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Abstract: This paper obtains the soliton solutions to the Boussinesq equation with the effect of surface tension being taken into
account. The power law nonlinearity is considered. Three integration toolsare adopted in order to extract the soliton solutions. They are
the traveling wave hypothesis, ansatz method and the semi-inverse variational principle. Finally, the Lie symmetry approach is adopted
to extract the conservation laws of this equation.
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1 Introduction

The dynamics of shallow water waves along ocean and
sea shores are modeled by several forms of nonlinear
evolution equations (NLEEs) [1,2,3,4,5,6,7,8,9,10,11,
12,13,14,15,16,17,18,19,20,21,22]. A few of the
well-known models are Korteweg-de Vries (KdV)
equation, Peregrine equation, Benjamin-Bona-Mahoney
equation. On the other had two-layered shallow water
waves are typically modeled by the Bona-Chen equation,
Gear-Grimshaw model, coupled KdV equation and many
such coupled equations. This paper will focus on one
such NLEE that models shallow water wave dynamics
along with the effect of surface tension. This is the
Boussinesq equation (BE). The effect of surface tension
will introduce a second dispersion term and hence the
name dual-dispersion. For a generalized setting, BE will
be studied with power law nonlinearity.

The main focus of this paper is going to be the
integrability aspect of this model. While there are several
approaches to the integrability aspect of NLEEs, one
needs to exercise caution while administering the
integration process. Some of the commonly applied
integration architectures are the exp-function approach,
G′/G-expansion method, simplest equation method, Lie
symmetry approach, differential transformation
technique, variational iteration method, Adomian
decomposition method and quite a few others. However,
this paper will apply the classic travel wave hypothesis
where a wave of permanent form will be revealed. The
ansatz approach will be utilized to extract the solitary
wave and singular soliton solutions to the BE. The
semi-inverse variational method will also be applied as a
third tool to solve the BE. Subsequently, the multiplier
method using Lie symmetry approach will lead to the
conservation laws of the equation. Finally, the bifurcation
analysis will for the BE will be seen.
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2 TRAVELING WAVE SOLUTION

The dimensionless form of the BE with power law
nonlinearity and dual-dispersion is given by [18]

qtt − k2qxx +a
(

q2n)

xx +b1qxxxx +b2qxxtt = 0 (1)

In (1), the dependent variableq(x, t) is the wave profile
while x and t are the spatial and temporal variables
respectively. Also,k, a andb j for j = 1,2 are real-valued
constants. The first two terms constitute the wave
operator, where the first term is the linear evolution term.
The coefficient ofa represents the nonlinear term where
the parametern is the power law nonlinearity parameters.
Typically, the casen = 1 is studied in the literature of
Ocean Dynamics. However, this paper will leaven as an
arbitrary power law parameter in order to give BE a
generalized flavor. Then, the coefficients ofb j are the two
dispersion terms. The coefficient ofb1 is the regular
dispersion, while the second dispersion term that is given
by the coefficient ofb2 accounts for the surface tension
[18]. The soliton solutions to (1) will be the only issue of
this paper that can be formulated only when a delicate
balance between dispersion and nonlinearity is in place.

In order to seek traveling wave solution to (1), the
hypothesis [8]

q(x, t) = g(x− vt) (2)

whereg(s) represents the wave of permanent form with

s = x− vt (3)

andv represents the velocity of the wave. Substituting the
hypothesis (2) into (1) leads to the ordinary differential
equation (ODE) that is given by
(

v2− k2)g′′+a
(

g2n)′′+
(

b1+b2v2)g′′′′ = 0 (4)

Integrating (4) twice, leads to
(

v2− k2)g+ag2n +
(

b1+b2v2)g′′ = 0 (5)

after choosing the integration constant to be zero, since the
search is for a soliton solution. Multiplying both sides of
(5) by g′ and integrating one more time, again after taking
the integration constant to be zero implies

dg
ds

=
g

√

b1+b2v2

√

k2− v2− 2ag2n−1

2n+1
(6)

