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Abstract: Real-time communication where the timely delivery of the data transfer requests needs to be guaranteed is essential for
several applications. This work formally introduces the Real-Time Unsplittable Data Dissemination Problem (RTU/DDP), which
is a generalization of the unsplittable flow problem. RTU/DDP problem is proved to be NP-hard. Therefore, heuristic approaches
are required to acquire good solutions to the problem. The problem is divided into two sub-problems: path selection and request
packing. Each of these sub-problems is formally defined and heuristic algorithms are proposed for both sub-problems. MinMin/FPF,
Edge Disjoint MinMin/FPF, MinCon/FPF, and LFL-MinCon/FPFheuristics are proposed for the path selection subproblem.MNOFF
and MOFF heuristics are introduced for the latter subproblem. The performances of these algorithms are compared with a genetic
algorithm solution proposed in this study and a heuristic from the literature. The results and discussions of the comparisons among the
performances of the proposed heuristics are presented.
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1 Introduction

Scientific and commercial applications are becoming
more and more compute and data intensive in recent
years. Such applications require the transfer of immense
volume of data, reaching the order of terabytes. The
topics of these applications vary from high-energy
physics (EU-DataGrid [1]) to climate modeling (Earth
System Grid [2]) to earthquakes (NEESit [3]). Data
sources of these applications may vary from sensors in a
hadron collider, to climatic and seismic data sensors
located all around the globe, to satellite images. In most
of these applications, data is of type write-once
read-many, and data is required to be distributed to the
researchers that are geographically distributed.

For example, Compact Muon Solenoid (CMS)
Detector located at LHC (Large Hadron Collider)
produces about 1 petabyte of read-only data every year.
This data is stored at CERN and provided to other
participating organizations (sites) upon request. As a
result, multiple copies of a data item can coexist in the
Grid system and the master copy is located at the storage

elements at CERN [1]. A Grid System called LHC
Computing Grid system (LCG) [4] is built to deliver the
data to researchers. Ultra high-speed dedicated
connections are set up to transfer the data to remote sites.
The data dissemination problem in this context deals with
the efficient and fast distribution of these data to requestor
sites using the limited storage and network resources in
the system.

The data dissemination problems focus on selecting
the path over which the data will be delivered, and the
amount of bandwidth that will be used for the connection.
Best-effort service of Internet does not provide any
guarantees regarding bandwidth, delay, loss rate, etc.
While best-effort service is acceptable for traditional
applications, such as FTP and email, it is intolerable for
recent applications that impose real-time requirements on
data transfers, such as internet telephony,
video-conferencing, video on-demand, defence and
surveillance [5], wireless sensor networks [6,7], and Grid
systems [8]. Transferring the required data as early as
possible is not adequate in these applications. The data
transfers have to satisfy the QoS requirements in order to
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be regarded as successful. Providing an optimal real-time
performance with these applications under the constraint
of limited computing, storage, and network resources is
very challenging task. Even offering some sort of
real-time performance guarantees requires a high degree
of coordination in the system.

In addition to meeting QoS requirements, data
dissemination problems can aim to maximize the network
utilization and improve the total throughput of the
network. In this sense, simply routing a flow over a path
that can meet the QoS requirements of flow is not good
enough. The total resource allocation for a flow along its
path, in relation to available resources needs to be taken
into account. This mechanism is called admission control
(or request packing). If this flow needs too many
resources, it may be rejected even if the network has the
capability to accept it. By doing so, the resources can be
used by other flows which cost less. A related problem is
fairness. Larger flows tend to need more resource while
small flows need less. Thus, small flows always have a
better chance to be accepted. In order to be fair, that
larger flows can get a certain level of acceptance rate
needs to be guaranteed.

In this study, the Real-Time Unsplittable Data
Dissemination Problem (RTU/DDP), which is a
generalization of the well-known Unsplittable Flow
Problem, is introduced first. RTU/DDP tries to find out
the routes that the data requests should take and the
amount of bandwidth that should be assigned to each
request so that the number of real-time requests that are
delivered successfully is maximized. RTU/DDP is solved
in two phases in which the first phase is Real-Time Path
Selection Problem (RT/PSP) and the second one is
Request Packing Problem (RPP). For the solution of
RT/PSP, four different algorithms, namely MinMin/FPF,
Edge Disjoint MinMin/FPF, MinCon/FPF, and
LFL-MinCon/FPF, are proposed; for the solution of RPP,
MNOFF and MOFF algorithms are introduced. By
design, it is possible to mix any phase-1 algorithm with
any phase-2 algorithm. Thus, eight different algorithms
are possible to be used for solving RTU/DDP. According
to the detailed simulation studies, MinCon/FPF and
MOFF are the best combination in maximizing the
number of real-time requests satisfied.

The rest of the paper is organized as follows: Section
2 summarizes the related work. Section 3 introduces the
data dissemination model used in this study, and formally
defines RTU/DDP. Section 4 presents the proposed
solutions to RTU/DDP. Section 5 presents the simulation
results and discussions. Finally, the last section provides
conclusions and future directions of study.

2 Related work

Transferring data in an efficient and fast manner has been
the topic of many studies in the literature. Data
dissemination problems come in very different settings. In

the real-time data dissemination problem that will be
formally defined in this paper, the goal is to maximize the
number of real-time data transfer requests satisfied.
Similar problem definitions are encountered in the
framework of QoS-based routing as well. In the literature,
a variety of QoS-based routing problems have been
defined and many QoS-based routing algorithms have
been proposed. Most of them start from extending the
ability of current best-effort routing algorithms. Thus, in
this section, best-effort and QoS-based routing algorithms
will be summarized.

2.1 Best-effort routing services

The solution space of best-effort routing problems is
extremely large and an optimal solution cannot be found
in a reasonable time. Instead, heuristics are employed to
find good solutions [9]. Heuristics such as Dijkstra [10],
Bellman-Ford [11,12] are used to solve the shortest
distance problem. Nowadays, similar algorithms are
frequently used in the state-of-the-art network systems.
Most of the data dissemination algorithms in the literature
are actually a modified or extended version of
well-known shortest distance algorithms [13,14,15,16].
In IP-based networks, it is traditional to use protocols that
include shortest distance algorithms.

