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Abstract: In this article, we propose a new family of distributions called odd Burr-III family of distributions generated from the logit
of Burr-III random variable. We display density and hazard rate plots of four special distributions of this new family and found it very
flexible with respect to density and hazard rate shapes. The family density can also be expressed as a linear combination of
exponentiated-G densities of the baseline distribution. We obtain some mathematical properties of this new family such as quantile
function, moments and incomplete moments, moment generating function, mean deviations, Shannon entropy, stress-strength
reliability and the density of order statistics. The model parameters are obtained by employing the method of maximum likelihood.
The mathematical properties of a special model of this family, the odd Burr-III-Lomax (OBIIILx) distribution are obtained and its
usefulness is illustrated for uncensored and censored datasets.
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1 Introduction

Statistical distributions are very useful in describing real-world phenomenons. Although many distributions have been
developed but there is always a room for new distributions which are either more flexible in term of fitting a specific
real-world scenario. This attempt has motivated researchers to seek and develop new flexible distributions. As a result,
many new distributions have been developed and studied in literature. From the past several years, there is a growing trend
of generating new families of distributions from existing distribution by adding one or more additional parameter(s) to the
baseline distribution to study the behavior of the shapes ofdensity and hazard rate, and for checking the goodness-of-fit
of proposed distributions.

If g(x), G(x) and 1− G(x) are the probability density function, cumulative distribution function and reliability
function of the baseline distribution. Then, Eugene et al. (2002) first introducedbeta-G family from the the logit of beta
distribution, and studied beta-normal distribution. Cordeiro and de-Catro (2011) proposed a very flexible generalized
family by adding two-additional parameters from the logit of Kumaraswamy distribution. Alexander et al. (2012)
extended beta-G family and introducedMcDonald-G family of distributions. Torabi and Montazeri (2012) used
generatorG(x)/[1 − G(x)] and proposed odd gamma generalized family from the logit of gamma distribution.
Bourguignon et al. (2014) also used generatorG(x)/[1−G(x)] and introducedWeibull-G family of distribution from
Weibull distribution logit. Zografos and Balakrishnan (2009) proposedgamma-G family using generator− log[1−G(x)].
Ristić and Balakrishnan (2012) introduced anothergamma-G family from generator− log[G(x)]. Amini et al. (2012)
introduced twolog-gamma-G families from generators− log[1−G(x)] and− log[G(x)] with motivation to upper and
lower records. Cordeiro et al. (2013) proposedexponentiated-generalized-G family of distributions. Alzaatreh et al.
(2013) pioneered a very general approach, thetransformed-transformer (T-X) family. Alzaghal et al. (2013) further
extended T-X family and proposedexponentiated T-X family of distributions. Aljarrah et al. (2014) introducedT-X
family based on quantile function approach.
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Very recently, some new families of distributions have beenproposed in literature. The peculiar ones are: odd Burr-G
family (Alizadeh et al., 2017), generalized odd log-logistic family (Cordeiro et al., 2017), new generalized odd log-logistic
family (Haghbin et al., 2016), and odd log-logistic LindleyPoisson family (̈Ozel et al., 2016).

Burr (1942) gave a system of twelve cumulative distributionfunctions for the purpose of fitting data. From which Burr
XII and Burr X models have received considerable attention and different extended Burr XII and Burr X models have been
proposed in literature. The Burr III model has received comparatively less attention in statistical literature. Therefore, in
this paper we propose and study a new generalized family fromBurr III logit.

The cumulative distribution function (cdf) and probability density function (pdf) of Burr III distribution are,
respectively, given by

Π(x;c,k) =
(

1+ x−c)−k
(1)

and
π(x;c,k) = ck x−c−1 (1+ x−c)−k−1

, x > 0, c,k > 0, (2)

wherec andk are both shape parameters.

Now, we introduce a new family of distributions from Burr-III density (2) by replacingx with the oddsG(x)/[1−G(x)].
The cdf of odd Burr III generalized (OBIII-G) family of distributions is defined by

F(x;c,k,ξ ) =
∫

G(x)
1−G(x)

0
ck t−c−1 (1+ t−c)−k−1

dt =

{

1+

(

1−G(x,ξ )
G(x,ξ )

)c}−k

. (3)

The pdf corresponding to Eq. (3) is

f (x;c,k,ξ ) = ck g(x,ξ )
[1−G(x,ξ )]c−1

G(x,ξ )c+1

[

1+

(

1−G(x,ξ )
G(x,ξ )

)c]−k−1

, (4)

whereG(x;ξ ) andg(x;ξ ) is the cdf and pdf of any baseline distribution, andξ is the vector of parameters in a baseline
distribution. Henceforth, a random variableX having density (4) with parametersc, k and ξ is denoted by
X ∼ OBIIIG(c,k,ξ ).

The hazard rate function (hrf) of OBIII-G family is given by

h(x;c,k,ξ ) =
ck g(x) [1−G(x)]c−1

G(x)c+1

[

1+
(

1−G(x)
G(x)

)c]−k−1

1−
[

1+
(

1−G(x)
G(x)

)c]−k . (5)

The main motivation of this study are: (i) to obtain more flexible model with less number of parameters and to
get goodness-of-fit on the real life survival data, (ii) to make the kurtosis more flexible, (iii) to generate distributions
with symmetric, left-skewed, right-skewed, J, reversed-Jshaped and bimodal, (iv) to make a skewness for symmetrical
distributions, (v) to build heavy-tailed distributions that are not longer-tailed for modeling real data, (vi) to describe
special models with all types of the hrf, and (vii) to provideconsistently better fits than other generated models under the
same baseline distribution.