After separating variables and integrating yields

g(s) = g(x− vt) = q(x, t) = A sech
2

2n−1 [B(x− vt)] (7)

where the amplitudeA of the soliton is

A =

[

(2n+1)
(

k2− v2
)

2a

]
1

2n−1

(8)

while the inverse width of the soliton is

B =
2n−1

2

√

k2− v2

b1+b2v2 (9)

The soliton width given by (9) provokes a constraint
condition that is given by
(

k2− v2)(b1+b2v2)> 0 (10)

Upon settingb2 = 0 in (1) and (9) the equation and
consequently the corresponding result collapses to the
regular BE with power law nonlinearity that has been
studied earlier [8].

3 ANSATZ METHOD

This section will focus on another approach to integrating
the BE. This is the ansatz method. Using a judicious
hypothesis, a soliton solution will be obtained to the BE.
While the traveling wave hypothesis revealed a solitary
wave solution, this approach, however, is unable to obtain
singular or topological soliton solution to this equation.
The appealing ansatz method will therefore lead to a
better picture for the BE. The hypothesis will be based on
the type of soliton solution that is being sought for.
Therefore the study of ansatz approach will be split into
the following three subsections.

3.1 SOLITARY WAVES

In order to solve equation (1) for the solitary waves, the
starting hypothesis is given by [15]

q(x, t) = A sechpτ (11)

Here in (11),A and B represent the amplitude and the
inverse width of the soliton. The definition ofτ is given
by

τ = B(x− vt) (12)

Substituting this hypothesis into (1) and simplifying leads
to

pA
{

v2− k2+
(

b1+b2v2) p2B2}sechpτ

− (p+1)A
(

v2− k2)ABsechp+2

+
{

p2+(p+2)2}(b1+b2v2)AB3sechp+2τ

+ AB2(p+1)(p+2)(p+3)
(

b1+b2v2)sechp+4τ

+ 4an2pA2nsech2npτ
− 2an(2np+1)A2nsech2np+2τ = 0 (13)

From (13) equating the exponents 2np andp+2 leads to

2np = p+2 (14)

so that

p =
2

2n−1
(15)

One important observation is that the same value of the
unknown exponentp is obtained upon equating the
exponents 2np+2 andp+4. Now, from (13), setting the
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coefficients of the linearly independent functions
sechp+ jτ to zero, for j = 0,2,4, leads to (9) as well as

A =

[

(2n+1)
{(

v2− k2
)

(2n−1)2+η
}

8n2(2n−1)2a

]
1

2n−1

(16)

whereη = 4
(

4n2+1
)(

b1+b2v2
)

B2, and

A =

[

2(2n+1)
(

b1+b2v2
)

B2

(2n−1)2a

]
1

2n−1

. (17)

Next, upon equating the two values of the amplitudeA
from (16) and (17) leads to (9). Thus the system of
relations from the coefficients of the linearly independent
functions, leads to a closure. Hence, the 1-soliton solution
to the BE is given by (7) with the amplitude (A) given by
(16) or (17) while the width (B) is in (9) along with the
constraint condition that is given by (10).

The following figure shows the profile of a solitary wave
for a = 1, b1 = 1, b2 = 1, k = 1 andn = 1.

3.2 SHOCK WAVES

Shock waves, that are also known as topological solitons
or kinks are studied in the context of fluid dynamics. Thus,
for topological soliton solution, the starting hypothesisis
taken to be [13]

q(x, t) = A tanhp τ (18)

In this case, the parametersA andB are free parameters.
Therefore substituting this hypothesis into (1) leads to

(

v2− k2)AB
{

(p−1) tanhp−2 τ −2p tanhp τ
}

+ (p+1) tanhp+2 τ +2anA2nB(2pn−1) tanh2pn−2 τ
− 2anA2nB

{

4pn tanh2pn τ − (2pn+1) tanh2pn+2 τ
}

+
(

b1+b2v2)AB3[(p−1)(p−2)(p−3) tanhp−4 τ

+ (p+1)(p+2)(p+3) tanhp+4 τ
− 2(p−1)