Current Internet routing protocols such as RIP
(Routing Information Protocol) [17], OSPF (Open
Shortest Path First) [18], and BGP (Border Gateway
Protocol) [19] are called best-effort routing protocols.
They use only the shortest path to the destination. The
shortest path may not be the path with shortest physical
distance. The path with the least cost or fewest hop counts
has been considered as the shortest path in literature as
well. In the shortest distance algorithms, all the traffic is
routed over the shortest paths. Even if some alternate
paths exist, they are not used as long as they are not the
shortest ones. This scheme may lead to the congestion of
some links, while some other links are not fully used.

A popular example of a traditional routing algorithm
used to find the shortest path with minimum cost is the
Widest-Shortest Path (WSP) algorithm [20]. The WSP
algorithm is an improvement over the Min-Hop algorithm
that is used in OSPF protocol that selects a path with the
minimum number of hop count. If there are several such
paths to choose from, the one that allows the largest
possible throughput to be reserved will be chosen. In
Shortest-Widest Path (SWP) [20], the goal is to find a
path that allows maximum throughput. In case of equality,
the path with the minimum number of hops is selected.
An extension to these algorithms is provided in [21],
which selects a path with minimum hop count among all
possible connected paths. If more than one path has
minimum hop count, it selects a path with maximum
route bandwidth where the route bandwidth of a path is
the minimum available bandwidth of all links in the path.
If more than one path has minimum hop count and
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maximum route bandwidth, it selects a path with
maximum total available bandwidth.

In a recent work, Jung et al. [22] evaluates and
compares the performances of different data scheduling
algorithms from the literature. In their study, the authors
include a large set of algorithms, namely feasible path,
minimum hop feasible path, widest/shortest feasible path,
shortest/widest feasible path, shortest distance feasible
path, dynamic alternative feasible path, OSPF like
algorithms, k dynamic paths, k static paths, slotted sliding
window, list sliding window, extended Bellman-Ford
algorithms. The study concludes that minimum hop
feasible path and dynamic alternative feasible paths are
superior to the other algorithms in the sense of
maximizing network utilization.

Other solutions to implement best-effort routing
services that solve the data dissemination problem based
on simulated annealing [23], tabu search [24], ant
colony [25], flooding [26], and vector converting [27]
techniques exist in the literature as well. But, the most
popular alternative solutions are genetic algorithm based.
Chang [28] and Munetomo [29,30] have applied the
genetic algorithm to the shortest path routing problem.
Both Chang and Munetomo use variable length
chromosome with each chromosome consisting of nodes
that are on the path from sender to receiver. The algorithm
in [29] is practically feasible in a wired or wireless
environment. It employs variable-length chromosomes for
encoding the problem. Other researchers who also use
genetic algorithm to solve the shortest path routing
problem (or a variation of it) are Sinclair [31],
Shimamoto [32], and Hamdan [33]. Yu et al. [34]
proposes a genetic algorithm for QoS-based routing
problem. They join maze algorithm to decoding process
to solve the problem and claim that this method obtains
better convergence and stability. There are several genetic
algorithms that address different kinds of routing
problems, such as multiple destination or multicasting
routing problems [35,36,37].

2.2 QoS-based routing services

To provide QoS guarantees to flows, two tasks need to be
accomplished. The first is to find a feasible path from
source to destination, which can meet the QoS
requirements; the second is to reserve the resources along
the path. QoS-based routing does the first task, while the
second one is handled by a resource reservation protocols.
QoS-based routing and resource reservation are two
different techniques that are used in conjunction for
solving the data dissemination needs of a system.
QoS-based routing itself cannot reserve resources, and
resource reservation protocols are not supposed to find the
feasible path.

2.2.1 Resource reservation protocols

Different from the best-effort services, QoS-based routing
requires advance resource reservation mechanisms. A
path is pre-determined and associated resources along the
path (link bandwidth, buffer space, etc.) are reserved
before the actual transmission. In other words, the path or
connection between source and destination is setup first.
When the transmission finishes, the path and associated
resources are released.

The problem of providing QoS guarantees such as
end-to-end delay bounds for applications has been the
subject of many studies (e.g., [8,38,39,40,41]). In order
to support end-to-end guaranteed service in the Internet,
the IETF has defined the Integrated Services (Intserv)
architecture [39]. Later in [40], the network element
(router) behaviour required to deliver a guaranteed delay
and bandwidth in the Internet were described.
Furthermore, Resource Reservation Protocol (RSVP) [41]
complements Intserv by enabling the resource
reservations on the routers along the path. Based on [8,
38,39,40,41] and the related studies, as is common in
related studies, this study assumes that the network allows
the share of any link bandwidth to be reserved for the
transmission of data items with deadlines.

2.2.2 QoS-based routing

PNNI (Private Network-Network Interface) [42] and
QOSPF (QoS routing extensions to OSPF) [43] are both
based on the link-state algorithms that support QoS. They
both require that every node try to acquire a map of the
underlying network topology and its available resources
via flooding. PNNI is used in ATM networks to route
connections based on the network state and topology
information. It is the only standardized QoS-based
routing protocol. To support QoS in QOSPF, routers not
only advertise topology information but also network
resource information. The network resource information
includes both router and link resources. Links that do not
satisfy the QoS requirement are excluded from the path
computation. The path computation algorithm in QOSPF
pre-computes a widest-shortest path, which is a minimum
hop count path with maximum bandwidth. Its
computational complexity is comparable to that of
Bellman-Ford shortest-path algorithm.

Several variations of QoS-based routing problems and
some proposed solutions to these problems could be
summarized as follows:

Bandwidth-bounded routing: For the incoming data
transfer requests, the required bandwidth values are
determined. Paths with sufficient bandwidths are
considered as feasible solutions. Several solutions have
been proposed to this problem [44,45,46].

