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Abstract: In this paper, numerical solution of nonlinear fuzzy Hammerstein integral equations is studied by fuzzy B-spline series. An
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1 Introduction

Mathematical modeling of physical phenomena, in the
most cases, is resulted in differential or integral equations.
These equations possess some numerical parameters that
often are referred to the physical properties and
geometrical specifications of the phenomenon that their
magnitude would not be deterministically known. So, the
resulted equation has some fuzzy parameters that impose
a kind of fuzzy behavior to the equation. Also, in some
other cases, initial or boundary conditions are not crisp
quantities and should be presented in fuzzy form.
Considering these issues can reveal the great importance
of fuzzy differential equations (FDE) and fuzzy integral
equations (FIE) topics. A large amount of investigation
has been dedicated to this topic especially in recent years
from both theoretical and numerical points of view
([1]-[8] ).

One of the important cases is the fuzzy Hammerstein
integral equation which has the form:

u(x) = f (x)+λ
∫ 1

0
k(x, t)φ(t,u(t))dt , x ∈ [0,1], (1.1)

where f ∈ C([0,1],RF ), k ∈ C([0,1]× [0,1],R) andRF

denotes the set of fuzzy numbers. Existence and
uniqueness of solution for this problem have been
investigated by Bica et al in [4], where the authors used
Lipschitz conditions to guarantee the existence and
uniqueness result. Furthermore the authors used an
iterative method which comes from Banach fixed point

theorem and in [9], they developed this method to the
fuzzy Hammerstein Volterra delay integral equations. In
[10], an iterative method was used to solve nonlinear
fuzzy integral equations based on quadrature rules.
Successive approximations method was used for solving
two-dimensional nonlinear fuzzy integral equations in
[11]. The method of successive approximations in terms
of a hybrid of Taylor series and a block-pulse function for
solving nonlinear fuzzy Fredholm integral equation was
used in [12].

Although numerical solution of the fuzzy
Hammerstein integral equation has been done previously
(as it is mentioned in previous paragraph), the solution
approach proposed in this paper has some advantages
which are mostly originated from the following essential
properties of the fuzzy B-spline approximation:

–Having nonnegative values which is a major feature in
fuzzy calculus.

–Having compact supports which leads to low
computational cost and stability in numerical results.

These properties give us a strong motivation to design a
method of solution for nonlinear integral equations based
on these functions. The fuzzy B-spline series introduced
by Anile et al ([13]) and then studied in details in [14],
where, the authors found an efficient error bound of fuzzy
B-spline approximation in terms of modulus of continuity
and also investigated an uncertainty diminishing property.
The interpolation of fuzzy data based on B-spline
functions introduced and discussed by Zeinali et al. [15]
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(Other kind of fuzzy piecewise cubic interpolation can be
found in [16]). Additional advantages of the proposed
method can be summarized as follow:

–Instead of discrete values, results of the numerical
solution are presented by some functions (Eq. (3.1))
that are continuous in the whole range of the solution
domain.

–Weak conditions for convergence: The only condition
to establish convergence of the method is continuity of
the kernel.

–Weak conditions for stability: There is no need to the
Lipschitz condition (as an strong condition) on f and k
functions in order to grantee the stability in the
proposed numerical solution

This paper is organized as follows: after a preliminary
section, fuzzy B-spline series and it’s properties are
introduced in section3. In section4, the construction of
the method is presented. Section5 is devoted to the
convergence of the method. The numerical stability is
investigated in section6 and finally, the efficiency of the
method will be examined by some numerical examples in
section7.

2 Preliminaries

In this section, the necessary theorems and definitions are
stated that are used later.

Definition 2.1.The functionµ :R→ [0,1] is called a fuzzy
number if:
(i) µ is normal (i.e.∃x0 ∈ R with µ(x0) = 1);
(ii) µ is convex, i.e.∀t ∈ [0,1],x,y ∈ R

µ(tx+(1− t)y)≥ min{µ(x),µ(y)};

(iii) µ is upper semicontinuous onR;
(iv) {x ∈ R;µ(x)> 0} is compact, whereA denotes the
closure ofA.

