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Abstract: This article presents the theoretical framework to solverise problems for Delay Differential Equations (DDEs)vesi
a parameterized DDE and experimental data, we estimateatlhengters appearing in the model, using least squaresambpr®ome
issues associated with the inverse problem, such as naritynand discontinuities which make the problem more dsed, are studied.
Sensitivity and robustness of the models to small pertiobain the parameters, using variational approach, aceilsstigated. The
sensitivity functions may provide guidance for the modeterdetermine the most informative data for a specific patamand select
the best fit model. The consistency of delay differentialaiquns with bacterial cell growth is shown by fitting the misd® real
observations.
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1 Introduction predictions are compared with measured data and an
optimization algorithm updates the parameters. The
Delay differential equations (DDEs) are a class of challenging problems related to parameter estimation in
differential equations that have received considerablenonlinear problems (such as ODEs or DDEs) are
attention and been shown to model many real lifenumerous. One of the most important issues is the
problems, traditionally formulated by systems of ordinary unpredictable and inevitable existence of noise in
differential equations (ODEs), more naturally and moremeasurements. Some parameters are very sensitive to
accurately. Such class of DDEs are widely used fornoise which can make their estimation difficult and
analysis and predictions of systems with memory such asometimes even impossible. Another difficulty results
population dynamics, epidemiology, immunology, from the nonlinearity of the most relevant ODE/DDE
physiology, neural networks and systems with memorymodels, which complicates the adoption of most
[1,2,3,4,5]. In ODEs, the unknown function and its optimization techniques. Moreover, parameter estimation
derivatives are evaluated at the same time instantfor systems of DDEs is more challenging due to frequent
However, in a DDE the evolution of the system at a discontinuities in the solution caused by the delay terms.
certain time instant, depends on the state of the system dtis often desirable to have information about the effect of
an earlier time. The delay can be related to the duration ofionlinearity of the parameters. Nonlinear regression
certain hidden processes like the stages of the life cyclemodels differ from linear regression models in that, given
the time between infection of a cell and the production ofthe usual assumption of an independent and identically
new viruses, the duration of the infectious period, thedistributed normal stochastic term, linear models give ris
immune period, and so on; Se&1,8,9,10]. to unbiased, normally distributed, minimum variance
Identification of unknown parameters in DDES, using estimators; Whereas nonlinear regression models have
least squares estimator or maximum likelihood these properties only asymptotically (when the sample
estimation, has been studied and addressed by marsize becomes very large)§ Chap.2].
authors (see, e.g.,11,12,13,14,15,16,17]). In these Sensitivity analysis, of a particular DDE model, is a
approaches, the dynamical system is simulated usingnost important tool for investigating the quantitative (or
initial guesses for the parameters, first. Then, the modequalitative) influence of perturbing the parameters (or the
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data) on the model. The objective of a sensitivity analysisof the objective function to be optimized that depends on
is to determine systematically the effect of uncertainthe stochastic features of the errors in the dagh [
parameters on system solutions and the effect of the noisy We assume that the daté; satisfy the following
data on the accuracy to which parameters may bebservation equation

determined; seelp,20,21,22,23]. There are different

approaches to find the sensitivity functions. Rihas] [ Yii =yj(ti) + ojg; )

derives a general theory for sensitivity analysis of DDE \ ereq; - 0 measures the variance of the noise associated
models by using adjoint equations and direct methods Qi the ith component and is related to the scale of the
estimate the sensitivity equations Wlth vgrl.able andexpected magnitude of thgh component)Y; (t)|. Thes;
constant parameters, respectively. Zivaripira20l[ . independent and standard Gaussian distributed random
develops a systematic collection of tools related to DDE, ;iapjes The principle of maximum-likelihood yields an
simulations,  sensitivity analysis and parameter, o iate cost function which should be minimized with

e_zstima’gion. The kinetiq preprocessor (KPP) nume.ricalrespect to the parametepsto yield an approximationp
library is a comprehensive set of software tools for directy, wq e value. We define the cost function or objective
and adjoint sensitivity analysi®2{]. Another approach function by

which can be used to evaluate sensitivity equations is
automatic differentiationd3]. M M N [y (t-n)_Y. 12

