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Abstract: The divisible load scheduling is a paradigm in the area of distributed computing. The traditional divisible load theoryis
based on the fact that, the communications and computationsare obedient and do not cheat the algorithm. The literature of review
shows that the divisible load model fail to achieve its optimal performance, if the processors do not report their true computation rates.
The divisible load scheduling with uncertain communication rates has not been considered in the existing research. This problem lead
us to propose a priority based divisible load scheduling method. The goal is to decrease the negative effects of communication rate
cheating on the total finish time. The proposed method has been examined on several function approximation problems. It is found that
the proposed method is extremely more efficient than either of the other methods.
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1 Introduction

The first articles which concerned the divisible load theory
(DLT) were published in 1988, [1,2]. Based on the DLT,
it is assumed that the computation and communication can
be partitioned into some arbitrary sizes, in which each part
can be processed independently by a processor.

Over the past two decades, the DLT has found a wide
variety of applications in the area of parallel processing,
e.g., linear algebra [3], image and vision processing [4,5,
6], and data grid applications [7]. Moreover, the DLT was
applied to a wide variety of interconnection topologies,
including daisy chain, bus, single-level tree , multi-level
tree [8], three-dimensional meshes [9], k-dimensional
mesh [10], hypercubes [11], and arbitrary graphs [12]. It
also has been applied in heterogeneous [13],
homogeneous platforms [14], grid based method
scheduling [7,15], and cloud based job scheduling [16].
There are extensive recent studies concerning the various
aspects of divisible load scheduling theory, including,
multi-installment processing [17], adaptive and probing
strategies [18,19,20], memory limitation [21], and so on.
A comprehensive review on the divisible load scheduling

can be found in [22].
The traditional DLT is based on the fact that, the
processors report their true computation and
communication rates, i.e., they do not cheat the algorithm.
In the real applications, the processors may cheat the
algorithm. It means, the processors may not report their
true computation or communication rates. This issue was
investigated by Thomas E. Carroll and Daniel Grosu in
their research publications [23,24]. The results of their
research indicate that the computation cheating reduces
the performance of the divisible load scheduling. In fact,
the DLT obtains its optimal performance only if the
processors report their true computation rates. The same
problem can be considered in the communication rate as
well. It means, the communication rate cheating also may
decreases the performance of computing in the divisible
load scheduling model. This paper focuses on the
communication rate cheating problem. In order to reduce
the effects of communication rate cheating problem on
the performance of divisible load scheduling, we propose
a priority-based divisible load scheduling method. The
priority-based method is a new approach in the area of the
divisible load scheduling.
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The rest of this paper is organized as follows. Section
2 gives some information concerning the background and
related works. Section3 is the preliminaries of this paper.
Section 4 explains the proposed method and related
algorithms, and section5 presents some experimental
results to support the proposed method. Finally, section6
provides a conclusion.

2 Background

2.1 Divisible Load Scheduling

In general, the DLT assumes that, the computation and
communication can be divided into some parts of
arbitrary sizes, and these parts can be independently
processed in parallel. The DLT assumes that, initially
amountV of load is held by the originatorp0. A common
assumption is that, the originator does not conduct any
computation. It only distributes the load into partsα0, α1,
. . ., αm to be processed on worker processorsp0, p1, . . .,
pm. The condition for the optimal solution is that, the
processors stop processing at the same time; otherwise,
the load could be transferred from busy to idle processors
to improve the solution time [25]. The goal is to calculate
α0, α1, . . ., αm in the DLT timing equation. According to
[26] the timing equation (close form) for a single-level
tree network can be written by the following equations:

α j =

(

zj−1Tcm+wj−1Tcp

zjTcm+wjTcp

)

α j−1 (1)

and

α0 =

(

z1Tcm+w1Tcp

w1Tcp

)

α1 (2)

Moreover, the total finish time can be calculated by the
following equation:

T = α0w0Tcp (3)

whereα0+α1 + · · ·+αm = V. Throughout the paper we
assume thatTcp = Tcm= 1.

The Gantt chart-like diagram for this case is depicted
in Fig. 1.

