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We consider the algebraic constructions of Boehmians and pseudoquotients, explain

the motivation for these ideas, describe early developments and later modifications, and

indicate some of their applications. While the majority of applications are in the area of

generalized functions and generalized integral transforms, some recent developments

suggest that Boehmians and pseudoquotients can provide useful and versatile tools for

constructing new objects in other areas of mathematics.

Keywords: Mikusiński operators, regular operators, Boehmians, pseudoquotients,

tempered distributions, Bochner Theorem.

1 Introduction

This paper describes an evolution of an idea. In its simplest form, it can be traced to

the construction of rational numbers. In this case we consider ordered pairs(p, q) where

p ∈ Z, the set of all integers, andq ∈ N, the set of all positive integers. Two such pairs

(p, q) and(r, s) are called equivalent, denoted by(p, q) ∼ (r, s), if sp = rq. The rational

numbers are defined as equivalence classes of these pairs and we write

[(p, q)] =
p

q

in spite the fact that this notation is formally incorrect.

This construction generalizes to an integral domain. In the next section we consider one

example of such a construction, namely the operational calculus of Jan Mikusiński. Work

in this area lead T. K. Boehme to the idea of regular operators, which in turn were gener-

alized to Boehmians. In Section 3 we describe the original construction of Boehmians and

then its abstract generalization. A special class of abstract Boehmians is the class of pseu-

doquotients (or generalized quotients) which are discussed in Section 4. Pseudoquotients

are simpler than general Boehmians and have desirable properties. We give some examples

of spaces of pseudoquotients in Section 5.
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It is our hope that this paper shows that Boehmians and pseudoquotients are natural

concepts that have good properties and interesting applications. They are worth studying

in their abstract form as well as in specific applications.

2 Operational Calculus

The main idea of the Operational Calculus of Jan Mikusiński appeared in a little book-

let entitledHyperliczby(Hypernumbers) published in Poland in 1944. The work was hand-

written by Jan Mikusínski on X-ray film and printed with homemade ink. Only seven

copies were made. A monograph on the subject was first published in Polish in 1953 [25].

The first English translation was published in 1959 [26].

Consider the spaceC([0,∞)) of continuous complex-valued functions with addition

and convolution defined by

(f ∗ g)(x) =
∫ x

0

f(x− y)g(y)dy.

Since this is an integral domain, we can construct a quotient fieldM. Elements ofM are

calledMikusiński operators.

Mikusiński operators are global objects. In particular, they do not have a well-defined

support and it is not possible to define equality of two operators on an open subset of[0,∞).
To address these problems, T. K. Boehme [6] identified a class of operators, called regular

operators, with desirable local properties. The key idea was to use delta sequences (also

known as approximate identities). A sequenceϕn ∈ C([0,∞)) is called adelta sequence

if

1. ϕn ≥ 0 for everyn ∈ N,

2.
∫∞
0

ϕn(t)dt = 1 for everyn ∈ N,

3. supp ϕn ⊆ [0, εn] for someεn → 0.

An operatorfg ∈M is called aregular operatorif there exists a delta sequence(ϕn) and a

sequence of functionsfn ∈ C([0,∞)) such that

f

g
=

fn

ϕn
for all n ∈ N.

Regular operators constitute a large subclass ofM and are sufficient for most applica-

tions. Since regular operators are elements ofM, they are restricted to[0,∞). It turns out

that this restriction is not essential. In 1981, Jan Mikusiński and Piotr Mikusínski [27], and

independently J́ozef Burzyk (personal communication), proposed an extension of regular

operators to the real lineR. The construction was no longer an example of the construction

of the field of quotients from an integral domain, but there were some obvious similarities.

In fact, it can be considered a generalization of the construction of the field of quotients.
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3 Boehmians

The definition of delta sequences requires minor modifications: A sequenceϕn ∈
C∞(R) is called adelta sequenceif

1. ϕn ≥ 0 for everyn ∈ N,

2.
∫∞
−∞ ϕn(t)dt = 1 for everyn ∈ N,

3. supp ϕn ⊆ [−εn, εn] for someεn → 0.

Now we define a setA of all pairs of sequences((fn), (ϕn)) such that

1. fn ∈ C(R),

2. (ϕn) is a delta sequence,

3. ϕn ∗ fm = ϕm ∗ fn for all m,n ∈ N,

where

(ϕ ∗ f)(t) =
∫ ∞

−∞
ϕ(s)f(t− s)ds.