The set of all fuzzy real numbers is denoted byRF .
ObviouslyR ⊂ RF . HereR ⊂ RF is understood asR =
{χx; x is a usual real number}.
For 0≤ r ≤ 1, ther-cut of fuzzy numberµ is defined by

[µ ]r =







{x ∈ R;µ(x)≥ r} 0< r ≤ 1

{x ∈ R;µ(x)> 0} r = 0.

Then it is easily shown thatµ is a fuzzy number if and only
if [µ ]r is a closed and bounded interval for eachr ∈ [0,1],
and[µ ]1 6= /0 (see e.g. [7]).
For u,v ∈ RF , andλ ∈ R, ther-cuts ofu+ v andλ .u are
defined by[u+ v]r = [u]r + [v]r and [λ .u]r = λ [u]r, ∀r ∈
[0,1].

Let D : RF × RF → R+
⋃{0}, be the Hausdorff

distanceD(u,v) = supr∈[0,1]max{|ur
− − vr

−|, |ur
+ − vr

+|},
where [u]r = [ur

−,u
r
+] and [v]r = [vr

−,v
r
+]. Define

‖.‖ = D(., 0̃), where 0̃ ∈ RF , 0̃ = χ{0}. Then the

following properties are satisfied (see [17]):
(i) (RF ,D) is a complete metric space,
(ii) D(u+ν,u+ω) = D(ν,ω),
(iii) D(k.u,k.ν) = |k|D(u,ν),
(iv) D(u+ν,ω + e)≤ D(u,ω)+D(ν,e).

Definition 2.2. For f : [a,b]→ RF , the functionω( f , .) :
R+ → R given by

ω( f ,δ ) = sup{D( f (x), f (y))|x,y ∈ [a,b], |x− y| ≤ δ}

is called the modulus of continuity off .

Definition 2.3. ([17]) Let f : [a,b] → RF ,
δ : [a,b] → R+, and∆n : a = x0 < x1 < ... < xn = b be a
partition of the interval[a,b] with the intermediate points
ψi ∈ [xi−1,xi]. The partition
P = {([xi−1,xi];ψi); i = 1, ...,n} denoted byP = (∆n,ψ)
is calledδ -fine iff [xi−1,xi]⊆ (ψi − δ (ψi),ψi + δ (ψi)).

Definition 2.4. ([17]) The function f is called Henstock
integrable if for everyε > 0, there exists a function
δ : [a,b] → R+ such that for anyδ -fine partitionP, we
haveD(∑n

i=1(xi − xi−1). f (ψi),A) ≤ ε for someA ∈ RF .
ThenA is called the Henstock integral off and denoted
by (FH)

∫ b
a f (t)dt.

The integrals used in this paper are in the sense of
fuzzy Riemann integral which is a particular case of the
fuzzy Henstock integral.

Lemma 2.5.([18]) (i) Let f andg be Henstock integrable
functions and letD( f (t),g(t)) be Lebesgue integrable.
Then

D

(

(FH)

∫ b

a
f (t)dt,(FH)

∫ b

a
g(t)dt

)

≤ L
∫ b

a
D( f (t),g(t))dt.

(ii) Let the function f : [a,b] → RF be a Henstock
integrable and bounded function. Then for every fixed
point u ∈ [a,b], the functionφu : [a,b] → R+ defined by
φu(t) = D( f (u), f (t)) is Lebesgue integrable on[a,b].