The goal of this paper is to develop a unified (D(P)ZZLSiTm(U)EiE%ZZ M ()
framework for parameter estimation for both ODEs and i= i=1j=1 20;]
DDEs. In Section 2, we address this problem using an e seekp that satisfies
ordinary/logarithmic least squares (OLS) method to find
the best fit parameters. Some related issues, such as ®(p) =: min®(p) = maxZ(p). (4)
nonlinearity and discontinuities, are discussed in Sastio p p
3 & 4. In Section 5, we provide the variation of
parameters technique to study sensitivity analysis andvhereZ(p) = [exH(—&%/207)]/,/2mo?is the likelihood
evaluate the sensitivity functions due to small function; See{3).
perturbations in the parameters. Numerical simulations  |f we adapt the Log Least Squares (LLS) approach, the

and applications to cell growth dynamics are given in gpjective function may take the form
Section 6. We then give discussion and remarks in

Section 7 1 ¥ X 2 0.2
: dL(p) = N-Zi Zl[logyj (ti,p) —logYij|” /207 %)
i=1j=

The choice of LLS in model-fitting problem may decrease
the exponential nonlinearity of model predictions with

: e . respect top. (It is assumed thay! (t; 0.) Another
Parameter identification problem, to estimate the Value%igr?ificantpfe(atulre of uthe LLSayaEJIF’)PcZazh i)s that small

of the parameters which appear in model equations, igg|ative changes in large data values can be unduly

considered as an inverse problem. We assume that Weeighted

have observed our system and collected data; we then The methods for minimizing®(p) are iterative in

wish to deter_mme the unknown parameters by fitting the ature. We start with a given poipg known as the initial

modgl equations to the data. Consider a general form Oguess, and proceed to generate a sequence of points

predictive DDE model P2,Ps,. ... which we hope that they converge to the point

y'(t) =f(t,y(t),yt—1);p), te][0,T], p at which d?(p) is m_inimum. (Th_e computation @i

yt) = y(t,p), te[-1,0 (1) is called theith iteration.) In practice, one terminates the
e T sequence after a finite numbkrof iterations, and one

This model is parameterized bp ¢ R- which Nare acceptgy as an approximation fp. The vector

; , . C
estimated using a given set of obse_rvafuom,\.(j.}j:l. 8 = Pii1—pi (6)
We assume that, irl}, the vector functiof is sufficiently

2 Parameter Estimation with DDEs

; M is called theith step. We wish each step to bring us closer
smooth with ‘respect to each argumenysf) € RY, to the minimum. Since we do not know where the

M/ L L/ . .
y(t—1) € R™, pe R", andr € R™ is positive constant  minimum is, we cannot test for this condition directly. In
lag, which may have to be identified as a parameter.

(L" <L, M <M). g(t) is given continuous function. K f}rsgpsveédbgvgf\éietﬁa\g’gnrﬂay consider tfestep to have
includesy’(t — 1), the equation is callecheutral delay

differential equation(NDDE). Our concern is to fit the ®i+1 < @, ()
given data to the system of DDES$)( The model-fitting  where ®; = ®(p;) (j=1,2,...). We call theith step
problem is then select a value or a set valuespidor  acceptablef equation {) holds. An iterative method is
which the functiony(t;p) provides a ‘best’ fit, at acceptable if all the steps of its procedures are acceptable
argumentd = tj, to the given Sei{Yij}'j\':l (L<i<M).  We shall only consider acceptable methods. The methods
The key part in fitting a model to data is the formulation we consider are then based on following scheme:
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1.Seti = 1. An initial guessp; must be provided.

2.The model solution value$y(tj,p;1)} are obtained
numerically.

3.Determine a vector; (see Theorent) in the direction
of the proposeidth step.

4.Determine a scalgr; such that the step

6i = pvi
is acceptable. That is, we take
Pit+1 = Pi + LiVi (8)
and require that; be chosen so that equatiof) bolds.
5.Test whether the termination criterion

Pirj—Pijl <& (1=1,2,...,L),

wherep; j is the jth component op;. If not, increase
by one and return to step 3. Otherwise, acqept as
the value ofp.

2.1 Acceptability

Consider theith iteration of a minimization procedure.
Suppose we strike out from; along some directiow,
generating the ray

p(p)=pi+pv, (PER).
Along this ray, the objective function varies gs is

changed, thus becoming a function of alone. We
designate this function

Hv(p) = @(p(p)) = P(pi+pV),
its derivative is given by

d¥y/dp = (0®/dp)T (dp/dp) = (0®/dp)Tv.

The gradient vector of(p) is d®/dp := q(p). Denoting
by qg; the gradient vector evaluatedmat p;j, we have

W, =d¥/dplp—o =0 V.

In the sequel, we assunge+# 0.

The quantity, is called thedirectional derivativeof
@ relative top;. If ¥, < 0, then®(p) decreases in value
when one starts moving away fropj in the direction of
v. Therefore, ifp is sufficiently small positive number, the
steppv is acceptable. On the other hand#{f > 0, there
may not exist any positive value @f for which pv is an
acceptable step. We callanacceptable directiof ¥, <
0.

