essential. In 1981, Jan Mikaki and Piotr Mikudiski [27], and
independently dzef Burzyk (personal communication), proposed an extension of regular
operators to the real linR. The construction was no longer an example of the construction
of the field of quotients from an integral domain, but there were some obvious similarities.

In fact, it can be considered a generalization of the construction of the field of quotients.
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3 Boehmians

The definition of delta sequences requires minor modifications: A sequence
C>(R) is called adelta sequenci#

1. ¢, > 0foreveryn € N,
2. [% on(t)dt = 1foreveryn € N,
3. supp ¢, C [—en,e,] for somes,, — 0.
Now we define a setl of all pairs of sequences f..), (¢.)) such that
1. f, € C(R),
2. (py) is a delta sequence,
3. on * frn = @m x fr forallm,n € N,

where

o0

W*n@r:/ o) (t — )ds.

J —oo

For ((fn), (#n)), ((gn), (¥n)) € A we define a relation

((fn): (&) ~ ((gn), (¥n)) T on* gm = tm * fr forall m,n € N.

From properties of delta sequences it follows that this is an equivalence relation. This
allows us to define a new spae= A/ ~, that is, the space of equivalence classes of pairs
of sequences fromll. Elements of53 are calledBoehmiansind denoted

_ I

[((Fn); (#n))] o

Note that it would be more appropriate to %«% but we choose not to do it for the sake
of simplicity.
The spacés is a vector space with the operations defined as follows

In A gng oy I Yndnt Ongn

Yn  Pn On  Un OnPn
Elements o (R) can be identified with Boehmians via the map

A

fH@n*f
Pn

7

where (p,,) is an arbitrary delta sequence. fis an integrable function with compact
support, we can define the convolutionyoind an arbitrary Boehmian:

o _Uxh

Pn Pn

(4
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According to this definition and the identification mentioned above we have

(pm*&:fm-

n

Differentiation is also well-defined if8:

Dj&—D-%*f” = Dw”*‘f".

©n Ton*on  Pnxpp

The space of Boehmians can be equipped with a complete metric topology that has
desirable properties [28], [11]. For example, the embeddir@&f") into 3, convolution
with an integrable function with compact domain, and differentiation are continuous. The
space of BoehmianB is a large space of generalized functions that contains Schwartz
distributions and ultradistributions of Beurling and of Roumieu type [29].

The original construction of Boehmians produced a concrete space of generalized func-
tions. The components in that construction were the space of funafi@)s a class of
delta sequences, and the operation of convolution. It was soon recognized that similar con-
structions are possible with different components. In fact, it is a very general method for
constructing extensions of spaces. Since the paper introducing Boehmians was published
in 1981, many spaces of Boehmians were defined. In the references we list selected exam-
ples of papers introducing different spaces of Boehmians. One of the main motivations for
introducing different spaces was generalization of integral transform. This idea requires a
proper choice of a space of functions for which a given integral transform is well-defined, a
choice of a class of delta sequences that is transformed by that integral transform to a well-
behaved class of approximate identities, and finally a “convolution product” that behaves
well under the transform. If these conditions are met, the transform usually has a extension
to the constructed space of Boehmains and the extension has desirable properties [31]. The
range of such an extension could be a space of functions, or a space of distributions, or
another space of Boehmians.

Spaces of Boehmians can be studied as abstract structures. The general framework for
such a construction requires the following components:

1. Anonempty sefX,

2. A commutative semigrouf acting onX,
3. A nonempty index sef,

4. AsetA C G' such that

(@) a: X — XTisinjective for everyn € A,

(b) o, 8 € Aimpliesas € A.
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The general construction resembles the original case. First we define
A={(a): e X acA, anda(i)é(f) = a(j)E() foralli, j € T}
and then an equivalence relation

(&)~ (C,0) i a(i)C(F) = BG)EE) forall 7,5 € T.

The space of Boehmians is defined as the space of equivalence classes of elerdents of
thatis,B(X,A) = A/~.

Note that in this abstract generalization no structureXois assumed. In particular,
elements ofA are not assumed to be formed from elementX of

One does not expect to be able to prove much about such a general structure, but two
basic properties always hold. Firsf,can be identified with a subspace®ft’, A) via the

map
axr
L(.%‘) = o’
wherea € A is arbitrary. Second, the action 6fcan be extended t8(X, A). Forg € G
and$ € B(x, A) we define
£ gt
« «
It is of interest to study what structures éhand what properties of those structures
are inherited by3(X, A). Not much has been done in that direction, except for the case
when the index settis reduced to a single element. In this cas& G, or simplyA = G,

and elements dB(X', A) take the form% and are called pseudoquotients.