Bandwidth-bounded, delay-optimized routing:
This problem can be either solved as a widest-shortest
path problem or a shortest-widest path problem [47].
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In [48], Grimmell et al. formulated a dynamic quickest
path problem, which deals with the transmission of a
message from a source to a destination with the minimum
end-to-end delay over a network with propagation delays
and dynamic bandwidth constrains on the links. Yang et
al. [49] computes the delay-weighted capacity for each
ingress-egress pair. The authors propose an algorithm that
avoids the use of the critical links by assigning large
weights to them. Critical links are defined as those links
whose inclusion in a path will cause the delay-weighted
capacity of several ingress-egress pairs to decrease.

Bandwidth-bounded, cost-bounded routing:
Solutions to this problem typically map the cost or the
bandwidth to a bounded integer value, and solve the
problem in polynomial time using an Extended
Bellman-Ford (EBF) or Extended Dijkstra Shortest Path
(EDSP) algorithm [50].

Multi-constrained routing : The objective of
multi-constrained routing is to simultaneously satisfy a
set of constraints [14,45]. Korkmaz et al. [14] proposes a
heuristic approach for the multi-constrained optimal path
problem (MCOP), which optimizes a non-linear function
(for feasibility) and a primary function (for optimality).

3 Problem formulation

A networked system is modeled by an undirected graph
G = (V,E), where V = {v1, ...,vn} defines the
heterogenous machines andE = {e1, ...,em} denotes the
links each of which connects any two machines of the
system. The machines can be storage elements with
limited storage space as well as network routers (or
switches). Eachei ∈ E is associated with a bandwidth
valueci > 0 and a delay valuedi ≥ 0.

R= {r1, ..., rλ } denotes a set of real-time data transfer
requests. Each requestr i ∈ R is modeled by a quadruple
< si , ti , fi ,δi > in which si is the source machine,ti is the
destination machine,fi is the requested data item, andδi >
0 is the deadline of requestr i .

Pi = {p1, ..., pl i} defines a set of paths for request
r i ∈ R, where p j ∈ Pi is a simple path which connects
machinessi and ti ; l i > 0 is the number of such paths.
Furthermore,Pi(ek) = {p j : p j ∈ Pi and ek ∈ E} denotes a
set of pathsp j ∈ Pi ( j ≤ l i ) each of which includes link
ek ∈ E for requestr i ∈ R.

Definition 3.1. The bandwidth demand of requestr i ∈ R
on pathp j ∈ Pi, which is denoted byπi j , is the minimum
bandwidth value that guarantees the timely delivery ofr i
at its destination.

πi j =
| fi |

δi − ∑
ek∈p j

dk
(1)

where| fi | denotes the data item size.

Definition 3.2. A path p j ∈ Pi is feasible forr i ∈ R if and
only if βi j ≥ πi j , whereβi j is the bottleneck bandwidth of

pathp j and equal to the minimum of available bandwidth
values of all the links that constitute the path.

Definition 3.3. A requestr i ∈ R is satisfied if there exists
at least one feasible path inPi .

Definition 3.4. The satisfiability of a set of real-time data
transfer requests is the number of satisfied requests inRby
means of a scheduling algorithm.

In the system, there is acentralized data
dissemination schedulerin charge of making all real-time
data scheduling decisions for all the data transfer requests
in R submitted by the running applications. Furthermore,
the scheduler is capable of issuing reservation requests to
the respective system components in order for the data
transfers to take place as scheduled. As a result, when a
data item fi with deadlineδi needs to be moved from a
source si to its destination ti storage element, the
scheduler calls for a data dissemination algorithm that
computes a path and bandwidth value, and one or more
system components collectively reserve the computed
bandwidth value on all links along the path until the end
of the transmission.

For the best-effort data dissemination problems
studied in the literature, a variety of goals are attained.
Some best-effort goal examples include the completion of
data transfer requests as early as possible, minimizing a
cost function associated with the data transfers or
maximizing over all link utilization. Since this work
focuses on the real-time data transfers, the goal differs
from the best-effort problems, and Definition 3.5 formally
gives it.

Definition 3.5. Given a networked systemG= (V,E) and
a set of real-time data transfer requestsR, the Real-Time
Unsplittable Data Dissemination Problem (RTU/DDP)
seeks to maximize the satisfiability ofR.

RTU/DDP : max∑
r i∈R

∑
p j∈Pi

xi j

∑
p j∈Pi

xi j ≤ 1,∀ r i ∈ R

∑
r i∈R

∑
p j∈Pi(ek)

πi j xi j ≤ ck,∀ ek ∈ E

xi j ∈ {0,1},∀ r i ∈ R and pj ∈ Pi (2)

wherexi j is 1 if requestr i ∈ R is transferred overp j ∈ Pi ,
and 0 otherwise.

In RTU/DDP, the objective function is to maximize the
number of satisfied requests. For any requestr i ∈ R, in the
first constraint, the number of paths that are used to make
it satisfiable must be less than or equal to one. The second
constraint for all linksek ∈ E requires that their capacity
must not be violated due to all scheduled data transfers.

Theorem 3.1.RTU/DDP is NP-hard.

Proof. The Unsplittable Flow Problem (UFP) known to
be NP-hard [51] can be reduced to the RTU/DDP in
polynomial time. For the UFP, different from the
RTU/DDP, each requestr i ∈ R is modeled with
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< si , ti ,πi ,ωi > quadruple in whichπi > 0 and ωi > 0
show the demand and profit ofr i ∈ R, respectively. Note
that UFP includes neither link delays nor request
deadlines.

UFP : max∑
r i∈R

∑
p j∈Pi

ωi j xi j

∑
p j∈Pi

xi j ≤ 1,∀ r i ∈ R

∑
r i∈R

∑
p j∈Pi(ek)

πixi j ≤ ck,∀ ek ∈ E

xi j ∈ {0,1},∀ r i ∈ R and pj ∈ Pi (3)

The UFP and RTU/DDP becomes equivalent if (1)ωi = 1
for all r i ∈R, and (2)πi = πi j = | fi |/δi for all r i ∈ R, where
di = 0 for all ei ∈ E is assumed.