2.2 Analytical Hierarchy Process

The first article, concerning the analytical hierarchy
process (AHP) was published in [27]. It is a multi-criteria
decision-making (MCDM)/ multi-attribute
decision-making (MADM) model. Over the past two
decades, the AHP has found a number of applications in
various fields [28,29]. The AHP is a suitable method for
solving priority-based scheduling with a wide range of
attributes and alternatives as well [30]. In general, the
AHP consists of three levels, including objective level,

Fig. 1: Gantt chart-like timing diagram for divisible load in single
level tree network.

attributes level, and alternatives level. Each level uses
comparison matrices for comparing the priorities.

Assume thatA = [ai j ] is a comparison matrix. Each
entry in matrixA is positive. In this case,A is a square
matrix (An×n). There is only a vector of weights such as
u=(u1, u2, . . . , un) associated with any arbitrary
comparison matrix such asA. The relationship between
the elements of comparison matrix(A) and its vector of
weights(u) is shown in the following equation:

ai j =

{ ui
u j

1

i 6= j
i = j

(4)

An essential step in AHP is to calculate vector of
weights(u) which can be computed by the following
equation:

Au= λmax.u (5)

whereλmax denotes the principal eigenvalue ofA and u
denotes the corresponding eigenvector. IfA is absolutely
consistent, thenλmax= n.
A metric for evaluating consistency of comparison matrix
is named consistency rate (CR), it can be calculated by the
following equation:

CR=
CI
RI

(6)

where RI and CI denote the random index and
consistency index respectively. The consistency index
(CI) can be calculated as the following equation:

CI =
λmax−n

n−1
(7)

If CR< 0.1 then comparison matrix will be consistent.
Furthermore,RI in Eq. (6) can be obtained by using
Table1. Other methods for calculatingRI are available in
[27,29,31].
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Table 1: Random Index (RI) vs. the number of rows (N) of matrix
N 2 3 4 5 6 7 8 9
RI 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45

2.3 Related Works

The main idea of the processor cheating refers to
misreporting and time varying problem which was
investigated in respect of divisible load scheduling in
1998 [32]. A few years later, Thomas E. Carrollet al.,
focused on application case of misreporting in the
divisible load scheduling [23,24]. They proposed a
strategyproof mechanism for the divisible load scheduling
under various topologies, including the bus and
multi-level tree network. However, the cheating problem
may occur if the processors execute their fraction of loads
with different rates. Suppose that the root processor
allocates α =(α0, α1, . . ., αm) fraction of load for
processors. This allocation is based on the assumption
that, the computation and communication rates ofp j
( j = 1, 2, . . ., m) are equal towj andzj respectively. In
fact, p0 learns the actual computation rate ofp j oncep j
completes execution of its fraction of load. The root
processor also learns the actual communication rate once
the fraction of load is sent to the worker processors and
received the response. Carrollet al., indicated that the
divisible load scheduling model obtains its optimal
performance only if the processors report their true
computation rates. Subsequently, the problem was
continued by the other researchers [33]. In [33] a
multi-objective divisible load method has been proposed.
The multi-objective method can reduce the effects of
computation rate cheating on the performance of the
divisible load scheduling. The same problem concerning
the communication rate cheating can be considered. This
paper focuses on the communication rate cheating on the
performance of divisible load scheduling. For this
purpose we use the analytical hierarchy process (AHP).
The first application of the AHP concerning the DLT was
proposed in [34]. That work contains a general form of a
multi-criteria divisible load scheduling. In the present
study we propose a priority-based divisible load method.
The proposed method is able to handle the priority of
processors in order to reduce the effects of
communication rate cheating on the performance.

3 Preliminaries

Table2 indicates the basic notation used in this paper.

Definition 1.(Ranking Function). Assume that T1 and T2
are two real numbers. For any s∈ R+ (positive real
number), we find n that satisfies the following equation:

⌈

T1−T2

s

⌉

= n (8)

Table 2: Definitions and Notations.
Notation Description Notation Description
p j The j th processor m Number of

processors
w j Computation zj Communication

rate ofp j rate ofp j

V Total size of data v Size of probing
α j Initial fraction of k Number of probing

load for p j

Te
i Expected finish To

i Observed finish time
time in the ith probing

T̂o
i j Observed time of ẑi j Communication rate

ith probing forp j in ith probing forp j

T(V) Time taken for T(v) Time taken for
processingV processingv

A ranking function denoted byΨ(T1,T2) can be defined
as the following equation:

Ψ(T1,T2) =



















n+1 n> 0

1
1−n n< 0

1 n= 0

(9)

