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Abstract: In this paper, numerical solution of nonlinear fuzzy Hamstein integral equations is studied by fuzzy B-spline sere
error bound for the method is found based on modulus of coityiand it is proved that the proposed algorithm is numdsictable.
Finally, theoretical results are illustrated by some nuoca¢examples.
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1 Introduction theorem and in9g], they developed this method to the
fuzzy Hammerstein Volterra delay integral equations. In
Mathematical modeling of physical phenomena, in the[1(], an iterative method was used to solve nonlinear
most cases, is resulted in differential or integral equetio  fuzzy integral equations based on quadrature rules.
These equations possess some numerical parameters tf&jccessive approximations method was used for solving
often are referred to the physical properties andtwo-dimensional nonlinear fuzzy integral equations in
geometrical specifications of the phenomenon that theif11]. The method of successive approximations in terms
magnitude would not be deterministically known. So, the of a hybrid of Taylor series and a block-pulse function for
resulted equation has some fuzzy parameters that imposslving nonlinear fuzzy Fredholm integral equation was
a kind of fuzzy behavior to the equation. Also, in some used in [L2].
other cases, initial or boundary conditions are not crisp  Although numerical solution of the fuzzy
quantities and should be presented in fuzzy form.Hammerstein integral equation has been done previously
Considering these issues can reveal the great importanc(gs it is mentioned in previous paragraph), the solution
of fuzzy differential equations (FDE) and fuzzy integral approach proposed in this paper has some advantages
equations (FIE) topics. A large amount of investigation which are mostly originated from the following essential
has been dedicated to this topic especially in recent yeargroperties of the fuzzy B-spline approximation:
from both theoretical and numerical points of view

([11-18]). —Having nonnegative values which is a major feature in
One of the important cases is the fuzzy Hammerstein ~ fuzzy calculus. _
integral equation which has the form: —Having compact supports which leads to low

computational cost and stability in numerical results.

1
u(x) = f(X)+)\/ k(x,t)o(t,u(t))dt, x€[0,1], (1.1)  These properties give us a strong motivation to design a
0 method of solution for nonlinear integral equations based
wheref € C([0,1],R %), k € C(]0,1] x [0,1],R) andR » on these functions. The fuzzy B-spline series introduced
denotes the set of fuzzy numbers. Existence andy Anile et al ([L3]) and then studied in details irl4],
uniqueness of solution for this problem have beenwhere, the authors found an efficient error bound of fuzzy
investigated by Bica et al i4], where the authors used B-spline approximation in terms of modulus of continuity
Lipschitz conditions to guarantee the existence andand also investigated an uncertainty diminishing property
uniqueness result. Furthermore the authors used afhe interpolation of fuzzy data based on B-spline
iterative method which comes from Banach fixed pointfunctions introduced and discussed by Zeinali et B [
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(Other kind of fuzzy piecewise cubic interpolation can be following properties are satisfied (sek]):
found in [16]). Additional advantages of the proposed (i) (R4,D) is a complete metric space,

method can be summarized as follow:

—Instead of discrete values, results of the numerical

solution are presented by some functions (E231)j

(i) D(u+v,u+ w) =D(v, w),
(iii) D(k.u,k.v) = |k|D(u,Vv),
(iv) D(u+v,w+e) <D(u,w)+D(v,e).

that are continuous in the whole range of the solution

domain.

—Weak conditions for convergence: The only condition
to establish convergence of the method is continuity of

the kernel.

Definition 2.2. For f : [a,b] — R, the functionc(f,.) :
R, — R given by

—Weak conditions for stability: There is no need to the ~ w(f,d) = sup{D(f(x), f(y))|x,y € [a,b],[x—y| < &}

Lipschitz condition (as an strong condition) on f and k
functions in order to grantee the stability in the .

proposed numerical solution

This paper is organized as follows: after a preliminary Definition

is called the modulus of continuity df.

2.3. ([17) Let f : [ab — Ry,

section, fuzzy B-spline series and it's properties ared: [a,b] » Ry, andA,:a=x <X <..<X =bbea

introduced in sectior3. In section4, the construction of
the method is presented. Sectidnis devoted to the

partition of the intervala, b] with the intermediate points
Ui € [Xi—1,%i]. The partition

convergence of the method. The numerical stability isP = {([x_1,%];W);i = 1,...,n} denoted byP = (A,, )

investigated in sectiof and finally, the efficiency of the

is calledd-fine iff [x_1,%] C (Y — (W), Y + ().

method will be examined by some numerical examples in

section?.