Based on Theorem 3.1, an optimal solution to
RTU/DDP cannot be found in a polynomial time, unless P
= NP. Thus, heuristic approaches, e.g., [5,52], are adopted
to find good solutions to RTU/DDP. In this study, in order
to solve RTU/DDP, a two phase real-time data scheduling
approach is proposed in the subsequent sections.

4 Real-time unsplittable data dissemination

In this study, RTU/DDP is split into two sub-problems,
namely Real-Time Path Selection Problem (RT/PSP) and
Request Packing Problem (RPP), whose solutions are
sought in two separate phases. While RTU/DDP is solved,
in the first phase, a heuristic algorithm produces a
solution to RT/RSP, in which a single feasible path for
each request is included, if possible. Thus, after the first
phase, there are as many feasible paths as the number of
requests, or less. However, having a feasible path for each
request does not usually imply that all requests can be
simultaneously scheduled along their respective feasible
paths because of the link capacity constraints. In such a
case, a small number of requests must be rejected for the
sake of the remaining ones, which now can be satisfied
along their pre-computed paths. In this study, deciding
about which requests should stay and which ones should
be rejected is handled in the second phase. Thus, another
heuristic algorithm takes all the paths generated in the
first phase as an input and produces a solution to RPP, in
which a subset of input paths with the minimum
cardinality is rejected. In the following sections, several
algorithms for the solution of RT/PSP and RPP are
introduced.

4.1 Real-time path selection

The first phase, in which a feasible path is determined for
all requests, is Real-Time Path Selection Problem that is
formally defined as follows.

Definition 4.1. The congestion, which is denoted byζ , is
the maximum number of data transfers routed over any
link in the network when a feasible path is chosen for
every request.

ζ = max
ek∈E

∑
r i∈R

∑
p j∈P∗

i (ek)

xi j (4)

whereP∗
i (ek) is the set of feasible paths each of which

includes edgeek for requestr i ∈ R.

Definition 4.2. Given a networked systemG= (V,E) and
a set of real-time data transfer requestsR, the Real-Time
Path Selection Problem (RT/PSP) seeks to minimize the
congestion.

RT/PSP: min ζ

∑
p j∈P∗

i

xi j ≤ 1,∀ r i ∈ R

xi j ∈ {0,1},∀ r i ∈ R and pj ∈ Pi (5)

Theorem 4.1.RT/PSP is NP-hard.

Proof. RT/PSP is equivalent to Congestion Minimization
Problem, which is known to be NP-hard [53].

For the solution of RT/PSP, in this study, four
different algorithms are proposed. These algorithms adopt
different heuristics with different time complexities as
explained below.

4.1.1 Minimum hop minimum delay feasible path first
algorithm

The Minimum Hop Minimum Delay Feasible Path First
(MinMin/FPF) algorithm is based on the heuristic that the
congestion is minimized if every request gets routed over
a feasible pathwith minimum number of hops incurring a
small path delay. Note that a minimum hop feasible path
includes the least number of links to satisfy that request.
As a result, choosing a minimum hop feasible path for
every request leads to minimizing the total number of
network links that will be occupied by all request, which
is likely to minimize the congestion. Fig. 1 shows the
Minimum Hop Minimum Delay Feasible Path Heuristic
(MinMin/FPH). Using MinMin/FPH algorithm,
MinMin/FPF algorithm finds the feasible paths for all
requests, which is shown in Fig. 2.

MinMin/FPH is based on the Bellman-Ford shortest
path algorithm, and it is inspired by [54]. In Fig. 1, each
vertexv is associated with a hop count value (v.hopcount)
and a predecessor vertex (v.pred), wherev.hopcountis
the number of hops fromsourceto vertexv; v.pred is the
predecessor vertex of vertexv in the minimum hop
minimum delay path fromsourceto vertexv. Each edgee
is associated with a source vertex (e.source), a destination
vertex (e.dest), a delay value (e.delay), and a weight
value (e.weight). During the initialization,v.hopcountis
set to infinity if the vertex is not the source of request

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1072 M. M. Atanak et. al. : Modeling and Resource Scheduling of Real-Time...

MinMin/FPH algorithm
//Input: G(V,E), requestr
//Output:path: minimum hop minimum delay feasible path
//Initialization
source= r.source;
for each vertexv∈V

if v is sourcethen v.hopcount= 0;
elsev.hopcount= ∞; end if
v.pred=null ;

end for
//Main loop
for each vertexv∈V

for eachedgee∈ E
if e.dest.hopcount> e.source.hopcount+e.weight
then

e.dest.hopcount= e.source.hopcount+e.weight;
e.dest.pred= e.source;

else ife.dest.hopcount= e.source.hopcount+e.weight
then

CalculatePathDelay1 from sourceto e.dest;
CalculatePathDelay2 from sourceto e.source;
if PathDelay1> PathDelay2+e.delaythen

e.dest.pred= e.source;
end if

end if
end for

end for
//Construct min-hop min-delay path
v= r.destination;
repeat

Add the edge betweenv.predandv into path;
v= v.pred;

until v 6=null ;
if path is feasiblethen returnpath;
elsereturnnull ; end if

end algorithm

Fig. 1: MinMin/FPH algorithm

(r.source), in which casev.hopcount is set to zero. In
addition, since MinMin/FPH takesG= (V,E) as an input,
for every edge, the values ofe.source, e.dest, ande.delay
are already available to the algorithm. On the other hand,
e.weight is set to one by MinMin/FPF during its
initialization phase.

In the main loop, the algorithm tries to find the
minimum hop count path between the source (r.source)
and destination (r.destination) vertices sincee.weight is
one for all edges. If more than one path has the same hop
count, the path with minimum delay is favored. Once the
main loop ends,v.hopcount and v.pred have been
determined for all vertices in the network. For the request
of interest, the minimum hop minimum delay path is
constructed by followingv.pred from destination to
source vertex. Finally, the path found by the algorithm is
checked for feasibility. If the path is not feasible, an
empty path is returned; otherwise, the path found is

MinMin/FPF algorithm
//Input: G(V,E), set of requestsR
//Output:P: min-hop min-delay feasible paths for requests
//Initialization
for each edgee∈ E

e.weight= 1;
end for
//Main loop
for each requestr ∈ R

Add MinMin/FPH(G,r) into setP;
end for

end algorithm

Fig. 2: MinMin/FPF algorithm

returned. In Fig. 2, MinMin/FPF calls MinMin/FPH once
for each request in the main loop. Then, it inserts the path
found by MinMin/FPH into setP.