Lemma 1.Assume that T1 and T2 are two real numbers and
Ψ is a ranking function. The following equation indicates
the main property ofΨ :

Ψ(T1,T2) =
1

Ψ (T2,T1)
(10)

Lemma 2.Assume that A is a comparison matrix, and
e = (1,1, . . . ,1)T . We also assume that u andλmax are
principal eigenvector and eigenvalue of A respectively.
Principal eigenvector (u) can be calculated as the
following equation:

u= lim
ℓ→∞

1
ℓ

ℓ

∑
t=1

Ate
eTAte

(11)

also λmax, the corresponding eigenvalue of u can be
calculated as the following equation:

λmax= lim
ℓ→∞

eTAℓ+1e
eTAℓe

(12)

Proof.A method for proof can be found in [27].

Lemma 3.Assume that An×n = (ars) is a comparison
matrix, then A is consistent if:

ars = arq×asq (13)

for all r, s, q=1, 2, . . . , n [27].
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4 Proposed Model

4.1 Problem Description

The basic assumption for the DLT is that, the
communications and computation rates are obedient. This
assumption can be provided by the following theorem
[35].

Theorem 1.Assume that p1, p2, . . ., pm are m processors
which are interconnected to p0, by a single-level tree
network topology. We also assumed that z0, z1, . . ., zm are
the communication rates of the m processors. It is also
assumed that w0, w1, . . ., wm are the computation rates of
the m+ 1 processors. Thus, the processing time will be
minimum if the processors satisfy the two following
conditions:

1.zj ≤ zj+1
2.wj ≤ wj+1.

In this paper we assume that the computation rates are
obedient. We investigates the divisible load scheduling in
a different priority. The following theorems indicate the
motivation of this paper.

Theorem 2.Considering the assumptions of Theorem1,
the communication rate cheating problem increase the
processing time.

Proof.Clearly the communication rate cheating problems
change the optimal arrangement of processors which was
explained in Theorem1. Therefore the communication
rate cheating problems increase the processing time in a
divisible load scheduling model.

The proposed priority-based method uses a
communication-based probing strategy. The probing
strategies are appliedk times on the processors. The goal
is to provide a set of communication rates for the worker
processors. In fact, we obtaink different priorities for the
processors. By using the analytical hierarchy process
(AHP) the priorities can be combined. The following
theorem indicates how to combine the priorities in order
to estimate the best priority for the processors.

Theorem 3.Assume thatρ i = (ρ i
1, ρ i

2, . . ., ρ i
j , . . ., ρ i

m) is a

priority vector. It is also assumed thatρ1, ρ2, . . ., ρ i, . . .,
ρk are k priority vectors and r1, r2, . . ., ri , . . ., rk are
corresponding priority values respectively. The best
estimated priority can be computed by the following
equation:

ρ =











ρ1
1 ρ2

1 . . . ρk
1

ρ1
2 ρ2

2 . . . ρk
2

...
...

...
...

ρ1
m ρ2

m . . . ρk
m



















r1
r2
...
rk









=

























k
∑
j=1

ρ j
1r j

k
∑
j=1

ρ j
2r j

...
k
∑
j=1

ρ j
mr j

























(14)

Fig. 2: A hierarchical framework for the proposed model.

4.2 Framework

The proposed method obtains some information about the
communication rates of the worker processors. The
gathered information helps the algorithm to calculate the
estimated differences of communication rates of the
worker processors. A hierarchical framework for the
proposed method is shown in Fig.2. In this framework,
we consider three levels, including objective level (DLT),
probing level (c1, c2, . . ., ck), and processor level (p1, p2,
. . ., pm). At the first level we have only one node which
presents the optimal value of scheduling. At the second
level we considerk criteria. The criteria can be calculated
in probing process. The total finish time in each probing
process can be considered as the corresponding value of
criterion. At the last level the processors are compared
based on the total finish time. A descriptive framework
for the proposed method has been shown in Fig.3.

4.3 Description of the Proposed Method

The proposed method consists of three phases, including
communication-based probing, decision making, and load
allocation.

4.3.1 Communication-based Probing

In this phase, the originator obtains some information
about the behavior of worker processors, including actual

c© 2015 NSP
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Fig. 3: A descriptive framework for the proposed model.

communication rates and cheated time. In fact, the
originator learns the communication rates of worker
processors after transferring the allocated load. The
recorded information helps the originator to consider the
best priority to the processors for allocating their fractions
of load. This phase consists of the following steps:

–step 1: The originator distributesv (v≪ V) amount
of load on the worker processors. In this case each
processor receives its fraction of load based on the
initial communication rates of the worker processor.