3 Approximation by fuzzy B-spline series

Let π : 0 = t0 < t1 < ... < tn = 1 be a strictly increasing
nodes on[0,1] andS3(π) denotes the space of polynomial
splines of order 4 on this partition. Here, B-spline bases
for this space is introduced. Letti = i

n and introduce 6
additional knots as t−3 < t−2 < t−1 < t0 and
tn+3 > tn+2 > tn+1 > tn. Then, the functionsBi(t) defined
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by

Bi(t) =











































































(t−ti−2)
3

6h3 t ∈ [ti−2, ti−1]

1
6 +

1
2h(t − ti−1)+

1
2h2 (t − ti−1)

2

− 1
2h3(t − ti−1)

3 t ∈ [ti−1, ti]

1
6 +

1
2h(ti+1− t)+ 1

2h2 (ti+1− t)2

− 1
2h3(ti+1− t)3 t ∈ [ti, ti+1]

(ti+2−t)3

6h3 t ∈ [ti+1, ti+2]

0 otherwise

for i = −1, ...,n + 1 is called the B-spline functions of
order 4.
Theorem 3.1. ([19]) Dim S3(π) = n + 3 and
{B−1,B−2, ...,Bn+1} constitute a basis forS3(π).
Definition 3.2. ([14]) Let ξ j ∈ [0,1] ∩ suppB j,
j = −1, ...,n+ 1. Then the fuzzy B-spline series for the
function f will be

S( f ,x) =
n+1

∑
j=−1

B j(x) f (ξ j). (3.1)

Theorem 3.3.([14]) For f : [0,1] → RF continuous we
have

D( f (x),S( f ,x)) ≤ 4ω( f ,δ ),
whereδ =max0≤ j≤n(t j+1−t j) andω( f ,δ ) is the modulus
of continuity of the functionf .

4 The New Method

I rewrite Eq.(1.1) as

u(x) = f (x)+λ
∫ 1

0
k(x, t)L(t)dt, (4.1)

with
L(t) = φ(t,u(t)),

which yields

L(t) = φ
(

t, f (t)+λ
∫ 1

0
k(t,s)L(s)ds

)

. (4.2)

ApproximatingL(s) by (3.1), I get

L(s) ≃ S(L,s) =
n+1

∑
j=−1

L(ξ j)B j(s), (4.3)

whereξ j ∈ [0,1]∩ suppB j. Then, by substitutingS(L,s)
in (4.1) the approximate solution for the Eq. (1.1) will be
obtained from

un(x) = f (x)+λ
n+1

∑
j=−1

L(ξ j)

∫ 1

0
k(x, t)B j(t)dt.

Therefore, it suffices to determineL(ξ j). Let

ξ j =







t j, j = 0, ...,n
t0, j =−1
tn, j = n+1

which is belong to[0,1]∩ suppB j. From (4.2) and (4.3), I
have

L(t)≃ φ

(

t, f (t)+λ
n+1

∑
i=−1

Li

∫ 1

0
k(t,s)Bi(s)ds

)

, (4.4)

where Li = L(ti), i = 0, ...,n, L−1 = L0 and Ln+1 = Ln.
Settingt = tk for k = 0, ...,n, in (4.4), a nonlinear system
obtains forL j = L(t j) as

Lk = φ

(

tk, f (tk)+λ
n+1

∑
i=−1

Li

∫ 1

0
k(tk, t)Bi(t)dt

)

, k= 0, ..n.

(4.5)
I should now prove that the system (4.5) has a unique
solution.

Definition 4.1.We denote by

R
n
F = {(x1,x2, ...,xn);xi ∈ RF , i = 1,2, ...,n}

then-dimensional fuzzy space equipped with the distance
D : Rn

F
×R

n
F

→R
+∪{0}, defined by

D(X ,Y ) = max
1≤i≤n

D(xi,y j),

whereX = (x1,x2, ...,xn) andY = (y1,y2, ...,yn).
Obviously(Rn

F
,D) is a complete metric space.