The time complexity of minimum hop Bellman Ford
algorithm is O(|V||E|). MinMin/FPH algorithm
additionally calculates path delays in each step, which
takes|E| steps in the worst case. Thus, MinMin/FPH runs
in O(|V||E|2) for a single request. Since MinMin/FPH
should be run for each requestr i ∈ R, the time complexity
of MinMin/FPF becomesO(|V||E|2|R|).

4.1.2 Edge disjoint minimum hop minimum delay FPF
algorithm

MinMin/FPF gives higher priority to the paths with fewer
hops. However, the selected paths by MinMin/FPF may
still use some of the links more than the others. That is,
while some links are under-utilized, some others may be
exhausted. Yet, such an unbalanced use of links will cause
the congestion increase

The Edge Disjoint Minimum Hop Minimum Delay
FPF (Edge Disjoint MinMin/FPF) algorithm adopts the
heuristic that the congestion is minimized if every request
gets routed over afeasible pathwith minimum number of
hops incurring a small path delay that are edge disjoint. If
Edge Disjoint MinMin/FPF finds an edge disjoint path for
every request, all requests are guaranteed to be satisfied in
the second phase, in which case the congestion becomes
one. Unfortunately, the congestion value of one is usually
impossible to attain. Yet, Edge Disjoint MinMin/FPF
keeps the congestion under control by selecting
edge-disjoint paths as much as possible.

As shown in Fig. 3, Edge Disjoint MinMin/FPF sorts
all requests in increasing order based on their bandwidth
demands during initialization and later considers them for
scheduling in the sorted order. In addition, the algorithm
sets all edge weights to one, which makes MinMin/FPH
return a minimum hop and minimum delay feasible path
for the respective request, if possible. Inside the main
loop, Edge Disjoint MinMin/FPF tries to find out edge
disjoint paths for the requests with the help of
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Edge disjoint MinMin/FPF algorithm
//Input: G(V,E), set of requestsR
//Output:P: edge disjoint min. hop min. delay feasible paths
//Initialization
Calculateπi = | fi |÷δi for each requestr i ∈ R;
Sort requests in increasing order wrtπi ;
for each edgee∈ E

e.weight= 1;
end for
//Main loop
repeat

RestoreG to include all vertices and edges in the network;
repeat

Pick the firstunprocessedrequestr in the sorted order;
if (path=MinMin/FPH(G, r)) 6= null then

Add path into setP;
Mark r asprocessed;
G= G−{e : e∈ path};

else
if G includes all vertices and edgesthen

Mark r asprocessed;
end if

end if
until GraphG becomes disconnected;

until All requests are processed;
end algorithm

Fig. 3: Edge disjoint MinMin/FPF algorithm

MinMin/FPH. That is, when MinMin/FPH finds out a
path for a request, a reduced graph is obtained by
temporarily deleting all links used by this path. For the
next request, MinMin/FPH will be looking for a path in
this reduced graph, which ensures that the paths returned
by MinMin/FPH for these two requests are edge disjoint.
While deleting the links from the graph, at some point,
the graph becomes disconnected and the algorithm
restores the graph and continues as before. As a result, it
is more likely that not all paths returned by Edge Disjoint
MinMin/FPF are edge disjoint.

In Edge Disjoint MinMin/FPF algorithm, the
worst-case scenario occurs when only one request can be
marked asprocessedby inner repeat loop until the graph
gets disconnected. Yet, MinMin/FPH is called for all
currently unprocessed requests by inner repeat loop.
Thus, MinMin/FPH needs to be calledO(|R|2) times,
which leads to the time complexity ofO(|V||E|2|R|2).

4.1.3 Minimum contention feasible path first algorithm

Both MinMin/FPF and Edge Disjoint MinMin/FPF
assume that each edge has a unity weight value as far as
the congestion is concerned, and they do not consider the
link bandwidths while computing paths. On the other
hand, the network is composed of links with different
bandwidth values and the admissible congestion values

MinCon/FPF algorithm
//Input: G(V,E), set of requestsR
//Output:P: min. contention feasible paths for requests
//Initialization
FindAverageBandwidthusing alle.bandwidthvalues;
for each edgee∈ E

e.weight= 1;
end for
//Main loop
for each requestr ∈ R

Add path=MinMin/FPH(G,r) into setP;
for each edgee∈ path
e.weight= e.weight+

Alpha×AverageBandwidth÷e.bandwidth;
end for

end for
end algorithm

Fig. 4: MinCon/FPF algorithm

for different links can be different. In order to take this
fact into account, the links with low bandwidth values can
be assigned higher weight values in commensurate to
their bandwidths as compared to the ones with high
bandwidth values. Then, during the computation of
minimum weight paths for requests by a shortest-path
algorithm, such a weight assignment will favor the links
with high bandwidth and minimize the use of the links
with low bandwidth.