2 Preliminaries

Definition 2.4. ([17]) The functionf is called Henstock
integrable if for everye > 0, there exists a function
0 : [a,b] — R such that for anyd-fine partitionP, we
haveD (3L, (% —Xi—1).f(¢4),A) < € for someA € R 5.
ThenA is called the Henstock integral df and denoted

In this section, the necessary theorems and definitions arey (FH)f;) f(t)dt.

stated that are used later.

Definition 2.1. The functionu : R — [0, 1] is called a fuzzy
number if:

(i) pis normal (i.e3xp € R with u(xg) = 1);

(i) pis convex, i.evt € [0,1],x,y€ R

p(tx+ (1—t)y) > min{u(x), U (y)};

(iii) u is upper semicontinuous dky
(iv) {xeR;u(x) >0} is compact, wheré\ denotes the
closure ofA.

The set of all fuzzy real numbers is denotedby:.
ObviouslyR C Rg. HereR C R4 is understood aR =
{Xx; xisausual real number}.

For 0<r <1, ther-cut of fuzzy numbep is defined by

{{xeR;u(x)>r} 0<r<1

{xe R u(x) > 0}

r

W) =
r=0.

Thenitis easily shown that is a fuzzy number if and only
if [u]" is a closed and bounded interval for each [0, 1],
and[u]* # 0 (see e.g.T)).

Foru,v € R4, andA € R, ther-cuts ofu+vandA.u are
defined by[u+V]" = [u]" +[v]" and[A.u]" = A[u]", Vr €
[0,1].
Let D : Rz x Rz — R.J{0}, be the Hausdorff
distanceD(u,V) = supycpo.gmax{|ul — V[ [u} —V [},
where [u" = [u_,u}] and [v]' = [V_,V.]. Define

[ = D(.,0), where 0 € Rz, 0= Xjo;. Then the

The integrals used in this paper are in the sense of
fuzzy Riemann integral which is a particular case of the
fuzzy Henstock integral.

Lemma 2.5.([18)]) (i) Let f andg be Henstock integrable
functions and letD(f(t),g(t)) be Lebesgue integrable.
Then

D ((FH)/:f(t)dt,(FH)/:g(t)dt) gL/:D(f(t),g(t))dt.

(i) Let the functionf : [a,b] — Rz be a Henstock
integrable and bounded function. Then for every fixed
pointu € [a,b], the functiong, : [a,b] — R defined by
@,(t) =D(f(u), f(t)) is Lebesgue integrable da,b].

3 Approximation by fuzzy B-spline series

Letm:0=1ty<t; <..<ty,=1 be a strictly increasing
nodes or0, 1] andSs(71) denotes the space of polynomial
splines of order 4 on this partition. Here, B-spline bases
for this space is introduced. Lgt= ln and introduce 6
additional knots ast 3 <t <t < tp and

thes > thi2 > the1 > th. Then, the function8;(t) defined
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by
(t_ti—Z)3 te [t t; ]
6h3 i—2,4-1
At —tiig) + 5 (t—tig)?
— 5 (t—ti1)® t € [ti1,t]
Bi(t) =4 g+ H(tira—t)+ z—ﬁz (tip1—t)2
—sm(tiva—1)° te [ti,tia]
. _+\3
gt tE [tiva,tival
0 otherwise
fori=—1,...n+1 is called the B-spline functions of
order 4.

Theorem 3.1. ([19) Dim $S(m) = n+ 3 and
{B_1,B_2,...,Bn;1} constitute a basis fd( ).

Definition 3.2. ([14]) Let &; < [0,1] N suppB,

j =—1,...,n+1. Then the fuzzy B-spline series for the
function f will be

n+1

T BiX)f(&).

=1

S(f,x) = (3.1)

Theorem 3.3.([14]) For f : [0,1] — R# continuous we
have
D(f(x),S(f,x)) < 4w(f,d),

whered = max<j<n(tj+1—tj) andw(f, d) is the modulus
of continuity of the functionf.