Theorem 1A directionv is acceptable if and only if there
exists a positive definite matrix R such that —Rq;.
For the proof; see BardLB].

Therefore the basic equation of ttik iteration in any
gradient method is

Pi+1 = Pi — PiRQi 9

2.2 Convergence

Suppose®(p) is smooth as a function op in the
neighbourhood of the optimal paramefgr and let &,
denote the value of(p;). If we select (at each iteration)
an acceptable point, then the sequence
{®D} = {Dy, D1, P,,...} is monotone decreasing. If the
values of the objective function possess a lower bound,
and the sequencép;} is bounded, then this sequence
must converge to a limitd,. It follows from the
assumption of continuity ofp that ®(p.) = ®w, where

P is any limit point of {p;}. In all practical cases, the
sequence(p;} is either unbounded (and has more than
one limit point), or converges to a poipt.. The rate of
convergence, however, may be so slow that the sequence
appears non-convergent.

A stationary pointof the objective function is one at
which gq(p) = 0. If p; is stationary, i.e.gi = 0, then
equation 9) shows that allpj(j > i) coincide with p;.
Convergence to the true minimum can be guaranteed only
if it can be shown that the objective function has no other
stationary points. In order to get a true minimum, the
initial guess of the parameter values should be sufficiently
close to the global minimum; See Figut¢hat shows the
pairwise plots of parameter estimates.

3 Nonlinearity of Model Predictions

When the predictions are governed by differential
equation models, then tHeS approach (even for models
linear in their parameters) generally leads to a nonlinear
minimization problem. This nonlinearity comes from a
combination of the quadratic transformatidi?, the
ratios scaling functionF(.) and the solution function
y(t,p) of the mathematical model formulated as a
parameter-dependent differential system. The nonliteari
of the fitness functioP(p) with respect tg can lead to
several local minima. To decrease this nonlinearity of
®(p), the function F should be selected with this
behaviour ofy(t, p) in mind.

To illustrate the above ideas, we consider the simplest
case of the linear ODE modey/(t) = py(t). Let the
model be exactly related to the observed process, and let
p* be the “true” parameter i.e., observations are described
by Y(t) = yoe?!. The solution of the model for a
perturbedp value isyopeP (with y(0) = yp). Then the
classical residual oLS approach leads to the nonlinear

minimization problem for p:
®(p) = 3V 1y3 (e —e™)?, and the relative distance
LS approach results in the problem:

L N2
o(p) =y, (e<p*p>ti) . Selecting the scaling function
F(.) as the logarithm formula 5§, decreases the

and various gradient method differ in the manner ofexponential nonlinearity of model predictions with

choosing theR andp;. If pi =1 andR = Hi’l (where

H := 0°®(p)/dpdp’, is the Hessian matrix), then
equation 9) defines theith iteration of Newton (or
Newton-Raphson) method.

respect t@. With this choice, one arrives at the following
minimization problem®(p) = z'j‘/'zl(p— ﬁ)ztjz. The last
formulation is the common linearLS problem
corresponding to the linear ODE modglit) = py(t).
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The real situations may become much moreviewpoints) that solutions of DDEs are not generally
complicated due to inexactness of models, nonlinearity ofdifferentiable with respect to the lag In addition, some
the differential system, noisy observation data, anddiscontinuities can arise and propagate in the solution of
non-exponential behaviour of the solution. NeverthelessPDE. Such discontinuities, when arising from the initial
the LS criterion for relative distance can be scaled by apoint to(p) (and the initial function @(t,p)), may

logarithmic transformation, propagate into®(p) via the solutiony(t,p), if it has a
voN 5 jump at one of the data points;}. Let us explain this
1 Yij 2 further: We have
op) =53 5 flog 207,
N4 £ yj(ti,p) ) (t;; M ay(t;;
a4l (Z55E) —-25 v -ywim (2552 o
The percentagéias in the values of the parameter ! * 1= ! +
estimates is a good indicator of the quantitative effect of / 52¢(; p) M r/ayip) ay(ti:p)
nonlinearity fL8]. To examine thébiasesin the values of I opm = 221 ap on
of the parameter estimates, due to the nonlinearity of the® ~ ' " /£ IS ! iz moJE
. o2°y(ti;
Dérameters, we procee.d as follow§. V() - y(t:p) ( , y(d: p)) } A
()Perturb the obtained solution of the model, PioPm ) Ly
corresponding to the best-fit parameteps with d
normally distributed random errors of zero mean and z—y(ti —T;p) = ~Y (i —1;p). (12)
variance (seeld), Then from equations1Q), (11) and (2) that, unless
®(p) Y(t) = y(ti;p), jumps can arise in the first or the second
¢ = N_L partial derivative of®(p), with respect tqo, if the first or