The Minimum Contention Feasible Path First
(MinCon/FPF) algorithm, as shown in Fig. 4, is very
similar to MinMin/FPF. The main difference between
these two algorithms is that the former one dynamically
adjusts the link weights in order to reflect the current link
congestion more accurately. This dynamic weight
adjustment of links is carried out as follows. First,
AverageBandwidthvalue is computed over all links
available in the network. When a link is used for
delivering a data item, its weight is increased by some
amount based on the ratio
AverageBandwidth/e.bandwidth. If the link has
relatively low/high bandwidth value,
AverageBandwidth/e.bandwidthis greater/less than one.
Thus, such a link weight adjustment puts more weight on
low-bandwidth links so that they will have less chance of
being selected by MinMin/FPH for the next request.
Eventually, low-bandwidth links will have lower
congestion values as compared to high-bandwidth links.
The parameterAlpha > 0 is further used to further
increase or decrease the impact of
AverageBandwidth/e.bandwidthratio during the weight
computation. The time complexity of MinCon/FPF is
O(|V||E|2|R|).
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4.1.4 Link-flow limited minimum contention feasible
path first algorithm

Both Edge Disjoint MinMin/FPF and MinCon/FPF try to
minimize link congestion by adopting very different
approaches: the former one relies on the edge disjoint
paths, while the latter one is based on the dynamic weight
adjustment. The Link-Flow Limited Minimum
Contention Feasible Path First (LFL-MinCon/FPF)
algorithm, which is shown in Fig. 5, aims at unifying
these two approaches to further minimize the congestion.

As shown in Fig. 5, LFL-MinCon/FPF algorithm
works very similar to Edge Disjoint MinMin/FPF. The
main differences between these two algorithms are as
follows. (1) When Edge Disjoint MinMin/FPF finds a
path, it temporarily deletes all the links on this path
before the start of the next iteration for an unprocessed
request. On the other hand, LFL-MinCon/FPF first
re-computes the link weights on the path, which is similar
to MinCon/FPF. Then, if the new weight value of any
edge is greater than a loop count-adjusted threshold value
(AllowableLinkWeight×LoopCount), only this link (not
all the links on the path found) is removed from the
network. (2) Edge Disjoint MinMin/FPF always returns
minimum hop and minimum delay paths for requests.
However, this is not necessarily true for
LFL-MinCon/FPF due to the dynamic weight
computation.

In Fig. 5, AllowableLinkWeight is a threshold
parameter, which is received as an input parameter by the
algorithm. During operation of the algorithm, the network
may get disconnected before marking all requests as
processed in iterationLoopCount. When this happens, the
graph is first restored. Then, a link will be deleted from
the graph only if its weight now exceeds
AllowableLinkWeight× (LoopCount+ 1). The time
complexity of LFL-MinCon/FPF is O(|V||E|2|R|2),
which is the same as that of Edge Disjoint MinMin/FPF.

4.2 Request packing

Once one of the four algorithms is used to determine a
path for each request, it is the responsibility of the request
packing algorithm to maximize the number of satisfied
requests. The request packing problem is formally defined
below.
Definition 4.3. Given an undirected graphG= (V,E) and
a set of real-time data transfer requestsR, in which each
requestr i ∈ R is modelled with< pi ,πi j > tuple, the
Request Packing Problem (RPP) seeks to maximize the
number of satisfiable requests.

RPP: max∑
r i∈R

xi

∑
r i∈R

∑
p j∈P†(ek)

πi j xi ≤ ck,∀ ek ∈ E

xi j ∈ {0,1},∀ r i ∈ R and pj ∈ Pi (6)

LFL-MinCon/FPF algorithm
//Input: G(V,E), requestr
//Output: path: link flow limited minimum contention

feasible paths for requests
//Initialization
Calculateπi = | fi |÷δi for each requestr i ∈ R;
Sort requests in increasing order wrtπi ;
FindAverageBandwidthusing alle.bandwidthvalues;
for each edgee∈ E

e.weight= 1;
end for
//Main loop
LoopCount= 1;
repeat

RestoreG to include all vertices and edges in the network;
repeat

Pick the firstunprocessedrequestr in the sorted order;
if (path=MinMin/FPH(G, r)) 6= null then

Add path into setP;
Mark r asprocessed;
for each edgee∈ E

e.weight= e.weight+
Alpha×AverageBandwidth÷e.bandwidth;

if e.weight> AllowableLinkWeight×LoopCount
then

G= G−{e : e∈ path};
end if

end for
else

if G includes all vertices and edgesthen
Mark r asprocessed;

end if
end if

until GraphG becomes disconnected;
LoopCount= LoopCount+1;

until All requests are processed;
end algorithm

Fig. 5: LFL-MinCon/FPF algorithm

wherexi is 1 if requestr i ∈ R is satisfied, and 0 otherwise;
P† is a set of feasible paths for requestr i ∈ RandP†(ek) is
the set of feasible paths that include linkek ∈ E.

Theorem 4.2.RPP is NP-hard.

Proof. Multidimensional 0-1 Knapsack Problem
(MKP) [55] known to be NP-hard can be reduced to a
RPP in polynomial time.

MKP : max
n

∑
i=1

ωixi

n

∑
i=1

ai j xi ≤ c j ,1≤ j ≤ m

xi ∈ {0,1},1≤ i ≤ n (7)

where n is the number of items,m is the number of
knapsacks with capacityc j > 0, ωi > 0 is the profit of
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including theith item, xi is 1 if the ith item is included
into a knapsack and 0 otherwise, andai j (0≤ ai j ≤ c j for
all 1≤ j ≤ m) is the resource consumed by theith item in
the jth knapsack. The MKP and RPP becomes equivalent
if

–Let n andm be equal to the number of requests and
edges, respectively,

–ωi = 1 for 1≤ i ≤ n, and
–ai j = πi j = | fi |/δi for all r i ∈ R, wheredi = 0 for all
ei ∈ E is assumed.

MKP is a well-known integer-programming problem.
Exact algorithms based on branch and bound and
dynamic programming are proposed, but they work in
modest size problems only. Thus, in this study, two
heuristic algorithms are proposed to solve RPP. Both
algorithms are based on the concept of contention graph.

Definition 4.4. The bottleneck link is a link whose
bandwidth capacity will be exceeded by the total
bandwidth demand of one or more requests if these
requests were scheduled to use the link.

Definition 4.5. The contention graph is a bipartite graph
whose vertices correspond to all requests and all
bottleneck links, and whose edges connect a request
vertex to a bottleneck link vertex provided that the path of
request includes this bottleneck link.