–step 2: Each worker processor calculates its finish
time based on its actual communication rate. It can be
calculated by the following equation:

To
i j = α j ẑi j +α jwj (15)

–step 3: The root processor computes observed total
finish time which is denoted byTo

i . It can be
calculated by the following equation:

To
i = Max(To

i1,T
o
i2, . . . ,T

o
i j , . . . ,T

o
im) (16)

The originator also calculates the estimated finish time
denoted byTe

i .
–step 4:Information about the processors, including ˆzi j
andTo

i −Te
i would be recorded.

Table3 indicates the population which is gathered by the
communication-based probing phase. Furthermore, the
details of probing phase is indicated in Algorithms1.

Table 3: Sample of population produced by communication-
based probing phase.

The changes of communication rates
Probing Cheated time p1 p2 . . . pm

1 To
1 −Te

1 ẑ11 ẑ12 . . . ẑ1m
2 To

2 −Te
2 ẑ21 ẑ22 . . . ẑ2m

...
...

...
... . . .

...
i−1 To

i−1−Te
i−1 ẑi−1,1 ẑi−1,2 . . . ẑi−1,m

i To
i −Te

i ẑi1 ẑi2 . . . ẑim

i+1 To
i+1−Te

i+1 ẑi+1,1 ẑi+1,2 . . . ẑi+1,m
...

...
...

... . . .
...

k−1 To
k−1−Te

k−1 ẑk−1,1 ẑk−1,2 . . . ẑk−1,m

k To
k −Te

k ẑk1 ẑk2 . . . ẑkm

Algorithm 1 Communication-based Probing(w, z,v)
Input: A small part of load(v) and a network withm+ 1
processors
Output: A population of recorded data
1: ConsiderZ = (z1,z2, . . . ,zm).
2: ConsiderZi = (zi1,zi2, . . . ,zim).
3: Distribute v load to processors based onZi using

Algorithm 2.
4: ComputeTe

i
5: i←1
6: while i ≤ k do
7: Distribute v load to processors based on̂Zi using

Algorithm 2.
8: Calculate Ẑi = (ẑi1, ẑi2, . . . , ẑim).
9: Calculate theTo

i j for j = 1,2, . . . ,m; using Eq. (15).
10: CalculateTo

i using Eq. (16).
11: Record ẑi j for p j
12: Record To

i −Te
i

13: i← i+1
14: end while
15: return: A population of recorded data.

Algorithm 2 Allocate(w, z,v)
Input: Φ = { p0, p1, . . ., pm } a single level tree
Output: load allocating α to the
processors
1: j ←1
2: while j ≤mdo
3: k j ←

w j−1
zj+w j

4: end while
α0←

v
1+Σm

j=1 ∏ j
s=1 ks

5: j← 1
6: while j ≤mdo
7: α j ← k j α j−1
8: end while

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


2546 S. Ghanbari et. al: Priority-based Divisible Load Scheduling...

4.3.2 Decision Making

In this phase we use the gathered information of previous
phase in order to estimate the best priority of processors.
This phase consists of four following steps:

–Step 1: (Making Comparison Matrix for Criteria).In
this step, each of the probing process can be
considered as a criterion. The comparison matrix of
communication criterion can be calculated by
Algorithm 3. The algorithm uses the difference of
observed finish time (To

i ) and expected finish time
(Te

i ) which are shown in Table3.

Algorithm 3 Making Comparison Matrix for Criteria()

Input: T0
1 −Te

1 , T0
2 −Te

2 , . . . ,T0
k −Te

k
Output: a comparison matrix for
criteria
1: for r=1 to kdo
2: for t=r+1 to kdo
3: C[r, t] =Ψ (T0

r −Te
r , T0

t −Te
t )

4: C[t, r] =Ψ (T0
t −Te

t , T0
r −Te

r )
5: end for
6: end for
7: for r=1 to kdo
8: C[r, r]=1
9: end for

–Step 2: (Checking Consistency).Each comparison
matrix must be consistent. The consistency of
produced comparison matrix instep 1, can be
investigated by Algorithm4.