the second partial derivatives gft,p) with respect top,
(ihFind new best-fit parametes to the perturbed data has a jump at =t; (one of the data-points). These jumps
from (i). can propagate into the second derivativedaip) if the
(iiiRepeat this process a large number of times (500 offirst derivative ofy(t; p), with respect tgo, has a jump at
preferably 1000 times) sufficiently often to generate aone of the data-points=t; even whenY (ti) = y(ti; p).
statistically significant estimate of the mean value of Jumps can also arise in the derivativestgp) if the lagt

p. is considered as a parameter to be estimated and the
(iv)If the relative biasesatisfy the relation, derivative ofy(t;p) (with respect ta) has a jump at one
R ~ R of the data points. For more discussion about these issues,
|[p—mear{p}|| < 0.01p], we refer to p5).

. - As a result of the above remarks, we see that parameter
then the effect of non-linearity is not regarded as estimation in DDEsT) mainly depends on:

significant and the experimenter can have confidence™ " S i
in the parameter estimates, and their standard l.differentiability of the solutiony(t;p), of the DDEs
deviations; see Tables& 5. with respect to the parametey
. . . 2.the existence and uniqueness of the solugiavhich
In other words, if theLS estimator of a nonlinear depends on the initial functiofr and the parameter,
regression model is onlglightly biased (the relative 3.existence and position of the jump discontinuity points
biases< 1%) with a distribution close to that of a normal

TSI | . X . depending orr;
distribution and with a variance only slightly in excess of 4the statistical nature of the observed data-points
the minimum variance bound, it seems reasonable to .{ti Y()IM,

79 1=1"

consider the estimator as behaviotpse to a linear . . .
regression model. If, on the other hand, ti®estimator One can also establish the connection between jumps

has a large non-linear bias, with a distribution far from In the derivatives of(t; p), with respect t, and the partial
normal and variance greatly in excess of the minimumderivatives (ind(p)) of y(t; p) with respect to somp. Let
variance bound, the nonlinear regression model might b&!S réwrite, the scalar case of) {n the form:

far from a linear model in its behaviour. For more details Y (t,p) = f(t,y(t,p),y(co(t),p);p), t>to, (13)

about the nonlinearity effects and issues related parametey(t,p) = @(t;p), t<to

estimations, we may refer t@4]. Figure 4 shows the  \hereg(t) =t — 1. Differentiating both sides ofi@) with

degree of the closeness of those models to a lineafespect tqp, gives the variational system of the form:

regression behaviour. d of ay(t,p)
qtp) = W(Ly(hphyw(t)m):p) T
4 Discontinuities Associated with the __ot (t,y(t,p),y(a(t),p);p)Y (a(t),p) x
L dy(a(t),p) ’
Time-Delay
290 L 2L tywpyiotrone. 4
One obvious difficulty with such parameter estimation op  op T R

|
problem is (from both the practical and the theoretical vy (t;p) = yi(t;p), t <to,
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2y(t;p)
_op : .
(14), together, give a system okutral delay differential
equations (NDDEs). It is clear that the jumps in the ayi(t)
solution of this system are intimately related to the jumps©Yi (t) = Z Ja.
in the derivativesy(t,p) with respect tot in the delay ! )

differential system. Such jumps can spread forward alongrhe functional derivative sensitivity coefficients, howev
the integration interval. when the parameters are functions of time such as the

In the case of state-dependent DDEs, the problemnitial function, are defined b (t,t*) = dyi(t*)/da;(t)
may become more complicated. In this case, Hartung angwheret < t*). Then the total variation igi(t*) due to any
Turi [26] gave in the following theorem sufficient perturbationina(t) is denoted byy(t*), such that:
conditions of differentiability of the solutions with resgt . i
to the parameters: Syi(t*) = gy(t t) Saj(t)dt, <t (16)

0 04Qj

Theorem 2In  case of state-dependent DDEs ) i o . . .
(t = 1(t,y(t):p)), the derivatives ofd(p), in (10)-(11), The functional derivative sensitivity density function

wherey (t;p) = . Note that equations1@) and  y;(0). Then, the total variation iry(t) due to small

variations in the parametegs is such that

daj+0(|al?). (15)

and y(t; p) in (14) are exist if: dyi(t")/daj(t) measures the sensitivity ofi(t) at
locationt* to variation inaj(t) at any locatiort < t*.
Al-f(t,u,v;p) is: (i) continuous, (ii) locally-Lipschitz For simplicity in equationl), we write
continuous in u v and p, and (i) 9
continuously-differentiable with respect towandp. f(t) =f(t,y(t),y(t —1),p); A*(t) = d—yf(t,y(t),y(t —1),p);