For ((fn), (ϕn)), ((gn), (ψn)) ∈ A we define a relation

((fn), (ϕn)) ∼ ((gn), (ψn)) if ϕn ∗ gm = ψm ∗ fn for all m,n ∈ N.

From properties of delta sequences it follows that this is an equivalence relation. This

allows us to define a new spaceB = A/ ∼, that is, the space of equivalence classes of pairs

of sequences fromA. Elements ofB are calledBoehmiansand denoted

[((fn), (ϕn))] =
fn

ϕn
.

Note that it would be more appropriate to use(fn)
(ϕn) , but we choose not to do it for the sake

of simplicity.

The spaceB is a vector space with the operations defined as follows

λ
fn

ϕn
=

λfn

ϕn
and

fn

ϕn
+

gn

ψn
=

ψnfn + ϕngn

ϕnψn
.

Elements ofC(R) can be identified with Boehmians via the map

f 7→ ϕn ∗ f

ϕn
,

where(ϕn) is an arbitrary delta sequence. Ifψ is an integrable function with compact

support, we can define the convolution ofψ and an arbitrary Boehmian:

ψ ∗ fn

ϕn
=

ψ ∗ fn

ϕn
.
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According to this definition and the identification mentioned above we have

ϕm ∗ fn

ϕn
= fm.

Differentiation is also well-defined inB:

Dj
fn

ϕn
= Dj

ϕn ∗ fn

ϕn ∗ ϕn
=

Djϕn ∗ fn

ϕn ∗ ϕn
.

The space of Boehmians can be equipped with a complete metric topology that has

desirable properties [28], [11]. For example, the embedding ofC(RN ) into B, convolution

with an integrable function with compact domain, and differentiation are continuous. The

space of BoehmiansB is a large space of generalized functions that contains Schwartz

distributions and ultradistributions of Beurling and of Roumieu type [29].

The original construction of Boehmians produced a concrete space of generalized func-

tions. The components in that construction were the space of functionsC(R), a class of

delta sequences, and the operation of convolution. It was soon recognized that similar con-

structions are possible with different components. In fact, it is a very general method for

constructing extensions of spaces. Since the paper introducing Boehmians was published

in 1981, many spaces of Boehmians were defined. In the references we list selected exam-

ples of papers introducing different spaces of Boehmians. One of the main motivations for

introducing different spaces was generalization of integral transform. This idea requires a

proper choice of a space of functions for which a given integral transform is well-defined, a

choice of a class of delta sequences that is transformed by that integral transform to a well-

behaved class of approximate identities, and finally a “convolution product” that behaves

well under the transform. If these conditions are met, the transform usually has a extension

to the constructed space of Boehmains and the extension has desirable properties [31]. The

range of such an extension could be a space of functions, or a space of distributions, or

another space of Boehmians.

Spaces of Boehmians can be studied as abstract structures. The general framework for

such a construction requires the following components:

1. A nonempty setX,

2. A commutative semigroupG acting onX,

3. A nonempty index setI,

4. A set∆ ⊂ GI such that

(a) α : X → XI is injective for everyα ∈ ∆,

(b) α, β ∈ ∆ impliesαβ ∈ ∆.
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The general construction resembles the original case. First we define

A = {(ξ, α) : ξ ∈ XI , α ∈ ∆, andα(i)ξ(j) = α(j)ξ(i) for all i, j ∈ I}

and then an equivalence relation

(ξ, α) ∼ (ζ, β) if α(i)ζ(j) = β(j)ξ(i) for all i, j ∈ I.

The space of Boehmians is defined as the space of equivalence classes of elements ofA,

that is,B(X , ∆) = A/∼.

Note that in this abstract generalization no structure ofX is assumed. In particular,

elements of∆ are not assumed to be formed from elements ofX.

One does not expect to be able to prove much about such a general structure, but two

basic properties always hold. First,X can be identified with a subspace ofB(X , ∆) via the

map

ι(x) =
αx

α
,

whereα ∈ ∆ is arbitrary. Second, the action ofG can be extended toB(X , ∆). Forg ∈ G

and ξ
α ∈ B(X , ∆) we define

g
ξ

α
=

gξ

α
.