Algorithm 4 Checking Consistency ()
Input: Comparison matrixDn×n
Output: Boolean
Description:
1: ComputeλmaxusingEq. (12);
2: Compute CI by solvingEq. (7);
3: Compute CRby solvingEq. (6);
4: if CR≤ 0.1 then
5: matrix is consistent
6: else
7: matrix is not consistent
8: end if

–Step 3: (Making Comparison Matrix for Attributes).
In this step, comparison matrices must be computed
for the processors based on the criteria. The
comparison matrices present the effects of processor’s
cheating on the other processors. The comparison
matrix of ith probing can be defined as the following
equation:

Qi
rs =

{

ẑis
ẑir

1

r 6= s
r = s

(17)

Algorithm 5 Corresponding Principal Eigenvector ()
Input: A Comparison matrixDn×n
Output: Corresponding principal eigenvector ofDn×n

1: ℓ← 1
2: e← (1,1, . . . ,1)

3: h← Dℓe
eTDℓe

4: while (D is not consistent)do
5: h← h+ Dℓe

eT Dℓe
6: ℓ← ℓ+1
7: end while
8: Λ = h

ℓ
9: ReturnΛ

whereQi is the comparison matrix of attributes in the
ith probing process. Using Lemma3, it can be seen that
Qi is consistent.

–Step 4: (Calculating the Vector of Weights).Now, we
havek consistent matrices. There are several methods
for calculating the vector of weights of a consistent
comparison matrix. The most frequent used method
for calculating the vector of weights of comparison
matrix is theSum-method[27,28]. In this paper, we
applied theSum-method. Assume thatQi is the ith

comparison matrix, then the corresponding vector of
weights of Qi can be calculated as the following
equation:

ui
r =

Σm
s=1Qi

rs

Σm
r=1Σm

s=1Qi
rs

r = 1,2, . . . ,m; i = 1,2, . . . ,k;

(18)
where k and m are the number of probing and the
number of processors respectively.
We also suppose that∆ is defined as the following
equation:

∆ = [u1u2 . . .ud] =











u1
1 u2

1 . . . uk
1

u1
2 u2

2 . . . uk
2

...
...

...
...

u1
m v2

m . . . uk
m











(19)

Now, suppose thatC is the comparison matrix of
communication criteria. It can be calculated using
Algorithm 3. we also calculate the priority vector ofC
using Algorithm 5. It is depicted by the following
equation:

Λ = [λ1λ2 . . .λk]
T (20)

Finally, we compute thepriority vector of distribution
denoted byPVD. It can be calculated by the following
equation:

PVD= ∆ ×Λ (21)
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Algorithm 6 Decision Making ()
Input: m worker processors labeled byp1, p2, . . . , pm
Output: Allocated fraction of load
Description:
1: Let i← 1
2: ∆ ← nil
3: while i ≤ k do
4: Make Qi using Eq. (17).
5: Calculateui for Qi using Eq. (18)
6: Attach ui to ∆
7: i← i+1
8: end while; Note: at the end of this loop we have∆ =

[u1u2 . . .uk]
9: Make C as the comparison matrix of criteria based on

probing using Algorithm3.
10: CalculateΛ for Rusing Algorithm5.
11: PVD←∆ ×Λ ;
12: for i = 1 tom do
13: AssignprocessorPj with j th element ofPVD
14: end for
15: Sort processors based on theirPVD value
16: Allocate fraction of load to the sorted processors using

Algorithm 2.

ThePVDcan be also shown as the following equation:

PVD=











u1
1 u2

1 . . . uk
1

u1
2 u2

2 . . . uk
2

...
...

...
...

u1
m u2

m . . . uk
m



















λ1
λ2
...

λk









=













Σk
j=1u j

1λ j

Σk
j=1u j

2λ j
...

Σk
j=1u j

mλ j













(22)
Each element ofPVD is the corresponding priority
value of a processor to get a fraction of load.

4.3.3 Load Allocation

In this phase the worker processors are sorted based on
their corresponding value of thePVD. The root processor
allocates the fraction of load to the sorted processors. A
processor with the highestPVD value must obtain its
fraction of load first. The details of proposed method are
indicated by Algorithm6.