A2T(t,;p) is: (i)continuous, (ii) locally-Lipschitz (17)

continuous in and p, (i) continuousl “y - 9 _ Dty = 9 —

differentiable Withwrespect 0 W E’:m)d orand (v) the 07 Gy, (EYOYE=T).P) DO = Gt y(©).y(t=1).P).

derivatives JF, 0%’ g—; are locally-Lipschitz

continuous inp andp. Theorem 3If W(t) is an n-dimensional adjoint function
A3-y(t;p) is: (i) continuous, (i) locally-Lipschitz which satisfies the differential equation

continuous inp, and (iii) continuously differentiable , e T T i
with respect to t, ang. W(t) = —A*(t) W(t) —B*(t) W(t+T1), t<t’,

_ W) =W(t)=0, t>t (18)
Now we discuss how can the parameters uncertainty T
affect the model state/populations? W(t*) =[0,...,0,1t,0...,0]" ,W'(t") =0,

then the functional derivative sensitivity functions of XD
(1) can be expressed by the formulae

ayi(t")

Of considerable importance in assessing the mdijelg dyo* .
the sensitivity of the model solutioy(t,p) to small  9Yi(t") /t WT(OD*(D)dt, t <t (19b)
0

5 Sensitivity Analysis

= W(0), (19a)

variations in the parametgr. For example, if it can be ap

observed that a particular paramefgrhas no effect on i (t*) troT

the solution, it may be possible to eliminate it, at some—-_— = —/ WT(t+1) [B*(t+1)y'(t)]dt, (19c)
stage, from the modelling process. In this Section, weed (Tt*) T

provide the approach of variation of parameter to evaluate?yi N _

the analysis of sensitivity for DDEs. oY(t) At+DWt+), tel-10). (19d)

The variational approachis to derive, analytically, )
general sensitivity coefficients for minor changes in the ProofSee Rihan (2010).
parameters, time delays, and initial data in the model. The . .
use of this approach gives an expression for the sensitivity 1€ standard deviations of the estimates are then
functions in terms of the solution of an adjoint equation. evaluated by using the sensitivity functions, as indicated
Variational approach has been used in Riha8 27 to  the following Remak.
investigate the qualitative behaviour of the solution of aRemarkWe can use the sensitivity  coefficients
dynamic system of DDEs que to small variations in the ,i=1,...,L1) to determine the covariance matfi],
parameters that appear in the model. We desire tqy the estimates, as followd §j:
compute the sensitivity of the state variablé,p) to

small variations in the parameters which occur in the G1 G2 ... G
DDE (1). The familiar first-order sensitivity functions for &1 G2 ... CoL o6
constant parametersr, are defined by the partial G1 C3... G | = 2ﬂ HP) L,
derivativesS;j (t*) = dy;(t*)/daj, wherea; represent the N N-L
parameterspj, the constant lags or the initial values RLGR--- QL
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where (N — L) is the number of degree of freedom and Table 1: One biological interpretation of the parameters in the
H (p) is the Hessian matrix of the objective functigifp). ~ model €D).
The Hessian matrix can be written in the form

Notation Biological interpretation Units
" 02 " 7>0; average cell-division time min
H(p) = [W (D(p)} . —po>0 rate of cell-death min~1
Pop p1>0 rate of commitment to cell-division min~—1
This matrix can be approximated, using the sensitivity] 0<p» <2 | gradual dispersal of synchronization
coefficients, as: (p2 = 2 implies perfect synchronization)

N
W@%H©#ﬂ[2ﬂmmw%@] .
k=1 ihj=1..L Table 2: Parameter estimates, STB(.), Errors and their
The standard deviations for the parameter estimates are tiggn"near biases (NLB) of the growth model} that best fits

quantities ta of Tablet.

g=0(f)=G (i=1,...,L). (20) Parameter estimates for Tetrahymena pyriformis growthehofl
Model Po P p2 | T [Err2
Parametery -0.0518 | 0.1054 - | 96.33 34.41