{

p2+(p−2)2} tanhp−2 τ

− 2(p+1)
{

p2+(p+2)2} tanhp+2 τ

+ 4p3 tanhp+(p−1)2(p−2) tanhp

+ (p+1)2(p+2) tanhp τ
]

= 0 (19)

In this case from coefficient of the stand-alone linearly
independent function is tanhp−4 τ and the coefficient of
the linearly independent function tanhp−2 τ leads to

p = 1 (20)

Then again, equating the exponents 2np andp+2 as in the
case of solitary waves in the previous section leads to (15)
which therefore implies

n =
3
2

(21)

Hence the power law BE that supports topological soliton
solution is given by

qtt − k2qxx +a
(

q3)

xx +b1qxxxx +b2qxxtt = 0 (22)

Now, from (17) setting the coefficients of the linearly
independent functions tanhp+ j τ, for j = 0,2,4, to zero
leads to

B =
A
2

√

− a
b1+b2v2 (23)

3aA2+8
(

b1+b2v2)B2 = v2− k2 (24)

and
9aA2+20

(

b1+b2v2)B2 = v2− k2 (25)

From (24) and (25) subtracting one from the other, the
same relation between the free parameters as in (23) is
revealed. This free parameters’ relation kicks in a
constraint condition given by

a
(

b1+b2v2)< 0 (26)

in order for the shock waves to exist.

So, finally, the shock solution to the BE with power law
nonlinearity and dual-dispersion exists only when the
power law nonlinearity collapses to cubic nonlinearity.
This is being observed for the very first time in this paper.
In this case, the shock wave solution is given by

q(x, t) = A tanh[B(x− vt)] (27)
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where the relation between the free parameters is depicted
in (21). Additionally, the constraint relation given by (24)
must hold in order for these kinks to exist.

The following figure shows the profile of a shock wave
for p = 1, a = 1, b1 = b2 = 1, k = 1, A = 1.

3.3 SINGULAR SOLITON

Singular solitons are the third kind of solitons that provide
a possible analytical explanation to the formation of rogue
waves. In order to obtain the singular soliton solution, the
starting hypothesis is given by
q(x, t) = A cschpτ (28)
where the definition ofτ stays the same as in (12).
However, the parametersA and B is this case are free
parameters. Substituting this hypothesis into (1) and
simplifying leads to

pA
{

v2− k2+
(

b1+b2v2) p2B2} cschpτ

− (p+1)A
(

v2− k2)cschp+2τ

+ (p+1)A
[{

p2+(p+2)2}(b1+b2v2)B2] cschp+2τ

+ AB2(p+1)(p+2)(p+3)
(

b1+b2v2) cschp+4τ

+ 4an2pA2n csch2npτ
− 2an(2np+1)A2n csch2np+2τ = 0 (29)

The balancing principle again gives (15). Similarly, as in
the case of solitary waves, the coefficients of the linearly
independent functions cschp+ jτ for j = 0,2,4 leads to the
relations (9) as well as

A =

[

− (2n+1)
{(

v2− k2
)

(2n−1)2+θ
}

8n2(2n−1)2a

]
1

2n−1

(30)

whereθ = 4
(

4n2+1
)(

b1+b2v2
)

B2, and

A =

[

−2(2n+1)
(

b1+b2v2
)

B2

(2n−1)2a

]
1

2n−1

. (31)

Again, upon equating the two values of the parameterA
from (30) and (31), leads to the same value ofB as in (9).
Thus, the singular 1-soliton solution to (1) is

q(x, t) = A csch
2

2n−1 [B(x− vt)] (32)

where the free paremterA is given by (30) or (31) while
the parameterB is in (9) with the constraint condition (10).