4.4 Complexity Analysis

In this section, we calculate the effects of complexity on
the total finish time in the proposed method. In this case
the operational definition of complexity of proposed
method is the number of computations that the root
processor must execute along with the total finish time.
The complexity of computation in the proposed method
can be calculated by the following equation:

tcomplexity= tprobing+ tcalculating (23)

Clearly, tprobing is the complexity of Algorithm1 . It can
be calculated by following equation:

tprobing= c1× k×max(α j ẑi j ) (24)

Moreover,tcalculating is the complexity of Algorithm6. It
can be calculated by following equation:

tcalculating= c2× ℓ× k2.81+ c3× ℓ×m2.81 (25)

where c1, c2, and c3 are three constant numbers. The
other parameters, includingk, ℓ, andm are the number of
probing, the number of steps to obtain a consistent
comparison matrix, and the number of processors
respectively. In Eq. (25), we consider Strassen’s algorithm
[36] for multiplication of two matrices.

5 Experimental Results

The experimental result consists of the three following
scenarios:

– Scenario 1: In the first scenario, we consider five
processors, which are interconnected in a single level
tree network, see Fig.4. It is assumed that,p0 is the
root processor andp1, p2, p3 and p4 are the worker
processors. It is also assumed thatw0=0.1, z0=0,
w1=0.1, z1=0.01, w2=0.2, z2=0.02, w3=0.3, z3=0.03,
w4=0.4, andz4=0.04. We perform the probing process
three times. In this case, it is assumed that the four
worker processors do not cheat the algorithm in the
three probing processes.

p0

p1 p2 p3 p4

Fig. 4: Single level tree network with five processors.

Thus the comparison matrix for the probing processes
can be shown by the following equation:

R=





1.00 1.00 1.00
1.00 1.00 1.00
1.00 1.00 1.00





The vector of weights for matrixR, can be calculated
as follows:

Λ =





0.33
0.33
0.33




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We also calculate the comparison matrix for processors
in each probing process. In the three probing processes
we have the following matrices:

QPr1 = QPr2 = QPr3 =







1.00 2.00 3.00 4.00
0.50 1.00 1.50 2.00
0.33 0.66 1.00 1.33
0.25 0.50 0.75 1.00







Fig. 5: The priority of processors in three probing.

Now, we calculate∆ using Eqs. (18) and (19). Thus,
we have:

∆ = [u1u2u3] =







0.40 0.40 0.40
0.20 0.20 0.20
0.13 0.13 0.13
0.10 0.10 0.10







Finally, we calculate thePVDas the following matrix:

PVD=∆ .Λ =







0.40 0.40 0.40
0.20 0.20 0.20
0.13 0.13 0.13
0.10 0.10 0.10











0.33
0.33
0.33



=







0.40
0.20
0.13
0.10







According to the proposed algorithm, at first, the
processorp1 gets its fraction of load, because it has
the highest value ofPVD which is equal to 0.40.
Subsequently,p2, p3, and p4 receive their fraction of
load respectively. Hence, we have:
α0 = 0.32634, α1 = 0.32634, α2 = 0.16154, α3
=0.10662,α4 = 0.07917 and makespan=0.003263.
This case indicates that, if the processors do not cheat
the algorithm, then the proposed method works the
same as the traditional divisible load models. Fig.5
shows the priority of processors to obtain the fraction
of load.

– Scenario 2: In the second scenario, we also consider
five processors interconnected in a single level
topology. The first processor (p0) is the root processor
and p1, p2, p3 and p4 are worker processors. It is
assumed thatwi = 0.1× i and zi = 0.01× i, for
i = 0,1,2,3,4. The probing process has been applied

four times. It is also assumed thatzi can be changed in
the various probing processes. The processing time in
the four probing is indicated in Fig.6. The details of
probing process are shown in Table4.

Fig. 6: Processing time in different probing processes.

Table 4: Sample of population produced by probing phase.
Communication rates

Probing Cheated time p1 p2 p3 p4
1 0.00582 0.02 0.03 0.04 0.01
2 0.03394 0.03 0.04 0.02 0.01
3 0.03803 0.05 0.06 0.07 0.09
4 0.03178 0.08 0.01 0.07 0.09

.

Using Algorithm3, the comparison matrix for probing
can be calculated as follows:

C=







1.000 35.561 31.046 3.852
0.028 1.000 247.500 0.002
0.032 0.004 1.000 0.006
0.269 462.963 160.000 1.000







Using Algorithm 5, the corresponding principal
eigenvector ofC can be calculated as follows:

Λ =







0.663
0.114
0.102
0.121







Moreover, the comparison matrices of processors are
shown in Tables5-8.
Therefore, thePVD for priority of processors can be
calculated as follows:

PVD=∆ .Λ =







0.159 0.090 0.132 0.480
0.120 0.725 0.110 0.240
0.240 0.103 0.662 0.160
0.480 0.080 0.142 0.120













0.663
0.114
0.102
0.121






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Table 5: Comparison matrices of processors for communication-
based probing 1.