4 Pseudoquotients

Assume thatG is a commutative semigroup acting oX injectively.  For
(x,9), (y,¥) € X x G the equivalence relation takes the form

(z,0) ~ (y,9) if Yo =py.

The space of equivalence classes is denotd(B§, G) = (X x G)/~ and its elements are
calledgeneralized quotientsr pseudoquotientfl 0], [32]. As before, we use the notation
[(z,0)] = % In spite of the simplicity of this construction, the spageX, G) has some
interesting properties. As in the general case, elementsazn be identified with elements
of B(X, G) via the embedding : X — B(X, G) defined by.(x) = % and the action of
G can be extended t5(X, G) viap; = £7. Note that
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It turns out that elements @F, as maps fronB(X, G) to B(X, G), are invertible. In fact,

for anyp € G we can define
_1E T

LRI

and then extendr to a group.

Theorem 4.1. G = {o~' : ¢, € G} is a commutative group acting aB(X, G)
bijectively.

The construction of pseudoquotients can thus be viewed as an extension of a pair
(X,G), of a setX with a commutative semigroup acting oxi injectively, to a pair
(B(X,G),G), of a setB(X, G), that containsY as a subset, and a commutative group
acting onB(X, G) bijectively, that containg? as a subsemigroup.

If we assume thakX has an algebraic structure and element§ @reserves that struc-
ture, thenB(X, G) inherits the structure aoff. For example, we have the following two

theorems.

Theorem 4.2. If (X, ®) is a (commutative) group and is a commutative semigroup of
injective homomorphisms oli, thenB(X, G) is a (commutative) group with the group

operation defined by

Ty Yz 0oy

e e
Theorem 4.3. If X is a vector space an@' is a commutative semigroup of injective linear
mappings fromX into X, thenB(X, G) is a vector space with the operations defined by

TLY_VTHeY g aE AT
e Y oY e

There are similar theorems for other structures. One can also prove general theorems
about extensions of transformations &n

Theorem 4.4.LetT : X — X. Then

~x Tx

¥ 2

is a well-defined extension @fto T' : B(X,G) — B(X,G) if and only if ' commutes
with G.

The following theorem was motivated by specific applications. One such application
will be described later in this note.

Theorem 4.5. Let (X, +) be a commutative group and l€tbe a commutative semigroup
of injective homomorphisms ox. If 7 : X — X is a homomorphism such th@aty — T
commutes witlds for everyp € G, then

7T _ 2Tz Typx

o @ g2
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is an extension df to a mapl : B(X,G) — B(X, Q).

Here is an example of a general theorem about transformations between two spaces. It
describes a situation one often deals with when extending integral transforms.

Theorem 4.6. Let X andY be nonempty sets and l@tand H be commutative semigroups
of injections onX andY’, respectively. Ifl' : X — Y andn : G — H is a semigroup
homomorphism such tha@t(px) = n(¢)Txz forall z € X and all f € G. Then

Tz

¢ nly)

defines an extension &fto a mapT : B(X,G) — B(Y, H).

~T

When X is a topological space an is a commutative semigroup of continuous maps
acting onX equipped with its own topology (usually the discrete topology), we can define
the product topology oX x G and then the quotient topology ¢H{X,G) = (X x G)/~.

This is the standard topology d&#( X, G). It is easy to show that the embedding X —
B(X,G) is continuous. Moreover, the map — % as well as the mag: — - are
continuous for every € G. In fact, we have the following theorem.

Theorem 4.7. G = {71 : ¢, € G} is a commutative group of homeomorphisms on
B(X,G).

Studying which topological properties of are inherited by the topology of pseudo-
quotients is of basic importance. While there are some results in that direction (see [16],
[71, [24], [8]), many questions remain open. The theorems presented in this sections are
meant to provide an indication that the construction of pseudoquotients is natural and has
good properties. In the next section we present some specific examples of spaces of pseu-
doquotients which show that pseudoquotients can be useful in applications.

5 Examples of Applications of Pseudoquotients

In this section we present three examples of applications of pseudoquotients to gener-
alized functions, functional analysis, and abstract harmonic analysis. The first example is a
construction of a specific space of generalized functions, namely tempered distributions. In
the second example pseudoquotients provide a method for extending an inner product space
with some special properties. In the third example pseudoquotients allow us to extend an
important theorem in abstract harmonic analysis.