4 OBSERVATION

This section will discuss an interesting connection
between the solitary wave solution and the singular
soliton solution. For the special case whenn = 1,
equation (1) modifies to

qtt − k2qxx +a
(

q2)

xx +b1qxxxx +b2qxxtt = 0 (33)

whose solitary wave solution can be written as

q(x, t) = A sech2[B(x− vt)− x0], (34)

where x0 is the center position of the soliton, and the
singular soliton solution can be written as

q(x, t) = A csch2[B(x− vt)] (35)

after the respective parametersA andB are modified with
respect to the specific valuen = 1. It can be easily
observed that the singular soliton solution (34) can be
easily re-casted into (35) by implementing the
transformation

e2x0 =−1. (36)

Therefore, the singular solitons can be recovered from
solitary waves using this exponential transformation with
regards to the center position.

5 SEMI-INVERSE VARIATIONAL
PRINCIPLE

This semi-inverse variational principle (SVP) is the third
alternative scheme to solve the governing equation. One
must note that the special case of the governing equation
was solved earlier by the aid of SVP [6]. The starting
hypothesis to solve (1) is the traveling wave hypothesis
that is given by (2). Next, multiplying both sides of (5) by
g′ and integrating both sides with respect to s, gives

(

v2− k2)g2+
(

b1+b2v2)(g′
)2

+
2a

2n+1
g2n+1 = K (37)

whereK is an integration constant. The stationary integral
J is then defined as [6]

J =

∫ ∞

−∞
Kds (38)

which is therefore

J =
∫ ∞

−∞

[

(

v2− k2)g2+
(

b1+b2v2)(g′
)2

+ϑ
]

ds (39)
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whereϑ = 2a
2n+1g2n+1. The 1-soliton solution assumption

to (1) is [6]

g(s) = Asech
2

2n−1 (Bs) . (40)

Inserting (40) into (39) and carrying out the integrations
yield

J =

{

(

v2− k2) A2

B
+

4
(

b1+b2v2
)

A2B

(2n−1)(2n+3)

+
8a

(2n+1)(2n+3)
A2n+1

B

} Γ
(

2
2n−1

)

Γ
(

1
2

)

Γ
(

2
2n−1 +

1
2

) (41)

after integration, whereΓ (x) is the Euler’s gamma
function. The variational principle states that the
parametersA andB are so chosen that [6]

∂J
∂A

= 0 (42)

and

∂J
∂B

= 0. (43)

Thus from (41), equations (42) and (43), after
simplification, respectively are

v2− k2+
4
(

b1+b2v2
)

B2

(2n−1)(2n+3)
+

4aA2n−1

2n+3
= 0 (44)

and

v2− k2− 4
(

b1+b2v2
)

B2

(2n−1)(2n+3)
+

8aA2n−1

(2n+1)(2n+3)
= 0 (45)

Equations (44) and (45), after uncoupling, gives the soliton
amplitude (A) as given by (8) and the width (B) as

B =
2n−1

2

√

v2− k2

b1+b2v2 (46)

which induces the constraint condition
(

b1+b2v2)(v2− k2)> 0. (47)

Also, equations (8) and (46) produces the amplitude-width
relationship as

B = (2n−1)

[

− aA2n−1

(2n+1)(b1+b2v2)

]

1
2

(48)

which poses the condition

a
(

b1+b2v2)< 0 (49)

in order for the solitons to exist. Once again, it needs to
be noted that the results of this section is a generalized
version of the results that was reported in 2013 [6].

6 CONSERVATION LAWS

In order to determine conserved densities and fluxes, we
resort to the invariance and multiplier approach based on
the well known result that the Euler-Lagrange operator
annihilates a total divergence (see [10]). Firstly, if
(T t ,T x) is a conserved vector corresponding to a
conservation law, then

DtT
t +DxT x = 0

along the solutions of the differential equation
(G(t,x,q,qt ,qx, . . .) = 0).

Moreover, if there exists a nontrivial differential function
Q, called a ‘multiplier’, such that

Eq[QG] = 0,

thenQG) is a total divergence, i.e.,

QG = DtT
t +DxT x,

for some (conserved) vector(T t ,T x) and Eq is the
respective Euler-Lagrange operator. Thus, a knowledge of
each multiplierQ leads to a conserved vector determined
by, inter alia, a Homotopy operator. See details and
references in [10,12]. Below, we list the nontrivial
conserved densitiesT t

i corresponding to the multipliers
Qi. It turns out that there are no derivative dependent
multipliers.