Processors
Processors p1 p2 p3 p4 u1

p1 1.000 1.333 0.666 0.333 0.159
p2 0.750 1.000 0.500 0.250 0.120
p3 0.333 0.666 1.000 1.333 0.240
p4 3.000 4.000 2.000 1.000 0.480

Table 6: Comparison matrices of processors for communication-
based probing 2.

Processors
Processors p1 p2 p3 p4 u2

p1 1.000 1.125 0.875 1.125 0.090
p2 8.000 1.000 7.000 9.000 0.725
p3 1.142 0.142 1.000 1.285 0.103
p4 0.888 0.111 0.777 1.000 0.080

Table 7: Comparison matrices of processors for communication-
based probing 3.

Processors
Processors p1 p2 p3 p4 u3

p1 1.000 1.200 0.200 1.400 0.132
p2 0.833 1.000 0.166 1.166 0.110
p3 5.000 6.000 1.000 7.000 0.662
p4 0.714 0.857 1.142 1.000 0.142

Table 8: Comparison matrices of processors for communication-
based probing 4.

Processors
Processors p1 p2 p3 p4 u4

p1 1.000 2.000 3.000 4.000 0.480
p2 0.500 1.000 1.500 2.000 0.240
p3 0.333 0.666 1.000 1.333 0.160
p4 0.250 0.500 0..750 1.000 0.120

Lastly,priority vector of distributionis:

PVD= ∆ .Λ =







0.218
0.338
0.312
0.132







The performance analysis of the second scenario has
been shown in Fig.7. The figure puts the information
about how alternatives behave on each criterion. Each
criterion possesses a vertical line. The overall priority
of each alternative is where it intersects the axis on
the right. The priority of each criterion is shown by
the rectangular box on that criterion’s vertical line, as
read from the axis at the left. As the priority changes,
the overall priorities of the alternatives on the axis at
the right change. The priorities of processors based on
communication criteria are shown in Fig.8.

Therefore, at first the processorp2 obtains its fraction
of load. Subsequently, processorsp3, p1, and p4
receive their fraction of loads respectively.

Fig. 7: Performance analysis of the second scenario.

Fig. 8: The priority of processors based on communication
criteria.

Fig. 9: Evaluation of proposed method in 16 different cases.
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– Scenario 3: In the third scenario, we investigate the
effects of communication rate cheating on the
processing time. We simulate the proposed method
with a set of random value of communication rate
cheating. We consider the five previous processors
and assumed thatw0 = 1, wi = 0.1× i for i = 1,2,3,4.
The communication rate cheating for each processor
is generated using the Poisson distribution with mean
value of 0.05 (zi = 0.05 for i =1, 2, 3, 4 andz0 = 0).
The test has been done more than 500 times. We
compare the average processing time which are
calculated by the proposed method and the traditional
divisible load. The result has been shown in Fig.9. As
the figure shows the proposed method has the lowest
total finish time in almost all cases comparing to the
traditional method. Furthermore, the total finish time
in the four cases of the proposed method, including 1,
5, 9, and 13 dramatically have been decreased.

6 Conclusion

Existing divisible load scheduling algorithms are based
on the fact that, the processors report their true
communication rate to the root processor. Based on this
assumption the traditional divisible load considers that
zj ≤ zj+1 for all processors. In this paper we assumed that
the actual communication rate for sending fraction of load
to the processors may be different from the true
communication rates. In this case, the priority of the
processors for obtaining the fraction of loads would be
changed. Therefore, we proposed a priority-based
divisible load scheduling method for the first time. The
proposed method is able to estimate the actual
communication rates of the processors. The experimental
results indicated that the proposed method is able to
reduce the effects of communication rate cheating on the
performance of divisible load scheduling. We also
calculated the complexity of computation and indicated
that the complexity of computation of proposed method is
ignorable. In this work, we calculated the priority of
processors only based on communication rates.

In the future, we will develop the priority of processors
based on both communication and computation rates of the
processors.
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