
Appl. Math. Inf. Sci. 7, No. 2L, 717-722 (2013) 717

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/072L49

Fast Implementation of Scale Invariant Feature
Transform Based on CUDA
Meng Lu1

1College of Information Science and Engineering, Northeastern University, China

Received: 16 Oct. 2012, Revised: 10 Jan. 2013, Accepted: 13 Jan. 2013
Published online: 1 Jun. 2013

Abstract: Scale-invariant feature transform (SIFT) was an algorithm in computer vision to detect and describe local features in images.
Due to its excellent performance, SIFT was widely used in many applications, but the implementation of SIFT was complicated and
time-consuming. To solve this problem, this paper presented a novel acceleration algorithm for SIFT implementation based on Compute
Unified Device Architecture (CUDA). In the algorithm, all the steps of SIFT were specifically distributed and implemented by CPU
or GPU, accroding to the step’s characteristics or demandings, to make full use of computational resources. Experiments showed that
compared with the traditional implementation of SIFT, this paper’s acceleration algorithm can greatly increase computation speed and
save implementation time. Furthermore, the acceleration ratio had linear relation with the number of SIFT keypoints.

Keywords: CUDA acceleration, Scale-Invariant feature transform, Image feature, Feature descriptor

1 Introduction

Scale-Invariant Feature Transform (SIFT) was published
by Lowe in 1999 [1], and improved in 2004 [2], which
was used to detect and describe local image features.
SIFT is an excellent feature descriptor, because it is
invariant to uniform scaling, orientation, and partially
invariant to affine distortion and illumination changes.
SIFT’s applications include object recognition, robotic
mapping and navigation, image stitching, 3D modeling,
gesture recognition, video tracking, individual
identification of wildlife and match moving.

Compute Unified Device Architecture (CUDA) is a
parallel computing architecture developed by Nvidia for
graphics processing. CUDA is the computing engine in
Nvidia graphics processing units (GPU) that has ten times
higher computation performance than CPU and is
accessible to software developers through variants of
industry standard programming languages. Due to
CUDA, acceleration of large-scale computation became
feasible. [3,5,9]. CUDA acceleration was widely used in
image processing, Zhao and colleagues proposed a
corresponding relation between the offset and the current
viewpoint by establishing mathematics function of the
detail image pixel coordinates and the height values [10].

Wu and colleagues proposed a GPU-aided parallel
interpolation algorithm in order to scale video image
real-timely [11]. CUDA acceleration was also widely
used in biology sciences, Kim and colleagues proposed a
method for computing the SES (solvent excluded surface)
of a protein molecule in interactive-time based on GPU
acceleration [12].

Implementation of SIFT is complicated and time
consuming, which can’t meet the real-time require of
some applications, such as medical clinical application.To
solve this problem, many scholars made attempts to
accelerate SIFT implementation. Sinha and colleagues
presented an acceleration algorithm of SIFT extraction
based on OpenGL and Cg program language using Nvidia
graphical card. However, they didn’t complete all
computation steps on GPU, which caused huge data
transfer between GPU and CPU and cost much time [6].
Zhang and colleagues accelerated SIFT on intel 8 core
CPU, and presented some optimization techniques to
improve the implementation’s performance on multi-core
system [7], but this method can’t widely spread, because
it was too expensive for many applications.

This paper presented an acceleration algorithm of
SIFT extraction based on CUDA, which made full
advantage of GPU’s abilities on float point computation,

∗ Corresponding author e-mail: menglu1982@gmail.com
c⃝ 2013 NSP

Natural Sciences Publishing Cor.



718 Meng Lu: Fast Implementation of Scale Invariant Feature Transform Based on CUDA

parallel computation and memory management to
optimize computational resources management and data
transferring.

2 SIFT

2.1 Scale-space

Scale-space is a formal theory for handling image
structures at different scales from physical and biological
vision, by representing an image as a one-parameter
family of smoothed images. The main type of Scale-space
is the linear (Gaussian) Scale-space, which can be defined
by formula(1):

L(x,y,σ) = G(x,y,σ)∗ I(x,y) (1)

where I(x,y) represented one image, * represented
convolution, and G(x,y,σ) represented Gaussian filter
function.

G(x,y,σ) =
1

2πσ 2 e
−(x2+y2)

2σ2 (2)

where (x,y) represented image coordinates, σ represented
scale level. So, Difference of Gaussian (DoG) Scale-space
can be defined as:

D(x,y,σ) = (G(x,y,kσ)−G(x,y,σ)))∗ I(x,y) (3)
= L(x,y,kσ)−L(x,y,σ)

2.2 Local Keypoint Detection

Once DoG images have been obtained, keypoints are
identified as local minima/maxima of the DoG images
across scales. This is done by comparing each pixel in the
DoG images to its eight neighbors at the same scale and
nine corresponding neighboring pixels in each of the
neighboring scales. If the pixel value is the maximum or
minimum among all compared pixels, it is selected as a
candidate keypoint.