This paper is organized as follows. In Section 2, four special models of OBIII-G family are described, and the plots
of their densities and hazard rate functions are displayed.In Section 3, some important mathematical properties of the
new family such as the quantile function, asymptotics, shapes of the density and hazard rate functions, a useful
expansion of OBIII-G family, ordinary and incomplete moments, mean deviations, generating function, Rényi and
Shannon entropies, stress-strength reliability parameter and order statistics are obtained. In Section 4, the family
parameters are estimated by the method of maximum likelihood. The properties of a special model, that is theOdd Burr
III Lomax (OBIIILx) distribution are given in Section 5. In Section 6,a simulation is conducted to assess the
performance of maximum likelihood estimators. Three real-life data are analyzed to illustrate the performance of the
OBIIILx model in Section 7. Section 8 offers some concludingremarks.

2 Special models of OBIII-G family

In this section, we discuss four special models of OBIII-G family and display their plots of density and hazard rate
functions.
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2.1 Odd Burr III-uniform distribution

Let uniform is the baseline distribution with parameterθ > 0 having cdf and pdfG(x,θ ) = x/θ and g(x,θ ) = 1/θ ,
respectively. Then the cdf and pdf of odd Burr-III-uniform (OBIIIU) distribution are, respectively, given by

F(x;c,k,θ ) =
{

1+

[

θ − x
x

]c}−k

(6)

and

f (x) =
ck
θ

{

1− x
θ
}c+1

{

x
θ
}c−1

{

1+

[

θ − x
x

]c}−k−1

. (7)

A random variable having density (7) is denoted byX ∼ OBIIIU(c,k,θ ). In Figure 1, the plots of density and hazard rate
of OBIIIU distribution are displayed. The density can produce shapes such as left-skewed, symmetrical, J, reversed-J and
U, and the hazard rate exhibits increasing and bathtub shapes.
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Fig. 1: Plots of (a) densities and (b) hazard rates of OBIIIU distribution.

2.2 Odd Burr III-exponential distribution

Let exponential is the baseline distribution with parameter α > 0 having cdf and pdfG(x) = 1− e−αx andg(x) = αe−αx,
respectively. Then the cdf and pdf of odd Burr III-exponential (OBIIIE) distribution are, respectively, given by

F(x) =

[

1+

{

e−αx

1− e−αx

}c]−k

(8)

and

f (x) = ck αe−αx {e−αx}
c+1

{1− e−αx}c−1

[

1+

{

e−αx

1− e−αx

}c]−k

. (9)

A random variable having density (7) is denoted byX ∼ OBIIIE(c,k,α). In Figure 2, the plots of density and hazard
rate of OBIIIE distribution are given. The density can produced shapes such as right-skewed, symmetrical and reverse- J
and the shapes of the hazard rate are increasing, decreasing, constant and bathtub.
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Fig. 2: Plots of (a) densities and (b) hazard rates of OBIIIE distribution.

2.3 Odd Burr III-Lomax distribution

Let Lomax is the baseline distribution with parametersα > 0 andβ > 0 having cdf and pdfG(x) = [1+(x/β )]−α and
g(x) = (α/β ) [1+(x/β )]−α−1, respectively. Then the cdf and pdf of odd Burr III-Lomax (OBIIILx) distribution are,
respectively, given by

F(x) =






1+







(

1+ x
β

)−α

1−
(

1+ x
β

)−α







c





−k

(10)

and

f (x) = ck
α
β

(

1+
x
β

)−α−1

[

(

1+ x
β

)−α
]c−1

[

1−
(

1+ x
β

)−α
]c+1






1+







(

1+ x
β

)−α

1−
(

1+ x
β

)−α







c





−k−1

. (11)

A random variable having density (11) is denoted byX ∼ OBIIILx (c,k,α,β ). In Figure 3, the plots of density and
hazard rate of OBIIILx distribution are presented. The density can produce right-skewed and reverse-J shapes, and hazard
rate exhibits decreasing and upside-down bathtub shapes.
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Fig. 3: Plots of (a) densities and (b) hazard rates of OBIIILx distribution.
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2.4 Odd Burr III-logistic distribution

Let logistic is the baseline distribution with parameterλ > 0 having cdf and pdfG(x) = (1+ e−αx)
−1 and

g(x) = αe−αx (1+ e−αx)
−2, respectively. Then the cdf and pdf of odd Burr-III-logistic (OBIIIL) distribution are,

respectively, given by

F(x) =

[

1+

{

1− (1+ e−αx)
−1

(1+ e−αx)−1

}c]−k

(12)

and

f (x) = ck αe−αx (1+ e−αx)−2

{

1− (1+ e−αx)
−1
}c+1

{

(1+ e−αx)−1
}c−1

[

1+

{

1− (1+ e−αx)
−1

(1+ e−αx)−1

}c]−k

. (13)

A random variable having density (13) is denoted byX ∼ OBIIIL(c,k,α). In Figure 4, the plots of density and hazard
rate functions of OBIIIL distribution are given. The density can be of symmetrical and right-skewed shape while hazard
rate can exhibit only increasing and constant shapes .
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Fig. 4: Plots of (a) densities and (b) hazard rates of OBIIIL distribution.