Theorem 4.2.Suppose thatφ is a Lipschitz function with
respect to the second variable with Lipschitz constantLφ ,
k is a continuous function and

Mk = max{|k(s, t)| : (s, t) ∈ [0,1]× [0,1]}.

Then the system (4.5) has a unique solution.

Proof. Define the operatorT : Rn+1
F

→R
n+1
F

by

T (L) = (φ0(L), ...,φn(L)) ,

where

φk(L) = φ(tk, f (tk))+λ
n+1

∑
i=−1

Li

∫ 1

0
k(tk, t)Bi(t)dt,

in which I setL−1 := L0 andLn+1 := Ln. I claim thatT
is a contractive mapping. To prove this, letL1,L2 ∈ R

n+1
F

,
where

L1 = (L1
0,L

1
1, ...,L

1
n)

L2 = (L2
0,L

2
1, ...,L

2
n)

and define

L1
−1 := L1

0, L1
n+1 := L1

n,

L2
−1 := L2

0, L2
n+1 := L2

n.
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Then,

D(T (L1),T (L2)) = max
0≤k≤n

D
(

φk(L
1),φk(L

2)
)

= max
0≤k≤n

D

(

φ(tk, f (tk)+λ
n+1

∑
i=−1

L1
i

∫ 1

0
k(tk, t)Bi(t)dt),

φ(tk, f (tk)+λ
n+1

∑
i=−1

L2
i

∫ 1

0
k(tk, t)Bi(t)dt)

)

≤ max
0≤k≤n

Lφ D

(

f (tk)+λ
n+1

∑
i=−1

L1
i

∫ 1

0
k(tk, t)Bi(t)dt,

f (tk)+λ
n+1

∑
i=−1

L2
i

∫ 1

0
k(tk, t)Bi(t)dt

)

= max
0≤k≤n

Lφ |λ |D
( n+1

∑
i=−1

L1
i

∫ 1

0
k(tk, t)Bi(t)dt,

n+1

∑
i=−1

L2
i

∫ 1

0
k(tk, t)Bi(t)dt

)

≤ max
0≤k≤n

Lφ |λ |
n+1

∑
i=−1

D

(

L1
i

∫ 1

0
k(tk, t)Bi(t)dt,

L2
i

∫ 1

0
k(tk, t)Bi(t)dt

)

= max
0≤k≤n

Lφ |λ |
n+1

∑
i=−1

|
∫ 1

0
k(tk, t)Bi(t)dt|D

(

L1
i ,L

2
i

)

≤ Lφ |λ | max
0≤k≤n

n+1

∑
i=−1

∫ 1

0
|k(tk, t)|Bi(t)dtD(L1,L2)

≤ D(L1,L2)Lφ Mk|λ |
n+1

∑
i=−1

∫ 1

0
Bi(t)dt

= D(L1,L2)Lφ Mk|λ |6h4(n+3), (4.6)

since
∫ 1

0 Bi(t)dt ≤ 6h4.
On the other hand, forn ≥ 3, I have

6|λ |Lφ Mkh4(n+3) = 6|λ |Lφ Mk
n+3

n4

≤ 6|λ |Lφ Mk
2n
n4

=
12|λ |Lφ Mk

n3

= 12|λ |Lφ Mkh3. (4.7)

From (4.6) and (4.7), I obtain

D(T (L1),T (L2))≤ 12|λ |Lφ Mkh3
D(L1,L2) (4.8)

So, forn > 3
√

12|λ |Lφ Mk, T is a contraction mapping and
the Banach fixed point theorem completes the proof.

Furthermore, the Banach fixed point theorem offers an
iteration method to find successive approximations, i.e.