2.3 Keypoint Localization

Scale-space extreme detection produces too many
keypoint candidates, some of which are unstable. The
next step in the algorithm is to perform a detailed fit to the
nearby data for accurate location, scale, and ratio of
principal curvatures. This information allows points to be
rejected that have low contrast (and are therefore sensitive
to noise) or are poorly localized along an edge.

The interpolation of keypoints is done using the
quadratic Taylor expansion of the DoG scale-space
function.

D(X) = D+
∂DT

∂X
X +

1
2

XT ∂ 2D
∂X2 X (4)

Then, the location of the extreme X̂ , is determined by
taking the derivative of this function with respect to X and
setting it to zero.

X̂ =−∂ 2D−1

∂X2
∂D
∂X

(5)

D(X̂) = D+
1
2

∂DT

∂X
X̂ (6)

The DoG function will have strong responses along
edges, even if the candidate keypoint is not robust to
small amounts of noise. Therefore, in order to increase
stability, Hessian matrix is used to eliminate the keypoints
that have poorly determined locations but have high edge
responses.

H =

(
Dxx Dxy
Dxy Dyy

)
Tr(H) = Dxx +Dyy = α +β (7)

Det(H) = DxxDyy − (Dxy)
2 = αβ (8)

where α represented bigger eigenvalue, β represented
smaller eigenvalue. Supposed that α = rβ , we can get
formula (9).

R =
Tr(H)2

Det(H)
=

(α +β )2

αβ
=

(rβ +β )2

rβ 2 =
(r+1)2

r
(9)

It follows that, for some threshold eigenvalue ratio rth, if R
for a candidate keypoint is larger than (rth + 1)2/rth, that
keypoint is poorly localized and hence rejected.

2.4 Orientation Assignment

Each keypoint is assigned one or more orientations based
on local image gradient directions. This is the key step in
achieving invariance to rotation as the keypoint descriptor
can be represented relative to this orientation and therefore
achieve invariance to image rotation.

m(x,y) = sqrt(L(x+1,y)−L(x−1,y))2 + (10)

(L(x,y+1)−L(x,y−1))2

θ(x,y) = tan−1((L(x,y+1)−L(x,y−1))/
L(x+1,y)−L(x−1,y)))

where m(x,y) represented the gradient magnitude, θ(x,y)
represented the orientation.

2.5 Keypoint Descriptor

First a set of orientation histograms are created on 4× 4
pixel neighborhoods with 8 bins each. These histograms
are computed from magnitude and orientation values of
samples in a 16×16 region around the keypoint such that
each histogram contains samples from a 4× 4 sub-region

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 7, No. 2L, 717-722 (2013) / www.naturalspublishing.com/Journals.asp 719

Fig. 1: Flow chart of CUDA-based acceleration of SIFT feature
extraction algorithm

of the original neighborhood region. The magnitudes are
further weighted by a Gaussian function with equal to one
half the width of the descriptor window. The descriptor
then becomes a vector of all the values of these histograms.
Since there are 4×4 = 16 histograms each with 8 bins, the
vector has 128 elements. This vector is then normalized to
unit length in order to enhance invariance to affine changes
in illumination.

3 CUDA-Based Acceleration of SIFT
Computation

In this section, the whole details about SIFT acceleration
method based on CUDA was presented. We made full
advantage of GPU’s abilities of float point computation,
parallel computation, memory management, and give
reasonable role to CPU, GPU in the SIFT computational
procedure. Flow char of the SIFT acceleration algorithm
based on CUDA was shown in Figure 1.

3.1 DoG Scale-space Construction

Firstly, image data was transferred from host memory to
device memory and bound to texture memory. The
reasons that we chose texture memory were: (1) Texture
memory can access texture cache which was optimized
for 2D array data in GPU, and have high performance
under the circumstances of random access. (2) Texture
memory can do bilinear interpolation in hardware to make
acceleration of image processing. (3) While Gaussian
filter was applied to 2D image array data, it’s necessary to

make judgment on array bounds. And CUDA program’s
not good at conditional statements. Therefore, texture
memory was chosen, because it can efficiently and
automatically solve this problem. Gaussian filter’s
parameters were computed in host based on formula (1),
and results were transferred from host to device constant
memory. Each image was processed in one grid. Each
grid was divided into 16×16 blocks. Each block covered
one part of the image, and was divided into 256 threads.
Each thread covered one pixel and its 8 neighborhoods.
Intermediate results of computation were saved in shared
memory, and final result (Gaussian pyramid) was saved in
global memory. Once Gaussian pyramid was obtained,
DoG scale-space can be constructed based on formula (3).
During DoG construction, the results were only correlated
with adjacent layers in the same Gaussian pyramid group,
and had no influences on the obtained Gaussian pyramid.
Therefore, Gaussian pyramid can be divided into different
blocks according to different groups and layers. And in
each block, DoG scale-space was computed by formula
(3).