4 The New Method

I rewrite Eq.(.1) as

1
u(x) = F(X)+A /0 KO, HL(t)dt, (4.1)
with
L(t) = ot u(t)),
which yields
1
L(t) = qo(t, f(t)+)\/o k(t,s)L(s)ds). 4.2)
ApproximatingL(s) by (3.1, | get
n+1
L(S) = S(L,S) = z L(EJ)BJ (S), (4.3)

j=—1

whereé; € [0,1] NsuppB;. Then, by substituting(L, s)
in (4.1) the approximate solution for the EdL..{) will be
obtained from

n+1

() =T +A S L(Ej)/olk(x,t)Bj (t)dt.

j=—1

Therefore, it suffices to determihgé;). Let

tj, j=0,...,n
E]: t07 J:_l
tn, J:n+1

which is belong td0, 1] NsuppB;. From @.2) and @.3), |
have

n+1

L(t):go(t,f(t)m_z L

i=—1

/O "kt 9B (s)ds) (44

wherel; = L(t),i =0,...,n, L1 = Lo and Lp+1 = Lp.
Settingt =t for k=0,...,n, in (4.4), a nonlinear system
obtains forLj = L(tj) as

n+1

1
Lk:(p<tk,f(tk)+/\ S k(tk,t)Bi(t)dt>, k=0,.n.
i=——1 /0
(4.5)
I should now prove that the system.f) has a unique
solution.

Definition 4.1. We denote by
RY% = {(x1,X2,....%n);% € Rz,i =1,2,...,n}

then-dimensional fuzzy space equipped with the distance
2 :R% xR — RTU{0}, defined by

2(X,Y) = maxD(x;;),
whereX = (x1,X2,...,%n) andY = (y1,¥2,...,¥n).
Obviously(R";, Z) is a complete metric space.
Theorem 4.2.Suppose thap is a Lipschitz function with

respect to the second variable with Lipschitz constgnt
kis a continuous function and

My = max{|k(s,t)|: (s,t) € [0,1] x [0,1]}.

Then the system¥(5) has a unique solution.
Proof. Define the operatdf : R%* — R by

T(L) = (@(L),- (L)),

where

n+1

(L) =0t f(t) +A > L

i=—1

[ v

in which | setL_; :=Lp andLn,1 := Lp. | claim thatT
is a contractive mapping. To prove this, &t L2 € R 2,
where

LY = (L3, L1,..., LY

L2 = (L3,L3,...,L2)

and define
LY=L Lha=L,
L2,:=13 L2,:=L2
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Then,

Z(T(LY),T(L?)) = max D (q(L"), @(L?))

0<k<n
n+1 1 1
— maxD (co(tk, 0+ 3 L [ K OB

n+1

1
it f10+1 5 1 [ KB

=1
n+1 N 1
< . .
= o?&XanD<f<tk>+A P JACTRIETO

n+1

ft)+2 S Liz/olk(tk,t)Bi (t)dt)

i=—1
n+1 1 1
:OTka<)§1L(p|)\|D<izlLi /0 K(ty, t)Bi(t)dt,

n+1

S Li2/01k(tk,t)Bi (t)dt)

i=—1
n+1

1
< maxLylA| D<Li1/ K(t, t)Bi (t)dt,
i=—1 0

T 0<k<n

L? /01 K(ty,t)B (t)dt)
n+1

1
— maxLylA| |/0 K(ty,t)Bi (1)t D (LE, L?)
i=—1

0<k<n

n+1 .1
LAl max 3 [kt B (L L)
£=17/0

nggni
n+1 .1
< PN LP)LMUA| S / Bi(t)dt
i==17/0
= (LY, L?)LeMy|A [6h*(n+ 3), (4.6)

since [3 Bi(t)dt < 6h*.
On the other hand, far > 3, | have

6 [LoMch?(n+ 3) = 6] |L(,,|v|k%3

2n
<6AILoMc

12]A [LoMy
T
= 12|A |LpMyh®. 4.7)
From @4.6) and @.7), | obtain

2(T(LY),T(L?) < 12A |LpMh®2(LE, L) (4.8)

So, forn> 3/12|A|LyMy, T is a contraction mapping and

the Banach fixed point theorem completes the proof.

Furthermore, the Banach fixed point theorem offers an

iteration method to find successive approximations, i.e.

Li = €0<tk, f (te)+

A (L'O—l(/olk(tk,t)s,l(t)dt+/Olk(tk,t)so(t)dt)
n—-1 1
+3 LI /0 K(te, t)Bi (t)dt

L[ K DB+ K DBra(0c) )
(4.9)

for 1 = 1,2,... and L% = (L9,L9,...,L9). Let
L := L™ = (Lo,...,Ly) be the approximation obtained
from m-th iteration of @.9) and definel_; := [, and
Lni1 := Ly. Then, the approximate solution of Ed..J)
takes the form

n+1 1
un(x)zf(x)+A21Ei/o k(x)Bi(t)dt.  (4.10)

5 Convergence

In this section, I try to find an upper bound for the distance

En = D(U, Gn)

where u and up denote the exact and the approximate
solutions of Eq. 1.1), respectively.