(i) Q1 = 1,
T t

1 = qt +
1
2b2qxxt

(ii) Q2 = x,

T t
2 = xqt +

1
6b2 (−2qxt +3xqxxt)

(iii) Q3 = t,

T t
3 =−q+ tqt − 1

6b2 (qxx −3tqxxt)

(iv) Q4 = xt,

T t
4 = 1

6 (−6xq+6txqt +b2 (2qx −2tqxt − xqxx +3txqxxt))

The corresponding conserved quantities are therefore
given by

I1 =
∫ ∞

−∞
T t

1dx =
∫ ∞

−∞

(

qt +
b2

2
qxxt

)

dx = 0

I2 =
∫ ∞

−∞
T t

2dx =
∫ ∞

−∞

(

xqt −
b2

3
qxt +

b2

2
xqxxt

)

dx

=
vA
B

Γ
(

1
2

)

Γ
(

1
2n−1

)

Γ
(

1
2 +

1
2n−1

)

I3 =
∫ ∞

−∞
T t

3dx =
∫ ∞

−∞

(

−q+ tqt −
b2

6
qxx +

b2

2
tqxxt

)

dx

= −A
B

Γ
(

1
2

)

Γ
(

1
2n−1

)

Γ
(

1
2 +

1
2n−1

)
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I4 =
∫ ∞

−∞
T t

3dx =
∫ ∞

−∞
ωdx

=
tvA
B

Γ
(

1
2

)

Γ
(

1
2n−1

)

Γ
(

1
2 +

1
2n−1

) = 0

where
ω = −xq+ xtqt − b2

3 qx − b2
3 tqxt − b2

6 xqxx +
b2
2 xtqxxt . The

fourth conserved quantity is zero since this conservation
law is valid at v = 0, namely when the soliton is
stationary.

7 BIFURCATION ANALYSIS

This section will carry out the bifurcation analysis of the
Boussinesq equation with power law nonlinearity.
Initially, the phase portraits will be obtained and the
corresponding qualitative analysis will be discussed.
Several interesting properties of the solution structure will
be obtained based on the parameter regimes.
Subsequently, the traveling wave solutions will be
discussed from the bifurcation analysis.

7.1 BIFURCATION PHASE PORTRAITS AND
QUALITATIVE ANALYSIS

To relate conveniently, let

α =
a

b1+b2v2 , (50)

and

β =
k2− v2

b1+b2v2 . (51)

Setting g′ = y, then via (5), (50) and (51) we get the
following planar system
{

dg
dξ = y,
dy
dξ =−αg2n +βg.

(52)

Obviously, the above system (52) is a Hamiltonian system
with Hamiltonian function

H(g,y) = y2+
2α

2n+1
g2n+1−βg2. (53)

In order to investigate the phase portrait of (52), set

f (g) =−αg2n +βg. (54)

Obviously, f (g) has two zero points,g0 andg∗, which are
given as follows

g0 = 0, g∗ =

(

β
α

)
1

2n−1

. (55)

Letting(gi,0) be one of the singular points of system (52),
then the characteristic values of the linearized system of
system (52) at the singular points(gi,0) are

λ± =±
√

f ′(gi). (56)

From the qualitative theory of dynamical systems, we
know that

(i) If f ′(gi)> 0, (gi,0) is a saddle point.
(ii) If f ′(gi)< 0, (gi,0) is a center point.
(iii) If f ′(gi) = 0, (gi,0) is a degenerate saddle point.

Therefore, we obtain the bifurcation phase portraits of
system (52) in Fig.3.

Fig. 3. The bifurcation phase portraits of system (52), (I) α > 0,
β > 0, (II) α < 0, β > 0, (III) α < 0, β < 0, (IV) α > 0, β < 0

Let

H(g,y) = h, (57)

whereh is Hamiltonian.
Next, we consider the relations between the orbits of (52)
and the Hamiltonianh.