3 Mathematical properties of OBIII-G family

In this section, we provide some mathematical properties ofthe OBIII-G family of distributions.

3.1 Quantile function and simulation

The OBIII-G family can easily be simulated by inverting Eq. (3) as follows: ifu has a uniform distributionU(0,1), then

QX (u) = QG

[

1+
(

u−
1
k −1

) 1
c
]−1

, (14)

whereQG(.) = G−1(.) is the baseline quantile function (qf).
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3.2 Asymptotic and shapes

Let X takes non-negative value. Then, the asymptotics of Eqs. (3), (4) and (5) asx → 0 are given by

F(x) ∼ G(x)ck,

f (x) ∼ ckg(x)G(x)ck−1,

h(x) ∼ ckg(x)G(x)ck−1.

The asymptotics of Eqs. (3), (4) and (5) asx → ∞ are given by

1−F(x) ∼ k Ḡ(x)c,

f (x) ∼ ckg(x)Ḡ(x)c−1,

h(x) ∼
c g(x)

Ḡ(x)
.

The shapes of the density and hazard rate functions can be described analytically. The critical points of the OBIII-G
family density function are the roots of the equation:

g′(x)
g(x)

+ (ck−1)
g(x)
G(x)

+ (1− c)
g(x)

Ḡ(x)
− c(k+1)g(x)

G(x)c−1− Ḡ(x)c−1

G(x)c + Ḡ(x)c
= 0.

The critical point of OBIII-G family hazard rate are the roots of the equation:

g′(x)
g(x)

+ (ck−1)
g(x)
G(x)

+ (1− c)
g(x)

1−G(x)
− cg(x)

G(x)c−1− [Ḡ(x)]c−1

G(x)c + Ḡ(x)c

− ckg(x)

{

{

G(x)c + Ḡ(x)c
}k−1

[G(x)c−1− Ḡ(x)c−1]−G(x)ck−1
}

{

G(x)c + Ḡ(x)c
}k

−G(x)ck
= 0.

3.3 Linear representation of the density

In this section, a linear representation of the OBIII-G density is obtained, which is helpful in obtaining useful properties
of the OBIII distributions.

Consider generalized binomial expansion

(1− z)−n =
∞

∑
j=0

(

n+ j−1
j

)

z j, (15)

where,|n|> 0 is a real number.

Now from Eq. (15) and Eq. (3), the cdf of OBIII-G can be represented as

F(x) =
∞

∑
i, j=0

a j−c i H j−c i(x), (16)

where

a j−c i =

(

k+ i−1
i

)(

ci
j

)

(−1)i+ j. (17)

The density of the family can be expressed as

f (x) =
∞

∑
i, j=0

a j−ci h j−ci−1(x). (18)

Eq. (18) is obtained through simple differentiation of the Eq. (16), whereH j−ci(x) = G j−ci(x) and
h j−ci−1(x) = ( j− ci)g(x)G j−ci−1(x) follows the exponentiated-G distribution withj− ci as the power parameter.

Eqs. (16) and (18) are the main results of this section.
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3.4 Moments, incomplete moments and generating function

In this section, we give mathematical expressions for the moments and incomplete moments, moment generating function
and mean deviations.

Therth moment expression for the OBIII-G family of distributions can be obtained as

µ ′
r =

∞

∑
i, j=0

a j−ci

∞
∫

0

xr h j−ci−1(x)dx, (19)

wherea j−ci is defined in Eq. (17) and j− ci−1 is the power parameter.

Thesth incomplete moment for the OBIII-G family of distributions is given by

µ ′
s(x) =

∞

∑
i, j=0

a j−ci

x
∫

0

xs h j−ci−1(x)dx. (20)

The expression for the moment generating function of the OBIII-G family of distributions is given by

M(t) =
∞

∑
i, j=0

a j−ci

∞
∫

0

et x hq+1(x)dx.

The mean deviations of the OBIII-G family of distributions about the mean and median can be obtained as

Dµ = 2µ F(µ)−2µ1(µ) and DM = µ −2µ1(M)

whereµ = E(X) comes from the Eq. (19), M = Median(X) is the median can be obtained from Eq. (14), F(µ) can easily
be obtained from Eq. (3) andµ1(.) can be obtained from Eq. (20) with s = 1.

3.5 Entropies

The entropy of a random variable (rv)X is a measure of variation of the uncertainty. A large value ofthe entropy
specifies the greater uncertainty in the data. Entropy has several applications in physics, chemistry, engineering and
economics, among others. The Shannon entropy of a continuous rv having baseline pdfg(x) is defined byE[− log g(x)]
(Shannon, 1948). The relationship between the Shannon entropy for a rvX with pdf g(x) and the Shannon entropy of a
random variableT with pdf r(t) is given in the following theorem.

Theorem 1. If T has a pdfr(t) andX follows the OBIII-G family (4), then the Shannon entropy ofX , ηX is given by

ηX =−E

{

log g

(

G−1
[

T
1+T

])}

−2E{log (1+T)}+ηT ,

whereηT is the Shannon entropy of the Burr III distribution.

