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Abstract: In the present paper, we extend our previous work of the thermal effects on propagation of transverse waves in anisotropic
incompressible dissipative pre-stressed plate, to investigate the effect of both thermal stress and magnetic field on transverse waves
propagation in the medium. Biot incremental deformation theory has been used. The governing equations of transverse wave
propagation are derived considering the magnetic forces applied on the plate through Maxwell equation. The influences of changes
in anisotropy-type, thermal stress, initial stresses and magnetic field are investigated. The velocities of propagation as well as damping
are discussed. Analytical analysis and Numerical computations reveal that the velocities of the transverse waves depend upon the
anisotropy, thermal stress, initial stresses as well as magnetic field.
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1 Introduction

In recent years, many studies were carried out to solve the
problems related to electrically conducting elastic media
permeated by uniform magnetic fields. The seismic wave
propagation has been used for various studies related to
magneto-elasticity on the Earth’s mantle and cores. By
the knowledge related to the propagation, the transverse
waves, are the source of information used to image the
Earth’s interior. The initial stress in the medium may be
developed due to some reasons such as slow process of
creep, gravity, external forces, difference in temperature,
etc. An earlier Biot [1] observed that the initial stresses
have notable effect on the propagation on elastic waves in
a medium. Several investigators [2,3,4,5,6,7,8] have
studied extensively the effects of initial stresses present in
the medium using Biot‘s mechanical deformation theory
[9]. The propagation of Rayleigh waves in a viscoelastic
half-space under initial hydrostatic stress in presence of
the temperature field have studied by Addy et al. [10].
Dey et al. [11] have studied the Edge wave propagation in
an incompressible anisotropic initially stressed plate of

finite thickness. Dissipation of the plate depends upon its
internal structure. A huge amount of mathematical work
has been performed for the propagation of elastic waves
in dissipative medium (e.g. Norris [12], Singh et al. [13,
14], Dey et al. [15], Shekhar et al. [16] Selim [17,18], and
others). Problem of plane waves in anisotropic elastic
medium is been very important for the possibility of its
extensive application in many branches of science,
particularly in seismology, Acoustics and geophysics. The
universal presence of anisotropy is almost observed in
many types of rocks in the earth. Prikazchikov et al. [19]
and Sharma [20] contribute to the understanding of wave
propagation characteristics of anisotropic materials under
initial stress. Carcione [21] in his book explains the
importance of anisotropy for wave propagation studies in
real materials. Temperature gradients play a significant
role in the modification of cracks and the flow of fluid
[22]. To understand the dynamical systems that involve
interactions between mechanical work and thermal
changes, theory of thermoelasticity were used. A large
number of problems have been studied on the propagation
of plane waves in generalized thermoelastic media (eg.
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El-Karamany et al. [23,24], Sharma et al. [25,26] and
others). Sharma [27], considered the general anisotropy in
thermoelastic medium and he derived a mathematical
model to calculate the complex velocities of four waves in
the medium. Problem related to the effect of magnetic
field on transverse wave propagation in an anisotropic
incompressible dissipative medium is very important for
the possible application in various branches of science
and technology such as earthquake science, acoustic,
geophysics and optics etc. Zhu et al. [28] have been
discussed wave propagation in non-homogeneous
magneto- electro-elastic hollow cylinders. Jiangong, et al.
[29] have been studied wave propagation in
non-homogeneous magneto- electro-elastic plates.
Khojasteh et al. [30] have been studied diffraction- biased
shear wave fields generated with longitudinal magnetic
resonance elastography drivers. Rayleigh waves in a
magnetoelastic initially stressed conducting medium with
the gravity field have been investigated by El-Naggar et
al. [31]. In recent years, the electromagnetic characteristic
of dissipative medium has also attracted considerable
interest for theoretical and practical importance in
fundamental science and application. The effect of
rotation, magnetic field and initial stresses on propagation
of plane waves in transversely isotropic dissipative
half-space has been studied by Shekhar et al. [32]. The
S-wave propagation in non-homogeneous initial stressed
elastic medium under the effect of magnetic field has
been studied by Kakar et al. [33]. So, studying the effect
of magnetic field on the characteristic of transverse wave
propagation in dissipative medium is essential and may
give a useful help in many applications.