Ll
k = φ

(

tk, f (tk)+

λ (Ll−1
0 (

∫ 1

0
k(tk, t)B−1(t)dt +

∫ 1

0
k(tk, t)B0(t)dt)

+
n−1

∑
i=1

Ll−1
i

∫ 1

0
k(tk, t)Bi(t)dt

+Ll−1
n (

∫ 1

0
k(tk, t)Bn(t)dt +

∫ 1

0
k(tk, t)Bn+1(t)dt))

)

(4.9)

for l = 1,2, ... and L0 = (L0
1,L

0
2, ...,L

0
n). Let

L̃ := Lm = (L̃0, ..., L̃n) be the approximation obtained
from m-th iteration of (4.9) and defineL̃−1 := L̃0 and
L̃n+1 := L̃n. Then, the approximate solution of Eq. (1.1)
takes the form

ũn(x) = f (x)+λ
n+1

∑
i=−1

L̃i

∫ 1

0
k(x, t)Bi(t)dt. (4.10)

5 Convergence

In this section, I try to find an upper bound for the distance

En = D(u, ũn)

where u and ũn denote the exact and the approximate
solutions of Eq. (1.1), respectively.
Theorem 5.1.Let k andMk be as in Theorem 4.2. Then

D(u, ũn)≤ |λ |Mk

(

4ω(L,h)

+
(12|λ |Mkh3)m

1−12|λ |Mkh3D(L0,L1)6h4(n+3)

)

.

Proof.

En = D(u, ũn)≤ D(u,un)+D(un, ũn), (5.1)

where

D(u,un) = sup
x∈[0,1]

D

(

u(x),un(x)

)

= sup
x∈[0,1]

D

(

f (x)+λ
∫ 1

0
k(x, t)L(t)dt , f (x)

+λ
∫ 1

0
k(x, t)S(L, t)dt

)

≤ |λ | sup
x∈[0,1]

D

(

∫ 1

0
k(x, t)L(t)dt ,

∫ 1

0
k(x, t)S(L, t)dt

)

≤ |λ | sup
x∈[0,1]

∫ 1

0
D

(

k(x, t)L(t),k(x, t)S(L, t)

)

dt

≤ |λ | sup
x∈[0,1]

∫ 1

0
|k(x, t)|D

(

L(t),S(L, t)

)

dt.
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By Theorem 3.3, I get

D(u,un)≤ |λ |Mk4ω(L,h). (5.2)

On the other hand,

D(un, ũn) = sup
x∈[0,1]

D(un(x), ũn(x))

= sup
x∈[0,1]

D

(

f (x)+λ
n+1

∑
j=−1

L j

∫ 1

0
k(x, t)B j(t)dt,

f (x)+λ
n+1

∑
j=−1

L̃ j

∫ 1

0
k(x, t)B j(t)dt

)

≤ |λ |
n+1

∑
j=−1

sup
x∈[0,1]

D

(

L j

∫ 1

0
k(x, t)B j(t)dt,

L̃ j

∫ 1

0
k(x, t)B j(t)dt

)

≤ |λ |
n+1

∑
j=−1

sup
x∈[0,1]

|
∫ 1

0
k(x, t)B j(t)dt|D(L j , L̃ j)

≤ |λ |Mk

n+1

∑
j=−1

D(L j, L̃ j)
∫ 1

0
B j(t)dt. (5.3)

Since L̃ = Lm, the Banach fixed point theorem and
inequality (4.8) yield

D(L, L̃) = D(L,Lm)≤ (12|λ |Mkh3)m

1−12|λ |Mkh3D(L0,L1),

thus

D(L j , L̃ j)≤ D(L, L̃)≤ (12|λ |Mkh3)m

1−12|λ |Mkh3D(L0,L1) (5.4)

and so from (5.1), (5.2), (5.3) and (5.4) I get

D(u, ũn)≤ |λ |Mk

(

4ω(L,h)

+
(12|λ |Mkh3)m

1−12|λ |Mkh3D(L0,L1)
n+1

∑
j=−1

∫ 1

0
B j(t)dt

)

≤ |λ |Mk

(

4ω(L,h)

+
(12|λ |Mkh3)m

1−12|λ |Mkh3D(L0,L1)
n+1

∑
j=−1

6h4
)

= |λ |Mk

(

4ω(L,h)

+
(12|λ |Mkh3)m

1−12|λ |Mkh3D(L0,L1)6h4(n+3)

)

.