Proof. The Shannon entropy is defined by
ηX =−E[log f (x)]. (21)

The cdf in Eq. (3) can be written as

F(x) =

G(x)
1−G(x)
∫

0

r(t)dt = R

(

G(x)
1−G(x)

)

. (22)

The pdf corresponding to Eq. (22) is given by

f (x) =
g(x)

[1−G(x)]2
r

(

G(x)
1−G(x)

)

. (23)
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Now, Eq. (21) becomes
ηX =−E [log g(x)]−2E{log [1−G(x)]}−E [r(t)] . (24)

The relationship between rvsX andT is T = G(x)
1−G(x) , thenX = G−1

(

T
1+T

)

.

Finally, Eq. (24) becomes

ηX =−E

{

log g
[

G−1
(

T
1+T

)

]

}

−2E[log(1+T)]+ηT .

�

Theorem 2. If T has a pdfr(t) and X follows the OBIII-G family (4), then the Rényi entropy ofX , that is Iδ (x) =
1/[1− δ ] log

∫

f δ (x)dx is given by

Iδ (x) =
1

1− δ
log

[

(ck)δ
∞

∑
i, j=0

Vi, j(δ ,k)
∫ ∞

0
gδ (x)G j−c(i+δ )−δ (x)dx

]

.

Proof. First we use binomial expansion used in Eq. (15) to the quantityf δ (x)

f δ (x) = (ck)δ
∞

∑
i, j=0

(

δ (k+1)+ i−1
i

)(

c(i+ δ )− δ
j

)

(−1)i+ j gδ (x)G j−c(i+δ )−δ (x).

Now, we have

Iδ (x) =
1

1− δ
log

[

(ck)δ
∞

∑
i, j=0

(

δ (k+1)+ i−1
i

)(

c(i+ δ )− δ
j

)

(−1)i+ j gδ (x)G j−c(i+δ )−δ (x)

]

.

Rewriting the above equation

Iδ (x) =
1

1− δ
log

[

(ck)δ
∞

∑
i, j=0

Vi, j(δ ,k)
∫ ∞

0
gδ (x)G j−c(i+δ )−δ (x)

]

dx ,

whereVi, j(δ ,k) =
(

δ (k+1)+ i−1
i

)(

c(i+ δ )− δ
j

)

(−1)i+ j.

�

3.6 Stress-strength reliability

In the context of reliability, the stress-strength model defines the life of a element which has a random strengthX1 that is
subjected to an accidental stressX2. The component fails at the instant that the stress applied to it exceeds the strength, and
the component will function suitably wheneverX1 > X2. Hence,R = P(X2 < X1) is a measure of components reliability
(Kotz et al., 2003). It has many applications especially in the area of reliability and engineering. We derive the reliability
R whenX1 andX2 have independent OBIII(c1,k1,ξ ) and OBIII(c2,k2,ξ ) distributions with common shape and scale
parameters. From Eqs. (3) and (4), the parameter reliability reduces to

R = P(X1 < X2) =

∞
∫

0

f1(x)F2(x)dx. (25)

From Eqs. (8) and (9), the Eq. (25) becomes

R = P(X1 < X2) =
∞

∑
i, j=0

∞

∑
l,m=0

a j−ci bl−cm

∫ ∞

0
h j−ci−1(x)Hl−cm(x)dx, (26)

whereh j−ci−1(x) = ( j− ci)g(x)G j−ci−1(x) andHl−cm(x) = Gl−cm(x).
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3.7 Order statistics

SupposeX1,X2, ...,Xn be a random sample from OBIII-G distributions andXi:n denotesith order statistics. The pdf ofXi:n
is given by

fi:n(x) =
n!

(i−1)! × (n− i)!

n−i

∑
j=0

(

n− i
j

)

(−1)i f (x)[F(x)]i+ j−1. (27)

From Eqs. (8) and (9), the Eq. (27) becomes

fi:n(x) =
n!

(i−1)! × (n− i)!

n−i

∑
j=0

(

n− i
j

)

(−1)i
[ ∞

∑
i, j=0

a j−c i( j− c i)g(x)G j−c i−1(x)
]{ ∞

∑
l,m=0

bl−cmGl−cm(x)
}i+ j−1

. (28)

Using power series raised to power for positive integern (≥ 1) (see Gradshteyn and Ryzhik, 2000)
(

∞

∑
k=0

ak xk

)n

=
∞

∑
k=0

cn:k xk,

wherec0 = an
0 andcm = 1

ma0

m
∑

k=1
(kn−m+ k)ak cn:m−k for m ≥ 1 and n is a natural number.

The above density can be expressed as

fi:n(x) =
n−i

∑
j=0

∞

∑
i, j=0

∞

∑
l,m=0

V j( j− c i, l− cm)h j+l−c(i+m)(x), (29)

where

V j( j− c i, l − cm) =
n! (−1) j a j−c i e j+i−1;l−cm ( j− c i)

(i−1)! j! [ j+ l− c(i+m)+1]
,

whereh j+l−c(i+m)(x) = ( j+ l− c(i+m)+1)g(x)G j+l−c(i+m)(x).