4.2.1 Maximum number of outgoing flows first

The Maximum Number of Outgoing Flows First
(MNOFF) algorithm is shown in Fig. 6. Initially, all
requests are satisfiable. In its main loop, MNOFF first
produces a contention graph based on the paths chosen by
the respective path selection algorithm by following
Definition 4.4 and 4.5. Then, in each iteration, MNOFF
drops the request with the maximum number of outgoing
flows (the vertex with the maximum number of edges in
the contention graph) until no edge is left in the graph. In
the case of equality, MNOFF picks the request with the
highest bandwidth demand. Once a request is deemed to
be unsatisfiable, MNOFF updates the contention graph
and continues until all edges are removed.

During the operation of MNOFF, the contention graph
is updated for every request deemed to be unsatisfiable
until all edges are removed from the graph. The rationale
behind such an update and the update scheme are as
follows. In the contention graph, an edge indicates that
one or more than one request will not be satisfied. If a
request is considered to be unsatisfiable, the contention
graph is required to be updated to reflect the drop of this
request. That is, the bandwidth demand of dropped
requests should be subtracted from the used bandwidths
of the related bottleneck links and the results should be
compared with the respective link bandwidth capacities.
If a bottleneck link is found be not bottleneck anymore,
the vertex for this link and all the connections made to the

MNOFF/MOFF algorithm
//Input: G(V,E), set of requestsR, set of pathsP
//Output: list of satisfied requests
//Initialization
for each requestr ∈ R

r.status= satis f iable;
end for
//Main loop
Form contention graph;
repeat

if MNOFF then
r : request with maximum number of outgoing flow;

else
r : request with maximum outgoing flow;

end if
Let r.status= unsatis f iable;
Update contention graph;

until Contention graph has an edge;
end algorithm

Fig. 6: MNOFF/MOFF algorithm

vertex should be excluded from the graph. Thus, as long
as there are edges in the contention graph, there exist
unsatisfiable requests.

Finding the request with maximum number of
outgoing flow isO(|E||R|) and updating the contention
graph takesO(|E||R|) in the worst case. Since each
iteration marks one request as unsatisfiable, the loop
repeats |R| times. Therefore, the time complexity of
MNOFF algorithm isO(|E||R|2).

4.2.2 Maximum outgoing flows first

The Maximum Outgoing Flows First (MOFF) algorithm
is depicted in Fig. 6. The only difference between MOFF
and MNOFF is the criterion used to choose unsatisfiable
requests. That is, the criterion of MNOFF is the number
of edges leaving a request vertex, while that of MOFF is
the number of edges leaving a request vertex times the
demand of this request, which is referred as the maximum
outgoing flow. The time complexity of MOFF algorithm
is O(|E||R|2), which is the same as that of MNOFF
algorithm.

5 Experimental results

In order to evaluate the performance of the algorithms, a
simulation program that can be used to emulate the
execution of randomly created data transfer requests on a
simulated network was developed. The simulator was
written in C++ programming language. The performances
of the algorithms are tested against a genetic algorithm
(GA) solution of the RTU/DDP and a popular best effort
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algorithm, namely Full Path Heuristic (FPH) algorithm,
that can solve RTU/DDP from the literature [5].

Genetic algorithm based solutions are employed in the
solution of the data dissemination problems as well as
most of the optimization problems. Guided search
mechanisms in the genetic algorithms may guide the
algorithm designers to engineer algorithms with better
performances. Genetic algorithms include four main
components: candidate solutions are encoded in a binary
string or matrix and they are artificially evolved to toward
better solutions. In order to produce the next generation of
solutions, some of the solutions of the initial population
are selected via a selection operation. Then, during the
reproduction process, next generation population is
produced from the initial population through two possible
genetic operators: cross over and mutation. The process is
repeated until a termination condition is reached.

In the GA solution proposed in this study, the
algorithm starts by finding PATHDIVERSITY possible
paths for each request using a k-shortest path algorithm.
In the final solution, at most one path can be chosen for a
single request. Two dimensional
NUMBER OF REQUESTS by PATHDIVERSITY
solution matrix SM is defined as follows: SM[i][j] is
equal to 1 if path j is chosen for request i, and 0 otherwise.
Each row in SM matrix designates the selected path
information for a single request, and since the flows are
unsplittable, at most one entry of SM matrix can be 1 for
a single row. A population is a set of solution matrices.
RTU/DDP becomes finding the fittest solution matrix.

Roulette wheel implementation is used as the
selection operation in the solution. This operation ensures
that fitter solutions receive a higher probability in entering
the genetic operators of the reproduction stage. In
proposed cross over operation, two solution matrices are
chosen by the selection operation. Two different cross
over sites are chosen from 0 to
NUMBER OF REQUESTS. Two new solutions are
generated by swapping the rows of chosen solution
matrices that lies between the cross sites. Mutation
operation is defined as follows: a solution matrix is
chosen by the selection operation. Two random numbers
are created: one number selects a request and the second
number selects a path. A new solution is generated by
assigning the selected path to selected request. If the
solution is valid, the fitness value is equal to number of
ones in solution matrix, and zero otherwise. The fitness
values of the new solutions are evaluated. The solutions
with lowest fitness values are deleted from the population.

The performances of the algorithms are tested in three
different network settings. First experiment set uses a
network based on the topology of the GÈANT network
(as known in April 2004). G̀EANT is a pan-European
multi-gigabit data communications network, reserved
specifically for research and education use. The network
is detailed in [56] and has 33 nodes and 44 links. LCG
network (as of 2008) is used as to identify the underlying
topology in the second experiment. LCG network (as of

2008) [4] has 151 nodes and 164 links. As the third set of
experiments, a random topology, which is called RT
network (Random Topology) in this study, of 100 nodes a
400 links is randomly created. The links in RT network
have bandwidths uniformly distributed in 20%
neighbourhood of AVEBANDWIDTH (between 0.8×
AVE BANDWIDTH and 1.2× AVE BANDWIDTH) and
delays uniformly distributed in 20% neighbourhood of
AVE DELAY.

During the simulations, all data transfer requests are
assumed to come in to the system at time zero. After
generating the network topology,
NUMBER OF REQUESTS requests are generated with
the following parameters: AVEREQUESTSIZE and
AVE DEADLINE. Table 1 presents the values of these
parameters in the base simulation study. Request sizes
and deadline values of a request reside within 20%
neighbourhood of the two parameters.