Theorem 5.1.Letk andMy be as in Theorem 4.2. Then

D(u,Tn) < |A|Mg <4w(L, h)

(1212 [Mch3)™

0,1 4
1o e (L e (n+3)>.

Proof.

En = D(u,0n) < D(u,un) + D(up, Tn), (5.1)

where

D(u,up) = sup D

o[ wi0)

1
:XS[%E]D(f(x)M/O KO, tL(t)dt, ()

1
+A/0 k(x,t)S(L,t)dt)
<Al sup D(/Olk(x,t)L(t)dt,/Olk(x,t)S(L,t)dt)

xe[0,1]
1

< |A| sup D(k(x,t)L(t),k(x,t)S(L,t)) dt

x€[0,1] /0

1
<|A| sup A |k(x,t)|D<L(t),S(L,t)>dt.

xe[0,1]
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By Theorem 3.3, | get
D(u, n) < [A[Mida(L,h).
On the other hand,

(5.2)

D(up,0n) = sup D(un(x),0n(X))
xe[0,1]

n+1 1
sup D<f(x)+)\ b L,-/O k(x,t)B; (t)dt,

x€[0,1] =1
n+1 . 1
) +A Y L,-/ k(x,t)Bj(t)dt>
j==1 /0
n+1 1
<Y sup D(L,-/ k(x,t)Bj (t)dt,
j=—1x€[0.1] 0
!
Lj/ k(x,t)Bj(t)dt)
0
n+1 1 -
<A sup | [ k(x,t)Bj(t)dt|D(Lj,L;)
j=—1xe[0,1] /O
n+1 N 1
<MY D(L,—,L,—)/o B (t)dtt. (5.3)
=1

Since L = L™, the Banach fixed point theorem and
inequality @.8) yield
12|A [Mh3)M

[) = m <7(
7L =7(LLT) < 1—12|A |Mgh3

2(L% LY,

thus

_ (12X [Mgh3)™m
= 1-12A|Meh3

and so from%.1), (5.2), (5.3 and 6.4) | get

D(Lj,Lj) < 2(L,L) 2(L° LY (5.4)

Dmm<wamm>

(122 [Mgh3)™m

01 n+1 1
1t 7L ),-z_l/o B; (t)dt)

<mw@mm>

(122 [Mgh3)™m

n+1
0,1 4
1—12|)\||\/|kh39(L L2 Gh)

=1
=AMy (4w(L,h)

(122 [Mgh3)™m

01 4
Tt g 7 (L L8 (n+3)>.

6 Numerical stability

To validate a numerical method, it is needed to investigate

i's numerical stability. A general technique for

establishing the numerical stability of an algorithm, has
been used in4], in which the authors investigate the
influence of small perturbation of the first iteration in the
final approximation. The same technique is used in this
section. For this purpose, suppose tlidt is another
starting value for iterations4(9), whereD(L°, %) < ¢
and according to this starting value, | have

mzw@ﬁmw
A4 /0 1k(tk7t)871(t)dt+ /0 1k(tk,t)Bo(t)dt)
n-1 1
+Zir‘|_l/o K(ty,t)B (t)clt
+ /'n'*l(/ol K(ti,t)Bn(t)dt + /01 k(tk,t)Bn+1(t)dt)))

for k = 0,.n._ Then
corresponding té will be

the approximate solution

n+1 1
0n(X) = (0 +A Y n/o K(x,t)Bi (t)dt,
i 1

wheref .1 := I andl"_1 := . By the following theorem,
| prove stability of the iterative method ().
Theorem 6.1.Let L° and r'° be two different starting

values for the iterative method4.9), such that
D(L% % <e. Then

3\mH1
_ (A2LA M

D(d, 0) »

Proof. According to 4.9, for j =0,...,n, | have

1 n+1 0 1
L} = o, f(t) +A 3 Li/o K(t;, By (t)clt),
i=—1
n+1

=l 1) 42 3 0 [k OBian).

i=—1
Hence

n+1

D(L} r-l)—D( i f(t 0 Mt 0B
Ll = qo(tj,f(tj)—k)\_zlLl/O K(t;, B (t)dt)
n+1

1
D100 +A 3 10 K080 )

i=—1
n+1

<Ll S | [ B0 )

n+1

<LglA| 3 Mkeh*D(L® 1)
i=—1

= Lg|A |M8h*D(L?, 7 0)(n+ 3)