In the present paper, we extend our previous study of
the thermal effects on propagation of transverse waves in
anisotropic incompressible dissipative pre-stressed plate
[34], to investigate the effect of both thermal stress and
magnetic field on transverse waves propagation in the
considered medium. Biot incremental deformation theory
[35] has been used. Transverse wave propagation in the
considered medium is derived considering the magnetic
forces applied on the plate through Maxwell equation.
Numerical examples are computed to analyze the
propagation characteristics of the transverse waves in the
medium at different temperatures. Variations of
anisotropies, change of initial stress parameter and
magnetic field are analyzed.

2 Fundamental equations

We consider an infinite thermally and perfectly electric
conducting incompressible anisotropic dissipative plateof
thickness′h′ initially at uniform temperature′T ′

0 under
initial stressesS11 and S33 along x and z directions,
respectively (as illustrated in Fig. 1). When the medium is
slightly disturbed, the incremental stressesS11, S12 and
S33 are developed. The Maxwell’s equations of

electromagnetic field for perfectly electric conducting
elastic medium in vacuum are [16],

∇ ·
−→
E =

ρ
ε0

∇ ·
−→
B = 0

∇∧
−→
E = −

∂−→B
∂ t

∇∧
−→
B = µ0

−→
j +

1
c2

∂−→E
∂ t

(1)

∇∧
−→
H =

−→
j +

∂−→D
∂ t

−→
j = σ−→

E (Ohm′slaw),

Where ∇ = ∂
∂x
−→
i + ∂

∂y
−→
j + ∂

∂ z

−→
k . The

−→
D = ε0

−→
E ,

−→
B = µ0

−→
H andε0µ0c2 = 0.999478≈ 1. The

−→
E is electric

field, D is electric displacement,H is magnetic field,B is
magnetic flux density,ρ= charge density,j= current
density,σ isconductivity of the medium,µ0 = 4π10−7

(magnetic permeability),c = 2.99792458108 m/s (speed
of light), and ε0 = 8.85410−12 (permittivity). Based on
Refs. [1, 9], the equations of motion in thex− z plane for
the present problem in the incremental state, can be
expressed as

∂S11

∂x
+

∂S13

∂ z
+ µ0H2

0(
∂ 2u
∂x2 −

∂ 2w
∂x∂ z

)−P
∂ω
∂ z

− Nt∇2u = ρ
∂ 2u
∂ t2 (2)

∂S31

∂x
+

∂S33

∂ z
+ µ0H2

0(
∂ 2w
∂x2 −

∂ 2u
∂ z∂ z

)−P
∂ω
∂ z

− Nt∇2w = ρ
∂ 2w
∂ t2

where P = S33 − S11(positive value of P will give
compressive stress and negative value ofP will give tinsel
stress along the said direction),ρ represents the density of
the plate, Si j(i, j = 1,2,3) are the incremental stress
components,H0 is the intensity of the uniform magnetic
field (alongy-axis), andω is rational component alongy
axis given by

ω =
1
2
(

∂w
∂x

−
∂u
∂ z

), (3)

whereu andw are the displacement components in thex
andz directions, respectively andNt is the thermal stress
given by [36],

Nt =
αEh
1−ν

T, (4)

where α is the thermal expansion coefficient,E is the
Young’s Modulus,ν the Poisson’s ratio andT denotes
variation in the temperature of the plate in disturbed state.
The stress-strain relations for an incompressible plate
may be taken as [1],
S11 = 2Ne11+ S,

S33 = 2Ne33+ S, (5)

S13 = 2Qe13,
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Fig. 1: Transverse waves propagation in initially stressed
dissipative plate.

wheres = S11+S33
2 , N andQ are the rigidities of the plate.

The incremental strain componentsei j(i, j = 1,3) are
related to the displacement components(u,w) through the
relations,

e11 =
∂u
∂x

,

e33 =
∂w
∂ z

, (6)

e13 =
1
2
(

∂w
∂x

+
∂u
∂ z

).