In each experiment set, the base studies are performed
first. Then, individual parameters are varied to analyze the
effect of the parameter on the real-time performance of the
algorithms.

5.1 Results using G̀EANT network

As part of the tests with G̀EANT network, a base set of
results was established with parameter values of
NUMBER OF REQUESTS=1000,
AVE REQUESTSIZE=10 Gbit and
AVE DEADLINE=200 sec. The base results are shown in
Table 1. Each data in Table 1 denotes the average
satisfiability (the percentage of number of satisfied
requests to total number of requests) in one hundred
simulation runs.

Table 1: Base results of test set using GÈANT network.
Path Selection Request Packing Base Results

MinMin/FPF
MNOFF 52.65
MOFF 54.16

ED MinMin/FPF
MNOFF 52.82
MOFF 52.91

MinCon/FPF
MNOFF 54.11
MOFF 54.28

LFL-MinCon/FPF
MNOFF 46.08
MOFF 46.08

GA 52.97
FPF 50.76

As it can be seen from the results in Table 1, the best
satisfiability results are obtained if MinCon/FPF is used
as the underlying path selection algorithm and MOFF is
selected as the underlying request packing algorithm. For
all path selection algorithms, MOFF request packing
algorithm performs at least as good as MNOFF algorithm.
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LFL-MinCon/FPF algorithm does not yield good
real-time performances.

As shown in Figure 7, if the number of requests that is
submitted to the system is increased, the real-time
performance results decrease. In all cases, (MinCon/FPF,
MOFF) is sharing the lead with (Edge Disjoint
MinMin/FPF, MOFF) tuple. LFL-MinCon/FPF performs
the worst

Fig. 7: Effect of varying number of requests on real-time
performance in G̀EANT network

Fig. 8: Effect of varying average request size on real-time
performance in G̀EANT network

Figure 8 shows the effect of varying the average
request size. Increasing the average request size gradually
from 5 Gbit to 15 Gbit, decreases the average satisfiability

results. In almost all cases, (MinCon/FPF, MOFF) is
sharing the lead with (Edge Disjoint MinMin/FPF,
MOFF) tuple. LFL-MinCon/FPF yields the worst results.

5.2 Results using LCG network

The number of nodes LCG network is 151 and the
number of links is 164. The number of nodes and links in
GÈANT network was 33 and 44, respectively. Clearly,
LCG network is a bigger network than GÈANT.
Furthermore, the number of links per number of nodes
ratio is smaller. Immediate consequence of this is the
overall decrease in performance results which is evident
in Table 2.

Table 2: Base results of test set using LCG network.
Path Selection Request Packing Base Results

MinMin/FPF
MNOFF 33.23
MOFF 34.53

ED MinMin/FPF
MNOFF 33.15
MOFF 34.52

MinCon/FPF
MNOFF 35.25
MOFF 35.92

LFL-MinCon/FPF
MNOFF 31.90
MOFF 31.89

GA 33.98
FPF 31.61

A comprehensive analysis of the results in Table 2,
together with the results shown in Figures 9 and 10 shows
that the best real-time performance results are still
obtained with (MinCon/FPF, MOFF) tuple.

5.3 Results using random networks

In RT network, 400 links are randomly placed between
100 nodes. Link bandwidths and delays are chosen within
20% neighborhood of the average values of
AVE BANDWIDTH=500 Mbit/sec and AVEDELAY=5
msec. Since there exists a large number of links per
number of nodes ratio, average performance results are
larger than both G̀EANT and LCG networks.

Results presented in Table 3 and Figures 11-12 are
consistent with the results of G̀EANT and LCG networks.
The best performance results are obtained by
(MinCon/FPF, MOFF) tuple. In Figures 11-12,
LFL-MinCon/FPF performs similar results as
MinCon/FPF algorithm. However, the time complexity of
MinCon/FPF is much smaller than LFL-MinCon/FPF and
should be chosen as the preferred path selection
algorithm.
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Fig. 9: Effect of varying number of requests on real-time
performance in LCG network

Fig. 10: Effect of varying average request size on real-time
performance in LCG network

6 Conclusions

This work presented a real time data dissemination model
and formally introduced a data dissemination problem
which is referred as Real-Time Unsplittable Data
Dissemination Problem (RTU/DDP). The problem is
divided into two subproblems: path selection and request
packing. Path selection algorithm tries to find possible
paths for each request. Request packing algorithm decides
which requests should be satisfied to maximize the
number of satisfiable requests. MinMin/FPF, Edge
Disjoint MinMin/FPF, MinCon/FPF, and
LFL-MinCon/FPF algorithms are proposed for possible
path selection algorithms. MNOFF and MOFF algorithms
are proposed for possible request packing algorithms.

Table 3: Base results of test set using RT network.
Path Selection Request Packing Base Results

MinMin/FPF
MNOFF 73.67
MOFF 75.42

ED MinMin/FPF
MNOFF 73.96
MOFF 74.63

MinCon/FPF
MNOFF 77.93
MOFF 78.78

LFL-MinCon/FPF
MNOFF 77.93
MOFF 78.78

GA 77.71
FPF 74.72

Fig. 11: Effect of varying number of requests on real-time
performance in RT network

Performance results of the algorithms are compared
against a genetic algorithm solution that is proposed to
solve RTU/DDP in this study and a fast and effective
method from the literature, namely Full Path Heuristic
(FPH), which can solve RTU/DDP.

The algorithms are tested in three different network
configurations: G̀EANT network, LCG network, and a
randomly generated RT network. Considering the
real-time performance results and time complexity of the
algorithms, it can be concluded best performances are
achieved when MinCon/FPF path selection algorithm is
followed by MOFF request packing algorithm
outperforming the genetic algorithm solution and the
FPH.

As a future work, the authors will try to find heuristics
to deliver the data transfer requests from multiple sources
and from multiple routes.
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Fig. 12: Effect of varying average request size on real-time
performance in RT network
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