It is of interest to study what structures onX and what properties of those structures

are inherited byB(X , ∆). Not much has been done in that direction, except for the case

when the index setI is reduced to a single element. In this case∆ ⊆ G, or simply∆ = G,

and elements ofB(X ,∆) take the formx
ϕ and are called pseudoquotients.

4 Pseudoquotients

Assume thatG is a commutative semigroup acting onX injectively. For

(x, ϕ), (y, ψ) ∈ X ×G the equivalence relation takes the form

(x, ϕ) ∼ (y, ψ) if ψx = ϕy.

The space of equivalence classes is denoted byB(X, G) = (X×G)/∼ and its elements are

calledgeneralized quotientsor pseudoquotients[10], [32]. As before, we use the notation

[(x, ϕ)] = x
ϕ . In spite of the simplicity of this construction, the spaceB(X, G) has some

interesting properties. As in the general case, elements ofX can be identified with elements

of B(X,G) via the embeddingι : X → B(X, G) defined byι(x) = ϕx
ϕ and the action of

G can be extended toB(X, G) via ϕ x
ψ = ϕx

ψ . Note that

ϕ
x

ϕ
=

ϕx

ϕ
= x.
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It turns out that elements ofG, as maps fromB(X, G) to B(X, G), are invertible. In fact,

for anyϕ ∈ G we can define

ϕ−1 x

ψ
=

x

ϕψ

and then extendG to a group.

Theorem 4.1. Ĝ = {ϕ−1ψ : ϕ, ψ ∈ G} is a commutative group acting onB(X, G)
bijectively.

The construction of pseudoquotients can thus be viewed as an extension of a pair

(X,G), of a setX with a commutative semigroup acting onX injectively, to a pair

(B(X,G), Ĝ), of a setB(X, G), that containsX as a subset, and a commutative group

acting onB(X, G) bijectively, that containsG as a subsemigroup.

If we assume thatX has an algebraic structure and elements ofG preserves that struc-

ture, thenB(X, G) inherits the structure ofG. For example, we have the following two

theorems.

Theorem 4.2. If (X,¯) is a (commutative) group andG is a commutative semigroup of

injective homomorphisms onX, thenB(X,G) is a (commutative) group with the group

operation defined by
x

ϕ
¯ y

ψ
=

ψx¯ ϕy

ϕψ
.

Theorem 4.3. If X is a vector space andG is a commutative semigroup of injective linear

mappings fromX into X, thenB(X,G) is a vector space with the operations defined by

x

ϕ
+

y

ψ
=

ψx + ϕy

ϕψ
and λ

x

ϕ
=

λx

ϕ
.

There are similar theorems for other structures. One can also prove general theorems

about extensions of transformations onX.

Theorem 4.4. LetT : X → X. Then

T̃
x

ϕ
=

Tx

ϕ

is a well-defined extension ofT to T̃ : B(X, G) → B(X, G) if and only if T commutes

with G.

The following theorem was motivated by specific applications. One such application

will be described later in this note.

Theorem 4.5. Let (X, +) be a commutative group and letG be a commutative semigroup

of injective homomorphisms onX. If T : X → X is a homomorphism such thatTϕ−ϕT

commutes withG for everyϕ ∈ G, then

T̃
x

ϕ
=

2Tx

ϕ
− Tϕx

ϕ2
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is an extension ofT to a mapT̃ : B(X, G) → B(X, G).

Here is an example of a general theorem about transformations between two spaces. It

describes a situation one often deals with when extending integral transforms.

Theorem 4.6. LetX andY be nonempty sets and letG andH be commutative semigroups

of injections onX andY , respectively. IfT : X → Y andη : G → H is a semigroup

homomorphism such thatT (ϕx) = η(ϕ)Tx for all x ∈ X and allf ∈ G. Then

T̃
x

ϕ
=

Tx

η(ϕ)

defines an extension ofT to a mapT̃ : B(X, G) → B(Y, H).

WhenX is a topological space andG is a commutative semigroup of continuous maps

acting onX equipped with its own topology (usually the discrete topology), we can define

the product topology onX×G and then the quotient topology onB(X,G) = (X×G)/∼.

This is the standard topology onB(X, G). It is easy to show that the embeddingι : X →
B(X, G) is continuous. Moreover, the mapxψ 7→ ϕx

ψ as well as the mapxψ 7→ x
ϕψ are

continuous for everyϕ ∈ G. In fact, we have the following theorem.