5.1 Tempered Distributions

A function f : RN — C is called amoderate functioiif f = pg for some polynomial
p and somey € L2. The space of all moderate functions will be denoted\dy Note that
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for f € M andg € L! the convolution

frat@) = [ fala =iy
is well-defined. Now we let

E(Jj) = e*(\zl|+\12\+...+|xN|)

and
G={E":n=1,2,3,...},

where E™ denotes the:-fold convolution, that isE? = E = E and E*t! = E x E".
Theng is a commutative semigroup acting @8# injectively. It turns out that the space of
pseudoquotient8 (M, G) is isomorphic to the space of tempered Schwartz distributions
S

Let M, : M — M denote the multiplication operator defined(@y; f)(x) = z; f(x),
j=1,2,...,N,wherex = (21, 22,...,zy). By Theorem 4.5, the formula

Migr = 5k E?k

defines an extension df/; to a linear map\/; : B(M,G) — B(M,G). Consequently,
multiplication by polynomials is well-defined iB8(M, G).
To define differentiation i3(M, G) we first introduce an auxiliary functiofi : R —

R defined by
—e b ift>0
c(t) = { s

et ift <0
and then, foreacli=1,..., N, afunctionC; : RY — R, defined by
C;(z) = el1C(x;) E(x).

It is easy to see that; € M andD;E = C;, whereD; denotes the partial derivative with
respect taz;. Now, for an arbitrary% € B(M,G), we define

G f

igk T E Y ER
It can be shown that the above definition extends differentiatid®(fot, G). Note that the
partial differential operatoD; can be identified with an element B{.M, G).

From the general theory of pseudoquotients we know Ehas a map fronB(M, G)

to B(M, G), is invertible and

af _ f

B gr = g
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In this case it can be represented as a differential operator, namely

—1 1 Al 2
B :DZQWH(I—DJ‘)’
j=1

wherel denotes the identity operator.

(h)-o

is an isomorphism oB(M, G) andS’.

Theorem 5.1. The map

In the above theorem, the differentiation on the right-hand side is understood in the
distributional sense. Note that, since a moderate function can be identified with a tempered
distribution,[0" f is well-defined inS’.

The Fourier transform provides another isomorphism betwget(, G) andS’. In-
deed, the formula

~

F(RLy - L ﬁ(1+M2)k D
Ek 72k‘,N J p(l )fv
Jj=1

where f denotes the Fourier transform Iif (RY) and the differentiatiom(z’D)fis inter-
preted in the distributional sense, defines the Fourier transform/fioW, G) to S’. It can
be shown that it is a homeomorphism between these spaces.

The Fourier transform can be also defined as an operatiBi, G). Let

1 N
s=2—NH(1+Mj2).
j=1
Heres is defined as a multiplication operator, but it can also be interpreted as a polynomial.
It is not difficult to show that every moderate function has a representation in thesfgtm
wherek € Nandf € L*(RY). Using such a representation we can define the Fourier
transform as a map fro8(M, G) to B(M, G). It takes the following simple and elegant

form: i .
s"f nf

For more detail of the construction described in this section and proofs of the quoted
theorems see [4].

5.2 Isometric Operators

In this section we consider the space of pseudoquotiefis G), whereFE is an inner
product spacel’ : E — E is an isometric operator ofi, andG = {T" : n =10,1,2,...}.
It turns out that3( E, G) is an inner product space with the inner product defined by

x y m mn
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fw — T Yy =z
Indeed, if7; = 7% and 7 = 7, then

W YNy, i
<Tj’Tm> = (T, T)
— <Tm+k+nw’Tj+k+ny> _ <Tm+j+n]},Tj+k+mZ>
X z
= Tn aTk :<777>7
< z Z> Tk Tn
which shows that the inner product is well-defined®(E, G).

Since<%, %> = (z,y), E can be identified with a subspace of the inner product

spaceB(E, G). Note thatT" : B(E,G) — B(E, G) is a unitary operator.
5.3 The Generalized Bochner Theorem

Now we consider an application of pseudoquotients presented in [3K lbeta locally
compact abelian group. A continuous functipn X — C is calledpositive definitef

n
S eyeif (et 2 0
k=1

forall ¢y,...,¢, € Candzy,...,x, € X. The cone of all continuous positive definite
functions on a locally compact group will be denoted byP, (X).

The well-known Bochner Theorem states tliat P, (X) if and only if there exists a
unique bounded positive Radon meas,wfeon)?, the dual group ofX, such that

f(z) = /X (&) dus (€),

where(¢, x) denotes the action of the characgesn .
Now assume thaX is a locally compact group such th&tis o-compact and define

G ={peLl(X): 3(¢) > 0forallg X},

wherep denotes the Fourier transform gn It can be shown thaf is a commutative
semigroup acting injectively o, (X) by convolution. The constructed space of pseudo-
quotientsB(P4(X), G) allows us to generalize the Bochner Theorem.

Theorem 5.2 (Generalized Bochner Theorem)B(P,.(X), G) is isomorphic to the space
of all positive Radon measure on.
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