The incompressibility conditioneii = 0, is satisfied by

u = −
∂ζ
∂ z

, w =
∂ζ
∂x

(7)

Substituting (3)-(7) in Eq. (2) , we get

∂ s
∂x

−
∂
∂ z

[(2N + 2µ0H2
0 −Q−Nt −

P
2
)

∂ 2ζ
∂x2

+ (Q−Nt +
P
2
)
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∂
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P
2
)
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P
2
)

∂ 2ζ
∂x2 ] = ρ

∂
∂x

∂ 2ζ
∂ t2 (9)

Differentiating (8) with respect toz and (9) with respect to
x, we obtain

∂ 2s
∂ z∂x

−
∂ 2

∂ z2 [ (2N +2µ0H2
0 −Q−Nt −

P
2
)

∂ 2ζ
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P
2
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∂x∂ z

−
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P
2
)
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+ (Q−Nt −
P
2
)

∂ 2ζ
∂x2 ] = ρ

∂ 2

∂x2

∂ 2ζ
∂ t2 (11)

Subtracting (10) from (11), we can eliminates, and the
equation of motion becomes

(Q − Nt −
P
2
)

∂ 4ζ
∂x4 +(4N +4µ0H2

0 −2Q−2Nt)
∂ 4ζ

∂x2∂ z2

+(Q−Nt +
P
2
)

∂ 4ζ
∂ z4 = ρ(

∂ 4ζ
∂x2∂ t2 +

∂ 4ζ
∂ z2∂ t2 ) (12)

For dissipative plate, the two rigidities coefficientsN and
Q for anisotropic unstressed state of the medium are
replaced by complex constants [37]:

N = N1+ iN2, Q = Q1+ iQ2 (13)

wherei =
√
−1, Ni are real andN2 ≪ N1, Q2 ≪ Q1.

From Eqs. (12)-(13) we obtain

L1
∂ 4ζ
∂x4 +L2

∂ 4ζ
∂x2∂ z2 +L3

∂ 4ζ
∂ z4 =ρ(

∂ 4ζ
∂x2∂ t2+

∂ 4ζ
∂ z2∂ t2 ) (14)

where

L1 = (Q1−Nt −
P
2
)+ iQ2,

L2 = (4N1+4µ0H2
0 −2Q1−2Nt)+ i(4N2−2Q2), (15)

L3 = (Q1−Nt +
P
2
)+ iQ2.

3 Solution of the problem

For propagation of transverse waves in any arbitrary
direction we take the solution of equations (14) as

ζ (x,z, t) = ζ0eik(xcosθ+zsinθ−Ct) (16)

whereθ is the angle made by the direction of propagation
with the x-axis (Fig.1).

Substituting Eq. (16) into Eq. (14) and equating real
and imaginary parts separately, one gets

C2
T R =

1
ρ
[(Q1−Nt −

P
2
)(cosθ )4+(Q1−Nt +

P
2
)(sinθ )4

+(4N1+4µ0H2
0 −2Q1−2Nt)(sinθ cosθ )2] (17)

C2
T I =

1
ρ
[Q2(cos2 θ − sin2 θ )2+4N2sin2 θ cos2 θ ] (18)

Eqs (17) and (18) give the phase velocities (real parts) and
the damping velocities (imaginary parts) of the transverse
waves, respectively. From the above equation (17), we can
say that the phase velocity of transverse waves depends on
initial stresses, anisotropies, thermal stress, magneticfield
and the direction of propagationθ .

4 Numerical Results

The numerical values of the square of the phase velocities
of transverse waves have been computed from (17) in non-
dimensional form as

(
CT

β
)2 = (1−

Nt

Q1
−

P
2Q1

)cos4 θ +(
2N1

Q1
+

2µ0H2
0

Q1
−

Nt

Q1
−1)

×2sin2 θ cos2 θ +(1−
Nt

Q1
+

P
2Q1

)sin4θ , (19)
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where β =
√

Q1
ρ is the velocity of transverse wave in

homogenous isotropic medium.
The numerical values ofCT has been calculated for

Fig. 2: Variation of phase velocity of transverse waves(CT ) with
propagation direction at different values of anisotropic factor
N1
Q1

= 0.5,0.7 and 0.9 at ( P
2Q1

= 0, Nt
Q1

= 0 andµ0H2
0

Q1
= 0) [34].

different values ofN1
Q1

, P
2Q1

, Nt
Q1

and
µ0H2

0
Q1

with respect to
the direction of propagationθ and the results of
computations are presented in Figures 2-5.