Set

h∗ = |H(g∗,0)|. (58)

Proposition 1. Whenα > 0 andβ > 0, we have
(i) Whenh = 0, system (52) has a homoclinic orbitΓ1.
(ii) When−h∗ < h< 0, system (52) has two periodic orbits
Γ2 andΓ ∗

2 .
(iii) When h =−h∗, system (52) has a periodic orbitΓ3.
(iv) When h < −h∗ or h > 0, system (52) does not any
closed orbit.
Proposition 2.Whenα < 0 andβ > 0, we have
(i) Whenh = 0, system (52) has a homoclinic orbitΓ4.
(ii) When−h∗ < h< 0, system (52) has two periodic orbits
Γ5 andΓ ∗

5 .
(iii) When h =−h∗, system (52) has a periodic orbitΓ6.

c© 2014 NSP
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(iv) When h < −h∗ or h > 0, system (52) does not any
closed orbit.
Proposition 3. Whenα < 0 andβ < 0, we have
(i) Whenh = h∗, system (52) has a homoclinic orbitΓ7.
(ii) When 0< h < h∗, system (52) has two periodic orbits
Γ8 andΓ ∗

8 .
(iii) When h = 0, system (52) has a periodic orbitsΓ9.
(iv) Whenh< 0 orh> h∗, system (52) does not any closed
orbit.
Proposition 4.Whenα > 0 andβ < 0, we have
(i) Whenh = h∗, system (52) has a homoclinic orbitΓ10.
(ii) When 0< h < h∗, system (52) has two periodic orbits
Γ11 andΓ ∗

11.
(iii) When h = 0, system (52) has a periodic orbitsΓ12.
(iv) When h < 0 or h > h∗, system (52) does not any
closed orbit.

From the qualitative theory of dynamical systems, we
know that a smooth solitary wave solution of a partial
differential system corresponds to a smooth homoclinic
orbit of a traveling wave equation. A periodic orbit of a
traveling wave equation corresponds to a periodic
traveling wave solution of a partial differential system.
According to above analysis, we have the following
propositions.

Proposition 5. Whenα > 0 andβ > 0, we have
(i) When h = 0, (1) has a solitary wave
solution(corresponding to the homoclinic orbitΓ1 in
Fig.3).
(ii) When −h∗ < h < 0, (1) has a periodic wave solution
and two periodic singular wave solutions(corresponding to
the periodic orbitsΓ2 andΓ ∗

2 in Fig.3).
(iii) When h = −h∗, (1) has two periodic singular wave
solutions(corresponding to the periodic orbitΓ3 in Fig.3).
Proposition 6. Whenα < 0 andβ > 0, we have
(i) When h = 0, (1) has a solitary wave
solution(corresponding to the homoclinic orbitΓ4 in
Fig.3).
(ii) When −h∗ < h < 0, (1) has a periodic wave solution
and two periodic singular wave solutions(corresponding to
the periodic orbitsΓ5 andΓ ∗

5 in Fig.3).
(iii) When h = −h∗, (1) has two periodic singular wave
solutions(corresponding to the periodic orbitΓ6 in Fig.3).
Proposition 7. Whenα < 0 andβ < 0, we have
(i) When h = h∗, (1) has a solitary wave
solution(corresponding to the homoclinic orbitΓ7 in
Fig.3).
(ii) When 0< h < h∗, (1) has a periodic wave solution and
two periodic singular wave solutions(corresponding to the
periodic orbitsΓ8 andΓ ∗

8 in Fig.3).
(iii) When h = 0, (1) has two periodic singular wave
solutions(corresponding to the periodic orbitΓ9 in Fig.3).
Proposition 8. Whenα > 0 andβ < 0, we have
(i) When h = h∗, (1) has a solitary wave
solution(corresponding to the homoclinic orbitΓ10 in
Fig.3).