The Eq. (29) reveals that the density of OBIII-G order statistic can be expressed as linear combination of baseline
densities.

4 Estimation

Let x1,x2, ...,xn be a random sample of sizen from the OBIII-G distributions(c,k,ξ ). The log-likelihood function for the
vector of parametersΘ = (c,k,ξ )T is given by

l(Θ) = n log ck+
n

∑
i=0

log g(xi;ξ )+ (c−1)
n

∑
i=0

log{1−G(xi;ξ )}

− (c+1)
n

∑
i=0

logG(xi;ξ )− (k+1)
n

∑
i=0

log

{

1+

(

1−G(xi;ξ )
G(xi;ξ )

)c}

.

The components of the score vector are given by

Uk(Θ) =
n
k
−

n

∑
i=0

log

{

1+

(

1−G(xi;ξ )
G(xi;ξ )

)c}

,

Uc(Θ) =
n
c
+

n

∑
i=0

log[1−G(xi;ξ )]−
n

∑
i=0

logG(xi;ξ )− (k+1)
n

∑
i=0





(

1−G(xi;ξ )
G(xi ;ξ )

)c
log
(

1−G(xi;ξ )
G(xi ;ξ )

)

1+
(

1−G(xi;ξ )
G(xi;ξ )

)c



 ,

Uξ (Θ) =
n

∑
i=0

[

gξ (xi;ξ )
g(xi;ξ )

]

− (c−1)
n

∑
i=0

[

Gξ (xi;ξ )
1−G(xi;ξ )

]

− (c+1)
n

∑
i=0

[

Gξ (xi;ξ )
G(xi;ξ )

]

(k+1)
n

∑
i=0







c
(

1−G(x)
G(x)

)c−1
d

dξ

(

1−G(x)
G(x)

)

1+
(

1−G(x)
G(x)

)c






,

wheregξ (·) means the derivative of the functiong(·) with respect toξ andGξ (·) means the derivative of the functionG(·)
with respect toξ . SettingUk, Uc andUξ equal to zero and solving these equations simultaneously yields the maximum
likelihood estimates.
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5 Mathematical properties of OBIIILx distribution

In this section, we obtain some mathematical properties of the OBIIILx distribution.

The cdf and density of OBIIILx model can be expressed as

F(x;c,k,α,β ) =
∞

∑
i, j=0

a j−ic

[

1−

(

1+
x
β

)−α
] j−ic

and

f (x;c,k,α,β ) =
∞

∑
i, j=0

a j−ic
α
β

(

1+
x
β

)−α−1
[

1−

(

1+
x
β

)−α
] j−ic−1

,

where the coefficienta j−c i is defined is Eq. (17).
The qf of OBIIILx distribution is given by

Qx(u) = β







[

1−

{

1+
(

1− u−
1
k

) 1
c
}−1

]− 1
α

−1







.

Therth moments expression for OBIIILx is given by

µ ′
r =

∞

∑
i, j=0

a j−ic

∞

∑
l=0

(

j− c i−1
l

)

(−1)l ( j− ic)α β r B(r+1,α(l +1)− r),

whereB(l,m) = Γ (l+m)
Γ (l)Γ m =

∫ 1
0 xl−1 (1− x)m−1dx is complete beta function.

Thesth incomplete moment expression for OBIIILx is given by

µ ′
s =

∞

∑
i, j=0

a j−c i

∞

∑
l=0

(

j− c i−1
l

)

(−1)l ( j− ic)α β s B(x/β ) (s+1,α(l+1)− s)

whereBt(l,m) =
∫ t

0 xl−1 (1− x)m−1dx is lower incomplete beta function.
The expression for moment generating function of OBIIILx isgiven by

MX(t) =
α
β

∞

∑
i, j=0

a j−ic

∞

∑
l,m=0

(

j− c i−1
l

)(

α(l +1)+m
m

)

(−1)l+2m+1

β m ( j− ic)
Γ (m+1)

tm+1 .

The Shannon entropy of OBIIILx distribution will be

ηX =

(

1+
1
c

)

[

ψ(k)−Γ ′(1)
]

− log(ck)−2−

(

α + k
α k

)

−2
∞

∑
j=0

(−1) j+1

j
k B

(

1−
j
c
,k+

j
c

)

.

The Rényi entropy is

Iδ =
1

1− δ
log

{

K
∞

∑
i, j=0

Vi, j(δ ,k)
(

α
β

)δ ∞

∑
n=0

(

i− c(i+ δ )− δ
n

)

(−1)n β
α(δ + n)+ δ −1

}

.

The stress-strength reliability parameter for OBIIILx distribution (with β as common parameter) is given by

R = P(X1 < X2) =
∞

∑
i, j=0

∞

∑
l,m=0

a j−ic bl−cm ( j− ic)
α1

β

∞

∑
p,q=0

(

j− c i−1
q

)(

l− cm
p

)

(−1)p+q β
α1(q+1)+α2 p

.