Theorem 4.7. Ĝ = {ϕ−1ψ : ϕ, ψ ∈ G} is a commutative group of homeomorphisms on

B(X, G).

Studying which topological properties ofX are inherited by the topology of pseudo-

quotients is of basic importance. While there are some results in that direction (see [16],

[7], [24], [8]), many questions remain open. The theorems presented in this sections are

meant to provide an indication that the construction of pseudoquotients is natural and has

good properties. In the next section we present some specific examples of spaces of pseu-

doquotients which show that pseudoquotients can be useful in applications.

5 Examples of Applications of Pseudoquotients

In this section we present three examples of applications of pseudoquotients to gener-

alized functions, functional analysis, and abstract harmonic analysis. The first example is a

construction of a specific space of generalized functions, namely tempered distributions. In

the second example pseudoquotients provide a method for extending an inner product space

with some special properties. In the third example pseudoquotients allow us to extend an

important theorem in abstract harmonic analysis.

5.1 Tempered Distributions

A function f : RN → C is called amoderate functionif f = pg for some polynomial

p and someg ∈ L2. The space of all moderate functions will be denoted byM. Note that
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for f ∈M andg ∈ L1 the convolution

f ∗ g(x) =
∫

RN

f(y)g(x− y)dy

is well-defined. Now we let

E(x) = e−(|x1|+|x2|+···+|xN |)

and

G = {En : n = 1, 2, 3, . . . },

whereEn denotes then-fold convolution, that is,E2 = E ∗ E andEn+1 = E ∗ En.

ThenG is a commutative semigroup acting onM injectively. It turns out that the space of

pseudoquotientsB(M,G) is isomorphic to the space of tempered Schwartz distributions

S ′.
Let Mj : M→M denote the multiplication operator defined by(Mjf)(x) = xjf(x),

j = 1, 2, . . . , N , wherex = (x1, x2, . . . , xN ). By Theorem 4.5, the formula

Mj
f

Ek
=

2Mjf

Ek
− Mj(Ek ∗ f)

E2k

defines an extension ofMj to a linear mapMj : B(M,G) → B(M,G). Consequently,

multiplication by polynomials is well-defined inB(M,G).
To define differentiation inB(M,G) we first introduce an auxiliary functionC : R →

R defined by

C(t) =




−e−t if t ≥ 0

et if t < 0

and then, for eachj = 1, . . . , N , a functionCj : RN → R, defined by

Cj(x) = e|xj |C(xj)E(x).

It is easy to see thatCj ∈M andDjE = Cj , whereDj denotes the partial derivative with

respect toxj . Now, for an arbitrary f
Ek ∈ B(M,G), we define

Dj
f

Ek
=

Cj

E
∗ f

Ek
.

It can be shown that the above definition extends differentiation toB(M,G). Note that the

partial differential operatorDj can be identified with an element ofB(M,G).
From the general theory of pseudoquotients we know thatE, as a map fromB(M,G)

toB(M,G), is invertible and

E−1 f

Ek
=

f

Ek+1
.



200 Piotr Mikusiński

In this case it can be represented as a differential operator, namely

E−1 = ¤ =
1

2N

N∏

j=1

(
I −D2

j

)
,

whereI denotes the identity operator.

Theorem 5.1. The map

ϕ

(
f

En

)
= ¤nf

is an isomorphism ofB(M,G) andS ′.
In the above theorem, the differentiation on the right-hand side is understood in the

distributional sense. Note that, since a moderate function can be identified with a tempered

distribution,¤nf is well-defined inS ′.
The Fourier transform provides another isomorphism betweenB(M,G) andS ′. In-

deed, the formula

F
(

pf

Ek

)
=

1
2kN

N∏

j=1

(
1 + M2

j

)k
p(iD)f̂ ,

wheref̂ denotes the Fourier transform inL2(RN ) and the differentiationp(iD)f̂ is inter-

preted in the distributional sense, defines the Fourier transform fromB(M,G) toS ′. It can

be shown that it is a homeomorphism between these spaces.

The Fourier transform can be also defined as an operation inB(M,G). Let

s =
1

2N

N∏

j=1

(
1 + M2

j

)
.

Heres is defined as a multiplication operator, but it can also be interpreted as a polynomial.