(ii) When 0< h < h∗, (1) has a periodic wave solution and
two periodic singular wave solutions(corresponding to the
periodic orbitsΓ11 andΓ ∗

11 in Fig.3).
(iii) When h = 0, (1) has two periodic singular wave
solutions(corresponding to the periodic orbitΓ12 in Fig.3).

7.2 TRAVELING WAVE SOLUTIONS

Firstly, we will obtain the explicit expressions of traveling
wave solutions for the (i) whenα > 0 andβ > 0(or α < 0
andβ > 0). From the phase portrait, we see that there is a
homoclinic orbitΓ1 (or Γ2). In (g,y)-plane the expressions
of the homoclinic orbit is given as

y =±
√

− 2α
2n+1

g2n+1+βg2. (59)

Substituting (59) into dg
ds = y and integrating them along

the orbitsΓ1 andΓ2, we have

±
∫ g

g1

1
√

− 2α
2n+1z2n+1+β z2

dz =
∫ s

0
dz, (60)

±
∫ g

g2

1
√

− 2α
2n+1z2n+1+β z2

dz =
∫ s

0
dz, (61)

Completing above integrals we obtain

g =±
(

(2n+1)β
α(1−cosh((2n−1)

√

β s))

)
1

2n−1

. (62)

Using the notations of (2) and (3), we get the following
singular solitary wave solutions

q1±(x, t) =±
(

(2n+1)β
α(1−cosh((2n−1)

√
β (x−vt)))

)
1

2n−1

,

(63)
where the parametersα andβ are given by (50) and (51)
respectively.

Secondly, we will obtain the explicit expressions of
traveling wave solutions for the (ii) whenα < 0 and
β < 0(or α > 0 andβ > 0). From the phase portrait, we
note that there is a special orbitΓ9 (or Γ12). In (g,y)-plane
the expressions of the orbit are given as

y =±
√

− 2α
2n+1

g2n+1+βg2. (64)

Substituting (64) into dg
dξ = y and integrating them along

the two orbitsΓ9 andΓ12, it follows that

±
∫ g

g3

1
√

− 2α
2n+1z2n+1+β z2

dz =
∫ s

0
dz, (65)

±
∫ g

g4

1
√

− 2α
2n+1z2n+1+β z2

dz =
∫ s

0
dz, (66)
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±
∫ ∞

g

1
√

− 2α
2n+1s2n+1+β z2

dz =
∫ s

0
dz. (67)

Completing above integrals we obtain

g =±
(

(2n+1)β
2α

sec2
(

(2n−1)
√

−β
2

s

))
1

2n−1

, (68)

g =±
(

(2n+1)β
2α

csc2
(

(2n−1)
√

−β
2

s

))
1

2n−1

. (69)

From the notations of (2) and (3), we get the following
periodic singular wave solutions

q2±(x, t) =±
(

µ sec2 ν(x− vt)
)

1
2n−1 , (70)

q3±(x, t) =±
(

µ csc2 ν(x− vt)
)

1
2n−1 , (71)

whereµ = (2n+1)β
2α ,ν =

(2n−1)
√

−β
2 , the parametersα and

β are given by (50) and (51) respectively.

8 CONCLUSIONS

This paper studied the BE with power law nonlinearity in
presence of dual dispersion. There are three integration
schemes that were applied to obtain soliton solutions.
These are the traveling wave hypothesis, ansatz approach
and finally the SVP. The ansatz method additionally
produced shock waves and singular soliton solutions to
BE. The wave profiles are also displayed numerically.
The connection between singular solitons and solitary
waves were also established. The conserved quantities
were also obtained by the aid of multiplier method in Lie
symmetry. Finally, the bifurcation analysis was carried
out and phase portraits are also given. These results are
going to be extremely useful in further future study of the
equation in the context of shallow water waves.

The soliton perturbation theory will be established and
addressed in future. The perturbation terms will also lead
to the quasi-stationary soliton solution. Additional
integration architectures will be employed in future to
extract several other solutions. A few of them are the
exp-function method,G′/G-expansion method, simplest
equation approach, Lie symmetry analysis and several
others. These results will be reported in future.
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