< 120 | A [Mghe
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and so Example 1.Consider the linear fuzzy Fredholm integral
D(LL,rY) <120 oA [Mh3e, equation
which implies (by induction) that
ux:fx+/kx,tutdt, x € [0,1],
Now, | should conclude the upper bound for where
N SN r+1 3—r
D(G,0) = sup D(G(s),U(s)). (6.2) f1(x) = [(—=)x (—=—)X,
s€[0,1] 3 3
I have k(xt) =x,
with the exact fuzzy solution’ (x) = [(“5%)x, (355)X.
D(Gi(), U(s)) = D( / k(s t)Bi(t
|771
F(S) A I'/ k(s DBt )dt) Table 1: Numerical resultslozf Exampllezl for N=10.
I,,l n = = E EY =
nil 10| 299% % | 89% % | 44% % | 7.4% % | 59% 4
<ALy D<|_, / k(s,t)Bj(t)dt 20 | 7.65e° | 2294 | 1.14e4 | 1.9l | 1534
i==1 30 | 34275 | 10264 | 513 ° | 856e° | 6.85%¢°
.ol 40 | 1.93¢7° | 5.80e7° | 2.90e° | 4.83=° | 3.86e°
li / k(s,t)Bi( )dt> 50 | 1.23e5 | 3715 | 1.85¢° | 3.10e 5 | 247 °
n+1
<Py |/ k(s,t)Bi(t)dt|D(L;, F)
i=—1 Example 2.Consider the fuzzy Hammerstein integral
n+1 equation
<|AIMegh* S D(L;,f) )
o u(x) = f(x) + / kxw@(t)dt, xe[0,1],
0
<|AIMeh* § D(L
A M |—Z—1 1) where
= [A|Mggh*(n+3)D(L,F). £ (x) = |:ex 01(1-1) _ x-02(1-T) (941)
Forn> 3, | have ge01(1-1) _ ger02(1-n (81,
. B ) 4 )
D({i(s),0(s)) < 12]A |MD(L, )3, (6.3) 1
- - _ T axt
If L —L™andf = '™, then from 6.2, (6.3 and 6.1), | k(x.t) = 7€,
et
J (12L | [Mch®)™ with the exact solution’ (x) = [¢~ 0111 g+01(1-1)],
D(0,0) < ¢ i e,
@

which completes the proof.

Corollary 6.2. According to the Theorem 6.1, the method Table 2: Numerical results of Example 2 for N=10.

1/2 1/2

. . . 0 0 1
will be numerical stable ih < z—1—. n E- EL E” EY EZ
/12 oA M 10 | 2512 | 1.8%e 1 | 344e 2 | 8862 | 51262

20| 6232 | 2452 | 83% 3 | 1882 | 1.1% 2
30 | 260672 | 3573 | 3643 | 7.25¢2 | 47178
40 | 150673 | 2.23e3 | 2423 | 53263 | 1583
In this section, some numerical examples are given to 50 | 7.47e"* | 6.53¢% | 1.8% 4 | 1.70e"* | 4.56e*
show the efficiency of proposed method. | choose the

pointsx;; j = 1,2,...,N arbitrary in [a,b] and report the

errors in these points. The results are shown in tables 1,2,

7 Examples

where
E" = max |u" (xj)— " (x))] 8 Conclusion and open problem
0<j<N
EL = max |u' (xj) — O (xj)]. In this paper, approximate solution of fuzzy Hammerstein
0<j<N integral equation has been studied based on fuzzy
(@© 2017 NSP
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B-spline series along with an error bound for the [17] C. Wu, Z. Gong, On Henstock integral of fuzzy-number-
constructed method. | have proved that the method is valuedfunctions I, Fuzzy Sets and Systefi?), 523-532
numerically stable. The error bound of the method is (2001).

independent of the Lipschitz constant which is a strong[18] B. Bede, S.G. Gal, Qudrature rules for integrals of fuzz
condition and only continuity of the kernel is sufficient. In humber-valued functions, Fuzzy Sets and Syst&#%s 359-
our future research, | will try to use the proposed 380 (2004).

algorithm for the system of fuzzy Hammerstein integral [19] P- M. Prenter, Spline and Variational Methods, A Wiley-
equations. Interscience publication, 1975.
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