6 Numerical stability

To validate a numerical method, it is needed to investigate
it’s numerical stability. A general technique for

establishing the numerical stability of an algorithm, has
been used in [4], in which the authors investigate the
influence of small perturbation of the first iteration in the
final approximation. The same technique is used in this
section. For this purpose, suppose thatΓ 0 is another
starting value for iterations (4.9), whereD(L0,Γ 0) ≤ ε
and according to this starting value, I have

Γ l
k = φ

(

tk, f (tk)+

λ (Γ l−1
0 (

∫ 1

0
k(tk, t)B−1(t)dt +

∫ 1

0
k(tk, t)B0(t)dt)

+
n−1

∑
i=1

Γ l−1
i

∫ 1

0
k(tk, t)Bi(t)dt

+Γ l−1
n (

∫ 1

0
k(tk, t)Bn(t)dt +

∫ 1

0
k(tk, t)Bn+1(t)dt))

)

for k = 0, ..n. Then the approximate solution
corresponding tõΓ will be

ûn(x) = f (x)+λ
n+1

∑
i=−1

Γ̃i

∫ 1

0
k(x, t)Bi(t)dt,

whereΓ̃n+1 := Γ̃n andΓ̃−1 := Γ̃0. By the following theorem,
I prove stability of the iterative method (4.9).

Theorem 6.1. Let L0 and Γ 0 be two different starting
values for the iterative method (4.9), such that
D(L0,Γ 0)≤ ε. Then

D(ũ, û)≤ (12Lφ |λ |Mkh3)m+1

Lφ
ε.

Proof. According to (4.9), for j = 0, ...,n, I have

L1
j = φ(t j , f (t j)+λ

n+1

∑
i=−1

L0
i

∫ 1

0
k(t j , t)Bi(t)dt),

Γ 1
j = φ(t j , f (t j)+λ

n+1

∑
i=−1

Γ 0
i

∫ 1

0
k(t j , t)Bi(t)dt).

Hence

D(L1
j ,Γ

1
j ) = D

(

φ(t j , f (t j)+λ
n+1

∑
i=−1

L0
i

∫ 1

0
k(t j, t)Bi(t)dt)

,φ(t j , f (t j)+λ
n+1

∑
i=−1

Γ 0
i

∫ 1

0
k(t j , t)Bi(t)dt)

)

≤ Lφ |λ |
n+1

∑
i=−1

|
∫ 1

0
k(t j, t)Bi(t)dt|D(L0

i ,Γ
0

i )

≤ Lφ |λ |
n+1

∑
i=−1

Mk6h4D(L0,Γ 0)

= Lφ |λ |Mk6h4D(L0,Γ 0)(n+3)

≤ 12Lφ |λ |Mkh3ε
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and so
D(L1,Γ 1)≤ 12Lφ |λ |Mkh3ε,

which implies (by induction) that

D(Lm
j ,Γ

m
j )≤ (12Lφ |λ |Mkh3)mε. (6.1)

Now, I should conclude the upper bound for

D(ũ, û) = sup
s∈[0,1]

D(ũ(s), û(s)). (6.2)

I have

D(ũ(s), û(s)) = D

(

f (s)+λ
n+1

∑
i=−1

L̃i

∫ 1

0
k(s, t)Bi(t)dt

, f (s)+λ
n+1

∑
i=−1

Γ̃i

∫ 1

0
k(s, t)Bi(t)dt

)

≤ |λ |
n+1

∑
i=−1

D

(

L̃i

∫ 1

0
k(s, t)Bi(t)dt

,Γ̃i

∫ 1

0
k(s, t)Bi(t)dt

)

≤ |λ |
n+1

∑
i=−1

|
∫ 1

0
k(s, t)Bi(t)dt|D(L̃i,Γ̃i)

≤ |λ |Mk6h4
n+1

∑
i=−1

D(L̃i,Γ̃i)

≤ |λ |Mk6h4
n+1

∑
i=−1

D(L̃,Γ̃ )

= |λ |Mk6h4(n+3)D(L̃,Γ̃ ).