The likelihood function of OBIIILx distribution is given by

l(Θ) = n log

(

ck α
β

)

− (α c+1)
n

∑
i=1

log

(

1+
xi

β

)

− (c+1)
n

∑
i=1

log

[

1−

(

1+
xi

β

)−α
]

− (k+1)
n

∑
i=1

log

{

1+

[(

1+
xi

β

)α
−1

]−c
}

.
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The components of score vector for OBIIILx distribution aregiven by

Uk =
n
k
−

n

∑
i=1

log

{

1+

[(

1+
xi

β

)α
−1

]−c
}

,

Uc =
n
c
−α

n

∑
i=1

log

(

1+
xi

β

)

−
n

∑
i=1

log

[

1−

(

1+
xi

β

)−α
]

+ (k+1)
n

∑
i=1







[(

1+ xi
β

)α
−1
]−c

log
[(

1+ xi
β

)α
−1
]

1+
[(

1+ xi
β

)α
−1
]−c






,

Uα =
n
α
− c

n

∑
i=1

log

(

1+
xi

β

)

− (c+1)
n

∑
i=1







(

1+ xi
β

)−α
log1−

(

1+ xi
β

)

1−
(

1+ xi
β

)−α







− c(k+1)
n

∑
i=1







[(

1+ xi
β

)α
−1
]−c−1 (

1+ xi
β

)α
log
(

1+ xi
β

)

1+
[(

1+ xi
β

)α
−1
]−c






,

Uα = −
n
β
+

α c+1
β 2

n

∑
i=1

[

xi

1+ xi
β

]

+
α (c+1)

β 2

n

∑
i=1







xi

(

1+ xi
β

)−α−1

1−
(

1+ xi
β

)−α







−
α c(k+1)

β 2

n

∑
i=1







xi

(

1+ xi
β

)α−1[(

1+ xi
β

)α
−1
]−c−1

1+
[(

1+ xi
β

)α
−1
]−c






.

SettingUk,Uc,Uα andUβ equal to zero and solving these equations simultaneously yields the the maximum likelihood
estimates of OBIIILx distribution.

6 Simulation study of the OBIIILx distribution

Torabi (2008) introduced a general method for estimating parameters through spacing called maximum spacing distance
estimator (MSDE). Torabi and Bagheri (2010) and Torabi and Montazeri (2014) used different MSDEs to compare with
the MLEs. Here, we compare MLEs to MSDEs “minimum spacing absolute distance estimator” (MSADE) and “minimum
spacing absolute-log distance estimator” (MSALDE) of the OBIIILx distribution. For mathematical details, the readeris
referred to Torabi and Bagheri (2010) and Torabi and Montazeri (2014). We simulate the OBIIILx distribution forn = 50,
100, 200, 300 and 500 withc = 1.5, k = 0.5, α= 2 andβ = 0.5. For each sample size, we compute the MLEs, MSADEs
and MSALDEs of the parameters. We repeat this process 1,000 times and obtain the average estimates (AEs), biases and
mean square error (MSEs). The results are reported in Table 1. We note that the MSEs of MSADEs and MSALDEs are
less than the MSEs of MLEs.
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Table 1: Estimated AE and MSE of MLE, MSADE and MSALDE of the parameters based on 1000 simulations of the OBIIILx
distribution for c= 1.5 , k= 0.5,α= 2 andβ = 0.5 with n= 50, 100, 200, 300 and 500.

Different method MLE MSADE MSALDE
n parameters A.E MSE A.E MSE A.E MSE
50 c 1.9976 4.0704 1.4813 0.1809 1.6359 0.6470

k 1.1527 1.8914 0.6583 0.2708 0.5891 0.1822
β 0.8612 0.5207 0.5914 0.1445 0.5391 0.1816
α 2.0143 5.0078 2.0455 1.1291 2.1013 2.4512

100 c 1.6952 1.2807 1.4818 0.1846 1.4997 0.1674
k 0.9614 1.1606 0.6748 0.4104 0.6749 0.4888
β 0.7346 0.3239 0.5674 0.0962 0.5630 0.1053
α 1.7531 2.5155 1.9628 1.7235 2.0012 1.2236

200 c 1.5694 0.8126 1.5517 0.1001 1.6501 0.3759
k 0.7189 0.3342 0.5320 0.0487 0.5058 0.0367
β 0.6887 0.2014 0.5004 0.0208 0.4935 0.0392
α 2.0247 1.3326 1.9197 0.1849 1.9864 1.1315

300 c 1.5348 0.5734 1.5537 0.1737 1.5592 0.2271
k 0.7095 0.3284 0.5594 0.0709 0.5658 0.0867
β 0.6940 0.1998 0.5205 0.0434 0.5421 0.0558
α 2.0458 1.2662 1.8392 0.2514 1.9710 0.9619

500 c 1.4622 0.2888 1.4742 0.0728 1.5846 0.2591
k 0.6302 0.1354 0.5573 0.0519 0.5331 0.0352
β 0.6481 0.1367 0.5338 0.0327 0.5324 0.0570
α 2.1569 0.9035 1.9522 0.1721 1.9447 0.6547

7 Applications of OBIIILx model

In this section three real-life data sets are analyzed as an empirical illustration of the newly proposed family. The first
two data sets are based on complete observations (uncensored) while the third one is censored. We tried to show the
usefulness of the OBIIILx model in different lifetime phenomenons. In these three applications, the model parameters
are estimated by the method of maximum likelihood. The goodness-of-fit criterion: Akaike information criterion (AIC),
Anderson-Darling (A∗)and Cramer-von Mises (W∗) are used to compare the proposed and competitive models. Ingeneral,
the smaller the values of these statistics, the better the fitto the data. The plots of the fitted pdfs and cdfs of the models
are displayed for visual comparison. The required computations are carried out in theR-packages.