6 Fitting Models to Cell Growth Data a(.) 0.0034 | 0.0082 | - | 0.0168
NLB(.) 0.0103% | 0.0612% | — 0.0220%

In this Section, we fit a general form of linear NDDE

Y(t) = poy(t) + pry(t — 1)+ p2y' (t— 1), t>0, 21)
Yyt = wt), yO) = ¢'t), te[-1.0, y(0)=Yo
to experimental data of cell growth, using nonlinear leastExample 1We use the published data on the population

squares described above. Two representative examples eize of Tetrahymena pyriformigunctions of time given
a non-monotone cell growth are provided by thevitro Table4 and Figurel to estimate the parameters appearing

system of synchronizetietrahymena pyriformisells 28] in the DDE model
andE.colicells [29]. We demonstrate how a mathematical
model of cell growth that incorporated a time-lag in the ¥ (t) = poy(t) +pry(t— 1), t>0, (22)

cell division phase provides both a qualitatively and y(t) = @(t), te[-1,0], Yy(0)=Yo.
guantitatively consistency with the reality. Cell
population is an ensemble of individual cells, all of which We adopt the LS approac)(to fit the observations to
contribute in a different way to the overall observed model @2) to evaluate the unknown parameters of the
behaviour BQ]. The heterogeneity of dividing cell model. We consider here a uniform initial function
populations can be described by a wide range ofy(t)=25fort € [—1,0), and initial valugy(0) = 50. The
phenotypic and/or physical characteristice,g, the  graph of Figurel displays model prediction for the best
doubling time, the position in the cell cycle. Various fit parameters given in Tabl@. Prescott (1959) 78|
proliferation assays are used to quantify the turnover ofneasured thegeneration times of a population of
growing cell populations. Cell growth kinetics is affected Tetrahymena pyriformigells under uniform conditions.
by the cellular heterogeneity with respect to the division The distribution of generation times in the cell population
rate, initial position in the cell cycle, etc. Broadly was displayed for a subpopulation of new born cells at a
heterogeneous cell populations display an exponential negiven time from thesynchronizectell population, all of
growth pattern (for as long as the necessary resources agge zero. The mean generation timewas 111 min,
available), whereas initially synchronized cell cultures which is close to the estimated value of the best fit,
with a low variability in their division characteristics T = 96.33; see Tabl@. Thebiasesin the values of of the
show, for some time, a non-monotone step-like growthparameter, due to the nonlinearity, NLB(:), of the
until they reach a 'steady exponential growth’. parameters, are estimated and displayed in Talae we

One possible meaning of the parameters 2if) (is ~ proceed in Sectio. A Matlab program andvr chi code
given in Tablel, thatt > 0 the average cell-division time; are used to estimate the parameters and simulate the
po < O the rate of cell-death in culture; apd the rate of ~ best-fit solutions.
commitment to cell-division process; ang, is the
gradual dispersal of synchronization of cell-division
(p2 = 2 implies pure synchronization). The fitting of the
parametric growth models to the given experimental data
of Tables4 & 5 is obtained using the a Matlab program
andAr chi code B1]. Nonlinear least square fits require 1 Generation timethat varies from cell to cell, is defined as
suitable starting values for the parameter values to behe age at which a cell divides, where age is time measurea fro
estimated. birth of a cell.
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Fig. 1: The circles,Y;, represents the data for growth of Fig.3: Shows the data for synchronoHscoli growth (based on

a population ofYyg = 50 of newborn cells ofTetrahymena

[29, Fig.4]) & Best-fit model of NDDEY (t) = pgy(t) + p1y(t —

pyriformis This data represents the multiplication of 25 cells Tcell) +P2Y (t — Tcell)-

in perfect division synchrony at first population doubliriche

line, y(t, p), shows the prediction of the perfect model that based

on the DDE 22), with y(0) =50, y(t) = 25 fort < 0, and best
fit parameters given in Tabl2 The initially synchronized cell
population becomes desynchronized over time.

ay(tyay(t) ay(t')iay(0)

-T -t 0

Section5. The adjoint equation of systerid) is

W(t) = —poW(t) — pIW(t +7), t <t7,

W(t)=0, t>t5 W(t)=1 (23)
The analytical solution of the adjoint EgJ) is then
@Mo<tr<rt
W(t) = e Ptt) ¢ <t (24)

(it <t* <21

W(t) = {emt*) —pit—t" +1)e P ot <t -,

0 i x e P ¢ _p <t <tr,
ay(tyop, (25)
Here Wt + 1) = 0 for t* — 7 <t < t* and
W(t+41)=e P40 foro <t <t*—1.
The analytical solution of the DDE2P), with an initial
ay(or functiony(t) = ym, is
0 T 2t
ae™ —y &, 0<t<T,
Fig. 2: Shows general sensitivity functions, y(t) = {aeoot, [Ymé —apa(t — T) + ymE2e 0 4 yné? 1 <t < 21,
oy(t")/0y(t), ay(t")/dyo, dy(t")/dpo, and dy(t")/dT, ~(26)
for the NDDE @1). P1
wherea = (Yo +Yymé), andé = .
0
Thus the functional derivative sensitivity density
function to the initial function, by usingl@d), becomes:
o<t*<rt
o - oy(tY) ay(t") dy(t*) —polt—t+1) <t
Sensitivity functions and t < t*), where - —J Pi€ , —T<t=t'-—T,
Y FITG) o =) Jgn ~ PWEET) {o, t'—T<t<O.
a = [po,P1,Yo,T]" are estimated using the analysis of (27)
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Fig. 4: Pairwise plots of parameter estimates afi{p), in