3.2 Local Keypoints Detection

Suppose that Gaussian pyramid had O groups, each group
had S layers. DoG had O groups, each group had S − 1
layers. Correspoindingly, we can get O groups local
keypoints, and each group had S − 3 layers. Therefore,
kernel functions can be circularly called O times to detect
local keypoints, and each circulation was used to process
image data in DoG for each scale. In the procedure of
local extreme points detection, 26 neighborhood of each
candidate pixel should be considered, which may greatly
increase the amount of calculation. In the present paper,
we firstly did extreme points detection in 8 neighborhood,
experiments showed that[8,9,10] 95% candidate pixels
can be eliminated. And then, we did extreme points
detection in 26 neighborhood for the kept pixels. To a
large extent, this method can improve calculation
efficiency and save time. After local keypoints were
preliminarily obtained, the result was transferred to host
for further selection which has been discussed in section
2.3. Then the result of further selection was transferred
back to device, and saved in global memory.

3.3 Keypoint orientation assignment

Each keypoint was processed in one block to calculate
gradient orientation and magnitude by formula (10). Each
block was divided into 16× 16 threads, and each thread
processed one pixel (shown in Figure 2).

3.4 Keypoint Descriptor

The present paper formulated the keypoint descriptor as
128 dimensional vector. It’s similar to keypoints

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



720 Meng Lu: Fast Implementation of Scale Invariant Feature Transform Based on CUDA

Fig. 2: Gradient orientation and magnitude of keypoints

orientation calculation that each vector was computed in
one block, which was divided into 16 × 16 threads. All
these 256 threads were divided into 4×4 sub-regions, and
each sub-region was arranged into a histogram with eight
bins based on the result of gradient orientation. Each
thread calculated one pixel’s degree of contribution to the
histogram’s bins.

4 Experiments and Results

Workstation’s hardware and software used in the
experiments was shown in table 1.

In the experiment, this paper’s acceleration method
based on CUDA was compared with standard SIFT[1,2].
We focused on the computational efficiency and
computing time of two SIFT implementations. The
standard SIFT was implemented in CPU. Test images
were selected from BSDS500 database of UC Berkeley
Computer Vision Group. To verify the correlation
between the number of SIFT keypoints and computational
efficiency, the comparisons were made under different
image resolutions, which were 300 × 200,640 ×
480,800× 640,1200× 800,1600× 1200. The parameters
of SIFT were set as: (1) the number of group was
determined by image resolution; (2) 3 layer of each
group; (3) threshold of DoG was 0.04; (4) threshold of
principle curvature was 10; (5) sub-region of keypoint
descriptor was 4×4.

Fig. 3: Result of SIFT keypoints under the 300 × 200 image
resolution, the number of detected keypoints by the present
algorithm is 125

SIFT keypoints calculation results of different image
resolutions were shown in Figure 3-Figure 7. The number
of detected keypoints increased according to the image
resolutions.

The comparison of computational efficiency between
the present algorithm and the standard SIFT was shown
in table 2. The numbers of detected keypoints of present
algorithm and standard SIFT were almost the same under
every image resolution, which meant that the present SIFT
accelerated method could detect accurate keypoints. From
table 2, we can conclude that higher the image resolution
is, more SIFT keypoints can be obtained, and higher the
present algorithm’s speed-up ratio is.

The correlation between speed-up ration and the
number of SIFT keypoints was shown in Fig. 8. The
acceleration ratio approximatively had linear relation with
the number of SIFT feature points.