For n ≥ 3, I have

D(ũ(s), û(s))≤ 12|λ |MkD(L̃,Γ̃ )h3. (6.3)

If L̃ = Lm andΓ̃ = Γ m, then from (6.2), (6.3) and (6.1), I
get

D(ũ, û)≤ (12Lφ |λ |Mkh3)m+1

Lφ
ε,

which completes the proof.
Corollary 6.2. According to the Theorem 6.1, the method
will be numerical stable ifh < 1

3
√

12Lφ |λ |Mk
.

7 Examples

In this section, some numerical examples are given to
show the efficiency of proposed method. I choose the
points x j; j = 1,2, ...,N arbitrary in [a,b] and report the
errors in these points. The results are shown in tables 1,2,
where

Er
− = max

0≤ j≤N
|ur

−(x j)− ũr
−(x j)|

Er
+ = max

0≤ j≤N
|ur

+(x j)− ũr
+(x j)|.

Example 1. Consider the linear fuzzy Fredholm integral
equation

u(x) = f (x)+
∫ 1

0
k(x, t)u(t)dt, x ∈ [0,1],

where

f r(x) = [(
r+1

3
)x,(

3− r
3

)x],

k(x, t) = xt,

with the exact fuzzy solutionur(x) = [( r+1
2 )x,(3−r

2 )x].

Table 1: Numerical results of Example 1 for N=10.

n E0
− E0

+ E1/2
− E1/2

+ E1
−

10 2.99e−4 8.99e−4 4.49e−4 7.49e−4 5.99e−4

20 7.65e−5 2.29e−4 1.14e−4 1.91e−4 1.53e−4

30 3.42e−5 1.02e−4 5.13e−5 8.56e−5 6.85e−5

40 1.93e−5 5.80e−5 2.90e−5 4.83e−5 3.86e−5

50 1.23e−5 3.71e−5 1.85e−5 3.10e−5 2.47e−5

Example 2.Consider the fuzzy Hammerstein integral
equation

u(x) = f (x)+
∫ 1

0
k(x, t)u2(t)dt, x ∈ [0,1],

where

f r(x) =

[

ex−0.1(1−r)− ex−0.2(1−r)(
e−1

4
)

,ex+0.1(1−r)− ex+0.2(1−r)(
e−1

4
)

]

,

k(x, t) =
1
4

ex−t ,

with the exact solutionur(x) = [ex−0.1(1−r),ex+0.1(1−r)].

Table 2: Numerical results of Example 2 for N=10.

n E0
− E0

+ E1/2
− E1/2

+ E1
−

10 2.51e−2 1.89e−1 3.44e−2 8.86e−2 5.12e−2

20 6.23e−3 2.45e−2 8.39e−3 1.88e−2 1.19e−2

30 2.60e−3 3.57e−3 3.64e−3 7.25e−3 4.71e−3

40 1.50e−3 2.23e−3 2.42e−3 5.32e−3 1.58e−3

50 7.47e−4 6.53e−3 1.85e−4 1.70e−4 4.56e−4

8 Conclusion and open problem

In this paper, approximate solution of fuzzy Hammerstein
integral equation has been studied based on fuzzy
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B-spline series along with an error bound for the
constructed method. I have proved that the method is
numerically stable. The error bound of the method is
independent of the Lipschitz constant which is a strong
condition and only continuity of the kernel is sufficient. In
our future research, I will try to use the proposed
algorithm for the system of fuzzy Hammerstein integral
equations.
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