7.1 Uncensored (complete) data sets

Data 1: Acute Myelogenous data. The data set was first analyzed by Feigl and Zelen (1965). The data represent the
survival times, in weeks, of 33 patients suffering from Acute Myelogenous Leukaemia. The data are: 65, 156, 100, 134,
16, 108, 121, 4, 39, 143, 56, 26, 22, 1, 1, 5, 65, 56, 65, 17, 7, 16, 22, 3, 4, 2, 8, 4, 3, 30, 4, 43.

We compare the values of goodness-of-fit statistics of OBIIILx model with beta-Burr III (BBIII) (Gomes et al.,
2013), exponentiated-Burr III (EBIII), Lehmann type II Burr III (LeBIII) and Burr III (BIII) models obtained from data
set 1. The MLE estimates of the models’ parameters along withtheir associated standard errors (in parenthesis) are given
in Table 2 and the values of statistics AIC,A∗ andW ∗ are given in Table 3.

The cdf of BBIII is given by
F(x) = I[1+(x/θ)−α ]−β (c,k)

(i) Whenc = 1, BBIII reduces to LeBIII, (ii) whenk = 1 BBIII reduces to EBIII, and (iii) whenc = k = θ = 1, BBIII it
reduces to BIII distribution.

Data 2: Actual Taxes data. The second data set consist of the monthly actual taxes revenue in Egypt from January 2006
to November 2010. The distribution is highly skewed to the right. Mead (2014) used this data set. The actual taxes revenue
data (in 1000 million Egyptian pounds) are: 5.9, 20.4, 14.9,16.2, 17.2, 7.8, 6.1, 9.2, 10.2, 9.6, 13.3, 8.5, 21.6, 18.5, 5.1,
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6.7, 17.0, 8.6, 9.7, 39.2, 35.7, 15.7, 9.7, 10.0, 4.1, 36.0, 8.5, 8.0, 9.2, 26.2, 21.9, 16.7, 21.3, 35.4, 14.3, 8.5, 10.6, 19.1,
20.5, 7.1, 7.7, 18.1, 16.5, 11.9, 7.0, 8.6, 12.5, 10.3, 11.2,6.1, 8.4, 11.0, 11.6, 11.9, 5.2, 6.8, 8.9, 7.1, 10.8.

We compare values of goodness-of-fit statistics of OBIIILx with Weibull Lomax (WLx) (Tahir et al., 2015),
exponentiated-Lomax (ELx) (Abdul-Moniem and Abdel-Hameed, 2012) and Lomax distribution for data set 2. The
MLE estimates of models’ parameters are given in Table 4. Thevalues of goodness-of-fit statistics AIC,A∗ andW ∗ are
given in Table 5.

The cdf for WLX and ELx are given by:

FWL(x) = 1−exp

[

−
{(

1+ x
β

)α
−1
}k
]

andFEL(x) =

[

1−
(

1+ x
β

)−α
]k

.

Whenk = 1, ELx reduces to Lomax distribution.

Remark 1. Mead (2014) compared beta exponentiated-Burr XII distribution and their sub-models beta log-logistic, beta
exponentiated-log-logistic and beta Burr XII with severalother three, four, and five-parameter lifetime distributions,
namely the generalized gamma (GGa), gamma exponentiated-Weibull (GaEW) and beta generalized-Pareto (BGP)
models for data 2 given in Table 2. We also analyzed the same data and compare our propose model OBIIILx to all above
models, and observe that our model shows better fit as compared to all above models if we considerA∗ andW ∗ statistics.

Table 2: MLEs and their standard errors (in parentheses) for data set1.

Distribution c k α β θ
OBIIILx 0.1516 1.6485 36.3600 0.0295 -

(0.0651) (3.2770) (31.0820) (0.0240) -
BBIII 0.0671 68.8649 0.7687 15.6785 40.5867

(0.0080) (20.6863) (0.0615) (2.2911) (11.5609)
LeBIII - 4.6233 0.5024 2.8857 17.2698

- (1.0142) (1.1221) (0.0816) (16.9161)
EBIII 9.3906 - 0.8303 0.3084 3.0707

(8.9829) (0.0404) (0.2951) (1.4018)
BIII - - 0.7646 5.5929 -

- - (0.0931) (1.1831) -

Table 3: The AIC,A∗ andW ∗ values for data set 1.

Distribution AIC A∗ W ∗

OBIIILx 309.63 0.4633 0.0666
BBIII 317.12 0.5657 0.0832
LeBIII 319.70 0.7125 0.1128
EBIII 316.37 0.8984 0.1512
BIII 315.02 0.8922 0.1498

Remarks 2. From Tables 3 and 5, we observed that OBIIILx gives minimum values of the statistics AIC,A∗ andW ∗ as
compared to other competitive model. Therefore, the proposed model OBIIILx is better in performance for these two data
sets.