Table 1: Computer’s hardware and software used in the
experiments

Items Details
CPU Intel Xeon

X3440 2.53G2
Memory DDR3

1333MHZ
8G

GPU Nvidia Quadro
600

Number of multi-
processor

2

Number of core in each
processor

48

Video memory 1G DDR5
Thread maximum in
each block

1024

Data transferring speed
between host and
device

3500M/s

Data transferring speed
from device to device

7800M/s

Operation system Win7
Professional

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 7, No. 2L, 717-722 (2013) / www.naturalspublishing.com/Journals.asp 721

Table 2: Comparison between the present algorithm and the
standard SIFT under different image resolutions

Items Image
A

Image
B

Image
C

Image
D

Image
E

Image
resolution

300 ×
200

640 ×
480

800 ×
640

1200×
800

1600×
1200

The
number of
keypoints
by the
standard
SIFT

127 1746 3186 5761 8672

Time used
by the
standard
SIFT (ms)

365 1609 2815 5260 9053

The
number of
keypoints
by the
present
algorithm

125 1781 3175 5736 8677

Time used
by the
present
algorithm
(ms)

135 311 361 426 463

Speed-up
ratio

2.70 5.16 7.78 12.36 19.54

Fig. 4: Result of SIFT keypoints under the 640 × 480 image
resolution, the number of detected keypoints by the present
algorithm is 1781

Fig. 5: Result of SIFT keypoints under the 800 × 640 image
resolution, the number of detected keypoints by the present
algorithm is 3175

Fig. 6: Result of SIFT keypoints under the 1200 × 800 image
resolution, the number of detected keypoints by the present
algorithm is 5736

Fig. 7: Result of SIFT keypoints under the 1600× 1200 image
resolution, the number of detected keypoints by the present
algorithm is 8677

Fig. 8: The correlation between speed-up ration and the number
of the SIFT keypoints of the present algorithm, the acceleration
ratio approximatively had linear relation with the number of SIFT
feature points

5 Conclusion

This paper presented a CUDA-based acceleration
algorithm of SIFT feature extraction. The present
algorithm can greatly enhance SIFT computational speed,
and the speed-up ratio linearly increased with the increase
of the number of SIFT keypoints.

Acknowledgement

This research was supported by National Natural Science
Foundation of China (61101057).
The authors are grateful to the anonymous referee for a
careful checking of the details and for helpful comments
that improved this paper.

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



722 Meng Lu: Fast Implementation of Scale Invariant Feature Transform Based on CUDA

References

[1] Lowe D. object recognition from local scale-invariant
features[J], International Conference on Computer
Vision(ICCV), 1999:1150-1157.

[2] Lowe D. Distictive Image Features From Scale-Invariant
Keypoints[J], International Journal of Computer Vision,
2004,60(2):91-110.

[3] Nian H. GPGPU and Image Matching Parallel Algorithm
Based on SIFT[D], XiDian University, 2010.

[4] Wang R, Liagn H, Cai Xuan-ping. Study of SIFT Feature
Extraction Algorithm Based on GPU[J], Modern Electronics
Technique, 2010,15:41-43.

[5] Zuo HR, Zhang QH, Xu Y. Fast Sobel Edge Detection
Algorithm Based on GPU[J], Opto-Electronic Engineering,
2009,36(1):41-43.

[6] Sinha S, Frahm J M, Pollefeys M. Feature
Tracking and Matching in Video Using
Programmable Graphics Hardware[J], Available from:
http://www.springerlink.com/content/5rv615p24360/.

[7] Zhang Qi,Chen Y, Zhang YM. SIFT Implementation and
Optimization for Multi-core Systems. IEEE International
Symposium on Parallel and Distributed Processing, 2008. p.
1-8.

[8] Tian W, Xu F, Wang HY, Zhou B. Fast Scale Invariant
Feature Transform Algorithm Based on CUDA[J], Computer
Engineering, 2010,36(8):219-221.

[9] Gan XB, Wang ZY, Shen L, Zhu Q. Data layout
pruning on GPU, Applied Mathematics Information
Sciences,2011,5(2):129-138.

[10] Zhao CJ, Wu HR, Gao RH. Realistic and detail rendering
of village virtual scene based on pixel offset, Applied
Mathematics Information Sciences, 2012:6(3):769-775.

[11] Wu TH, Bai BG, Wang P. Parallel catmull-rom spline
interpolation algorithm for image zooming based on CUDA,
Applied Mathematics Information Sciences, 2013,7(2):533-
537.

[12] Kim B, Kim KJ, Seong JK. GPU accelerated molecular
surface computing, Applied Mathematics Information
Sciences, 2012,6(1):185-194.

Meng Lu received
the MS degree in Computer
Science from Northeastern
University in 2007, and
received the PhD degree
in Computer Science from
the Northeastern University
in 2010. He is currently
a lecturer in Northeastern
University. His research

interests are in the areas of computer vision, medical
image processing, and 3D visualization. He has published
research articles in reputed international journals of
mathematical and engineering sciences.

c⃝ 2013 NSP
Natural Sciences Publishing Cor.