It is not difficult to show that every moderate function has a representation in the formskf ,

wherek ∈ N andf ∈ L2(RN ). Using such a representation we can define the Fourier

transform as a map fromB(M,G) to B(M,G). It takes the following simple and elegant

form:

F
(

skf

En

)
= sn f̂

Ek
.

For more detail of the construction described in this section and proofs of the quoted

theorems see [4].

5.2 Isometric Operators

In this section we consider the space of pseudoquotientsB(E,G), whereE is an inner

product space,T : E → E is an isometric operator onE, andG = {Tn : n = 0, 1, 2, . . . }.
It turns out thatB(E, G) is an inner product space with the inner product defined by

〈 x

Tn
,

y

Tm

〉
= 〈Tmx, Tny〉 .
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Indeed, if w
T j = x

T k and y
T m = z

T n , then

〈 w

T j
,

y

Tm

〉
=

〈
Tmw, T jy

〉

=
〈
Tm+k+nw, T j+k+ny

〉
=

〈
Tm+j+nx, T j+k+mz

〉

=
〈
Tnx, T kz

〉
=

〈 x

T k
,

z

Tn

〉
,

which shows that the inner product is well-defined onB(E,G).
Since

〈
Tx
T , Ty

T

〉
= 〈x, y〉, E can be identified with a subspace of the inner product

spaceB(E, G). Note thatT : B(E,G) → B(E,G) is a unitary operator.

5.3 The Generalized Bochner Theorem

Now we consider an application of pseudoquotients presented in [3]. LetX be a locally

compact abelian group. A continuous functionf : X → C is calledpositive definiteif

n∑

k,l=1

ckclf(x−1
l xk) ≥ 0

for all c1, . . . , cn ∈ C andx1, . . . , xn ∈ X. The cone of all continuous positive definite

functions on a locally compact groupX will be denoted byP+(X).
The well-known Bochner Theorem states thatf ∈ P+(X) if and only if there exists a

unique bounded positive Radon measureµf on X̂, the dual group ofX, such that

f(x) =
∫

X̂

〈ξ, x〉dµf (ξ),

where〈ξ, x〉 denotes the action of the characterξ onx.

Now assume thatX is a locally compact group such that̂X is σ-compact and define

G =
{

ϕ ∈ L1(X) : ϕ̂(ξ) > 0 for all ξ ∈ X̂
}

,

whereϕ̂ denotes the Fourier transform onϕ. It can be shown thatG is a commutative

semigroup acting injectively onP+(X) by convolution. The constructed space of pseudo-

quotientsB(P+(X),G) allows us to generalize the Bochner Theorem.

Theorem 5.2 (Generalized Bochner Theorem).B(P+(X),G) is isomorphic to the space

of all positive Radon measure on̂X.
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[35] P. Mikusínski and A. Zayed, The Radon transform of Boehmians,Proc. Amer. Math.

Soc.118(1993), 561–570.
[36] M. Morimoto, Two definitions of Boehmians on the sphere, in: Progress in analysis,

World Sci. Publishing, Berlin, (2001), 143–148.
[37] D. Nemzer, Periodic generalized functions,Rocky Mountain J. Math.20 (1990), 657–

669.
[38] D. Nemzer, Lacunary Boehmians,Integral Transforms Spec. Funct.16 (2005), 451–

459.
[39] D. Nemzer, Boehmians on the Torus,Bull. Korean Math. Soc.43 (2006), 831–839.
[40] R. Roopkumar, Wavelet analysis on a Boehmian space,Int. J. Math. Math. Sci.15

(2003), 917–926.
[41] R. Roopkumar, Generalized Radon Transform,Rocky Mountain J. Math.36 (2006),

1375–1390.
[42] R. Roopkumar, Stieltjes transform for Boehmians,Integ. Trans. Spec. Funct.18

(2007), 819–827.
[43] R. Roopkumar, An Extension of Distributional Wavelet Transform,Coll. Math.115

(2009), 195–206.
[44] R. Roopkumar, Mellin Transform for Boehmians,Bull. Inst. Math. Acad. Sinica New

Series4 (2009), 75–96.
[45] R. Roopkumar and E. R. Negrin, Poisson Transform on Boehmians,Appl. Math. Com-

put.216, (2010), 2740–2748.



204 Piotr Mikusiński
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