five parameters neutral delay model. For each graph, cantour
indicate the correlation of the parameter with each other an
the inference region of least square estimate. Closenei of
contour to an ellipse, indicates the small degree of noatihe

of the model to the data.

(i)t <t* <2t
; ple—po(t—t*+r)_
t* *
0){;&; =9 pib(t —t* +2r)e P20 ot <t 21,
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While the sensitivity function ofy(t) to the initial
conditiony(0), that given by the formulal@3), is

et 0<tr <,
W) =1{ .
{e”ot +b(t* — 1)e?t D 1 <t < 2r1.
(29)
The sensitivity function ofy(t) to the constant

parametepy(= %), by using (9b), takes the form:

* t*
D) [ wio o=
dpo 0 dpo (30)
(at* —ymEN)e® +ynén, 0<t* <,
) T<tr <21,
where
Ut e OF t oF
| = W(t)——dt W(t) —dt
( )0p0 N t—1 ( )0po

= (at" — ymén)e”" — 2ymé?n —
[[ym€ —ab(t* — 7) + Ym& >+ apz — bym& ] (t* — 1)
—Ymén — ZYmEZU] ePot'=1)

In the same manner, we can dedudg(t*)/dp1 &
dy(t*)/dp,. By using (190, we obtain the sensitivity of
y(t) to small perturbations in the time-lag paramates:

17

yt) vt oft+1) oft+1) 4
o — /., W(t+71) oy y (t)+7dy,r y'(t)| dt
0, O<t'<r,
- . (31)
—popra(t* — 1)1 1 <t* <2t

with a= (Yo + Ymé¢).
We also use formula2Q) to estimate the standard

deviation STDo(:) of the parameters, which are also

displayed in Table.

Figureldisplays the best fit mode2®) to the observed
experiment dat given in the Tabfe We notice from the
formula @1) that, as expectegi(t) is sensitive to a change
in T in the time intervalt <t < 27 and is insensitive to
changes in the constant lagin the time interval [0,1].
The plots (see Figurg) have a kink at = 7 due to the

Table 3: Parameter estimates, STD, Errors and their nonlinear
biases (NLB) for E.coli growth modeR() that best fits data of
Tableb.

| Parameter estimates for E.coli growth model
Model | po P P2 T [Errl2
Par. -0.0257| 0.0504 | 1.6847 | 20.2719| 160.16
a(.) 0.0038 | 0.0082 | 0.02062| 0.0868
NLB(.) | 0.070% | 0.050% | 0.006% | 0.042%

estimated or can be estimated by backwards continuation
of the data.

Consider the NDDE model2(). The parametep,
has a natural interpretation, so the neutral delay term is
inviting for qualitative reasons. For the observed data
given in Table5, the numerical values of parameter
estimates, and their standard deviations and nonlinear
biases, are given in TabR Figure3 displays the best fit
model 1) to the observationS. While, Figure4 shows
the pairwise plots of the parameters. The regular
behaviour of the contours (such as ellipses) indicates
whether the model-data combinations are not badly
nonlinear in the five-parameter time-lag model. In
addition, the contours in Figurg indicate the degree of
the closeness of those models to a linear regression
behaviour.

The numerical simulations in this paper have been
performed using Matlab Program awd chi code B1]
with the current values of the parameters to calculate the
corresponding objective functio®(p). The parameter
values are adjusted by the minimization routig® USF?
from NAGlibrary; See §].