Figure 2 exhibits the anisotropic variation
( N1

Q1
= 0.5,0.7 and 0.9) of phase velocity of transverse

waves (CT ) with propagation direction(θ ) at free of
initial and thermal stresses and no effect of magnetic field

( P
2Q1

= 0, Nt
Q1

= 0 and
µ0H2

0
Q1

= 0). The velocity plots show
that the velocity of transverse wave decreases with the
increase of anisotropy parametersN1

Q1
. This decrease is a

largest atθ = 0O andθ = 90O, but the velocity increases
with the anisotropy increase atθ ∈ (25o,65o) .

Figure 3 shows the effect of initial stresses on the
velocity of propagative of transverse wave at different
direction θ with x-axis at different values of P

2Q1
when

N1
Q1

= 0.5, Nt
Q1

= 0 and
µ0H2

0
Q1

= 0. The velocity plots show
that the velocity of transverse wave decreases with the
increase of initial stress parametersP2Q1

at θ ∈ (25o,65o),
but the velocity increases with the initial stress parameter
increase atθ ∈ (45o,90o) .

Figure 4 gives the variation in velocities of transverse
wave at different direction with x-axis at different values
of Nt

Q1
when P

2Q1
= 0, N1

Q1
= 0.5 and

µ0H2
0

Q1
= 0. The velocity

plots show that the velocity of transverse wave decreases
with the increase of the thermal stress parametersN1

Q1
at

θ ∈ (5o,85o).
Figure 5 gives the variation in velocities of transverse

wave at different direction with x-axis at different values

Fig. 3: Variation of phase velocity of transverse waves(CT )
with propagation directionθ at different values of initial stress
parameter P

2Q1
= −0.2,0.0 and 0.2 atN1

Q1
= 0.5, Nt

Q1
= 0.0 and

µ0H2
0

Q1
= 0 [34].

Fig. 4: Variation of phase velocity of transverse waves(CT ) with
propagation direction(θ ) at different values of thermal stress
parameter P

2Q1
= −0.2,−0.4 and−0.6 at N1

Q1
= 0.5, P

2Q1
= 0.0

and µ0H2
0

Q1
= 0 [34].

of
µ0H2

0
Q1

when Nt
Q1

= 0, P
2Q1

= 0 and N1
Q1

= 0.5 . The
velocity plots show that the velocity of transverse wave

increases with the increase of the magnetic field
µ0H2

0
Q1

and
vice versa atθ ∈ (5o,87o), but this effect disappear in the
ranges ofθ ∈ (0o,4o) andθ ∈ (88o,90o).

5 Conclusion

Equations (17) and (18) give the phase velocities (real
parts) and the damping velocities (imaginary parts) of the
transverse waves, respectively. From the numerical
computation, it can be concluded that the phase velocity
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Fig. 5: Variation of phase velocity of transverse waves with
propagation direction at different values of magnetic field

parameterµ0H2
0

Q1
= 0.0,0.5,1 atNt

Q1
= 0, P

2Q1
= 0 and N1

Q1
= 0.5.

of transverse waves depends on initial stresses,
anisotropies, thermal stress, magnetic field and the
direction of propagationθ . The variation in parameters
associated with anisotropy of the medium directly affects
the velocity of the transverse waves. The increase of
initial stress parameters decreases the phase velocity of
transverse wave within the range of(25o,65o) and
increases the velocity with the initial stress parameter
increase within the range of(45o,9o). The velocity of
transverse wave decreases with the increase of the
thermal stress parameters within the range of(5o,85o) but
this effect disappear in the ranges of(0o,5o) and
(85o,90o). Also, the velocity of transverse waves can be
obviously tuned by the magnetic field effects. The
velocity of transverse wave increases with the increase of
the magnetic field within the range of(5o,87o), but the
effect of the magnetic field disappear in the ranges of
(0o,4o) and(88o,90o).
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