7.2 Data set 3: Censored data set

In this section, we provide an application of the OBIIILx model to censored data set. The statistics AIC and BIC are
computed and compared the proposed and competitive models:Kumaraswamy-Lomax (KwLx) (Lemonte and Cordeiro,
2013), beta-Lomax (BLx) (Lemonte and Cordeiro, 2013) and BBIII models. The data consist of death times (in weeks)
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Table 4: MLEs and their standard errors (in parentheses) for data set2.

Distribution c k α β
OBIIILx 10.3121 3.2282 0.1386 0.0440

(3.3349) (3.3381) (0.0414) (0.0655)
WLx - 3.9133 0.2549 1.0561

- (1.6969) (0.1342) (1.6171)
ELx - 5.8382 70.9535 380.2369

- (4.4034) (1.3966) (6.4230)
Lomax - - 29.1644 384.3509

- - (25.3175) (337.3768)

Table 5: The AIC,A∗ andW ∗ values for data set 3.

Distribution AIC A∗ W ∗

OBIIILx 385.5424 0.0400 0.2540
WLx 395.0823 0.2259 1.4234
ELx 387.9290 0.1370 0.8217
Lomax 430.3430 0.1866 1.1544

of patients with cancer of tongue with aneuploid DNA profile (see Lee and Wang, 2003). The data are: 1, 3, 3, 4, 10, 13,
13, 16, 16, 24, 26, 27, 28, 30, 30, 32, 41, 51, 61*, 65, 67, 70, 72, 73, 74*, 77, 79*, 80*, 81*, 87*, 87*, 88*, 89*, 91, 93,
93*, 96, 97, 100, 101*, 104, 104*, 108*, 109*, 120*, 131*, 150*, 157, 167, 231*, 240*, 400*. Here asterisks denote
censoring times.

Consider a data setD= (x,r), wherex= (x1,x2, . . . ,xn)
T are the observed failure times andri = (r1,r2, . . . ,rn)

T are the
censored failure times. Theri is equal to 1 if a failure is observed and 0 otherwise. Supposethat the data are independently
and identically distributed and come from a distribution with pdf given in Eq. (11). LetΘ = (α,β ,c,k)T denote the vector
of parameters. Then the likelihood ofΘ can be expressed as

ℓ(D;Θ) =
n

∏
i=1

[ f (xi;Θ)]ri [1−F(xi;Θ)]1−ri .

The log-likelihood reduces to

ℓ(Θ) = ri

n

∑
i=1

log[ f (xi;Θ)]+ (1− ri)
n

∑
i=1

log[1−F(xi;Θ)] . (30)

Now from Eqs. (10), (11) and (30), we have

ℓ = ri

n

∑
i=1

[

log

(

α ck
β

)

+(α −1) log

(

1+
x
β

)

− (c+1) log

[(

1+
x
β

)α
−1

]

− (k+1) log

[

1+

{(

1+
x
β

)α
−1

}−c
]]

− (1− ri)
n

∑
i=1

{

k log

[

1+

{(

1+
x
β

)α
−1

}−c
]}

.

The log likelihood function can be maximized numerically toobtained the MLEs. There are variousR-packages that
provide numerical maximization ofℓ. We use theoptimum R-package.
Remark 3. Oguntunde and Adejume (2015) fitted data set 3 and compared goodness-of-fit values of AIC of generalized
inverted generalized exponential (GIGE) model with other competitive models and reported AIC=607.712 by claiming
that the GIGE distribution is good model as compared to othercompetitive models. We noted that our proposed model
OBIIILx shows very minimum value of AIC =318.5868 in comparison to GIGEI and others competitive models: KwLx,
BIII and BLx. Thus, we can say that OBIIILx model is better model as compared to other models for data set 3.
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(a) Estimated pdfs for data set 1. (b) Estimated cdfs for dataset 1.
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(c) Estimated pdfs for data set 2. (d) Estimated cdfs for dataset 2.
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Fig. 5: Estimated pdfs and cdfs for data set 1 and 2.

Table 6: MLEs and their standard errors (in parentheses) and goodness-of-fit statistics for data set 3.

Model Parameters MLE Standard error Log-Likelihood AIC BIC
OBIIILx β 12.5693 5.6258 -155.2934 318.5868 326.3918

α 0.1001 0.0427
c 0.2225 0.0745
k 5.0071 5.3171

KwLx a 0.2968 0.2820 -156.2961 320.5922 328.3971
b 5.4307 5.1608
c 1.7368 0.6452
d 36.5721 22.4754

BBIII a 0.9409 0.7980 -159.0904 326.1808 333.9858
b 11.2295 36.5423
c 0.4002 0.2871
k 12.0018 9.2801

BLx a 1.7577 0.5587 -159.2478 326.4957 334.3006
b 5.3584 3.2653
c 31.8981 22.7116
k 0.4085 0.2375
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Fig. 6: Plots of estimated cdfs of the models compared in data set 3.

8 Concluding remarks

We proposed a new family of distributions calledOBIII-G family of distributions. This family can have applications in
the fields of reliability, economics, actuaries and survival analysis. Properties of this new family are obtained including
quantile function, linear expansion of the density, moments and incomplete moments, moment generating function,
entropy, stress-strength reliability parameter and orderstatistics. Parameter estimation is discussed and a simulation
study is performed to investigate the performance of maximum likelihood estimators with other methods. Three real-life
data sets were analyzed to assess the performance of a special model odd Burr III Lomax for censored and uncensored
data.
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