7 Discussion and Conclusion

In this paper, we provided the theoretical and numerical
frameworks for parameter identification in DDEs. We
discussed some issues related issues associated with
inverse problem such as discontinuities due to the

existence of the delay in the system. Thereafter, attentiOI’presence of time-delays, nonlinearity of the problem and

has to be directed to the objective function whers a
parameter to be estimated.

sensitivity of the model. We adopted two mathematical
models of cell growth that incorporated a time-lag in the
cell division phase. The models are qualitatively and

Example An this example, we consider a synchronous guantitatively contestant in fitting certain reported data
culture of E.coli that exhibits prolonged step-like growth The yse of DDE/NDDE models gives a direct estimate of

[29] given in Table5 and Figure3. The cell population is

some relevant growth parameters of synchronous cultures

initially homogeneous and synchronized and becomesgych as (j) the cell-division time, (i) the fraction of cell
desynchronized over time. The term ‘synchronous’ refersihat are dividing, (iii) the rate of commitment of cells to

to the fact that the cells in the culture are homogeneous

and synchronized3P]. We assume thafi) All the cells
have the same division timgii) All the cells divide
simultaneously(iii) There is prolonged initial step-like
growth. (iv) The initial numberyy, of E.coli colonies is

2 E04USF is designed to minimize an arbitrary smooth sum
of squares function subject to constraints (which may igelu
simple bounds on the variables, linear constraints and #moo
nonlinear constraints) using a sequential quadratic progring

an unknown which can be specified as a parameter to béSQP) method.
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Table 4: Data for growth of a population of ciliates (Tetrahymena pyriformis) (See Fig 2 in Prescott (1959)).

Time(mins) | 0.0 222 425 59.2 83.3 90.7 98.1 101.8 1055 109.2 111.1
Cell no. 50 49 49 48 49 53 61 66 71 79 85
Time(mins) | 114.8 1185 1222 1259 133.3 138.8 151.8 1685 1814 19096.21
Cell no. 90 93 96 99 102 101 100 101 101 102 104
Time(mins) | 201.8 2055 209.2 211.1 2148 216.6 220.3 2222 2255 22838.5%
Cell no. 110 115 119 125 132 137 144 150 157 162 170
Time(mins) | 235.1 238.8 243.7 248.1 2548 259.2 266.6 274 279.6 288.8 .2296
Cell no. 175 179 184 187 191 194 197 197 198 200 215
Time(mins) | 302.9 312.2 3222 3314 3399 3518 359 370.3 379.6 388.8.1398
Cell no. 230 250 275 305 325 350 365 380 395 410 425

Table 5: Observed data of E.coli colonie growt?d Fig.4]. A synchronous culture &.ecoliK12A F~ cells was prepared by loading
2 % 1019 cells from an exponential culture into a 15ml tube. The cglse then centrifuged at 2500g for 20 minutes and the top 2% of

cells suspended in fresh growth medium.

Observed data of the growth of E.coli colonies
Time(mins) | 485 996 151 196 246 295 346 394 439 4p.2
Cellsperml| 10.6 99 99 103 115 140 142 165 185 185
Time(mins) | 543 59.2 645 695 749 798 850 89.7 952 9p.7
Cells perml| 173 190 224 317 353 346 363 424 551 623
Time(mins) | 105.0 110.0 1150 120.0 125.0 130.0 135.0 140.0
Cells per ml| 650 836 992 1105 1153 1556 1818 2100

cell division, (iv) the degree of synchronization of celts i
the population, and (v) the death rate of cells.

combination are not badly nonlinear; See Talile& 3.

the closeness of graph @f(p) to a paraboloid indicates

the degree of nonlinearity of the model-data set

combination.

remarked how these functions enable one to assess tr[

relevant time intervals for the identification of specific
parameters and enhance the understanding of the role system Interactions: Global dynamics, Parameter estmati

played by specific model parameters in describing Sensitivity analysis, Appl. Math. Comput232 606-623
experimental data. The kinks &at= T in the Figure2 are

due to the existence of the time-delay in the system.

[2]F. A. Rihan and B. F. Rihan, Numerical Modelling of

Biological Systems with Memory using Delay Differential
The estimated parameters are slightly biased with the Equations, Appl. Math. & Inf. Sci9 (3), 1615-1658 (2015).
relative biases< 1% which means that the model-data [3] J. J. Batzel and H. T. Tran, Stability of the human respina
control system I. Analysis of a two-dimensional delay state
An increase in the number of model parameters reduces space model, J Math Bio1, 45-79 (2000).
bias in the data fit. However, small data sets do not[4] T. K. Nagy and G. S#pan and F. C. Moon, Subcritical Hopf
support models with many parameters since the increase bifurcation in the delay equation model for machine tool
in the number of parameters to be estimated. In Figure

vibrations, Nonlinear Dynamic26,121—-42 (2001).

[5] N. W. Nelson and A. S. Perelson, Mathematical analysis of

delay differential equation models of HIV-1 infection, Mat

Biosc.,179, 73-94 (2002).
Sensitivity functions clearly demonstrate the measurejg] H. Smith, An Introduction to Delay Differential Equatie

of the importance of the input parameters. We have with Applications to the Life Sciences, Springer, 2011.
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