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Abstract: This article presents the theoretical framework to solve inverse problems for Delay Differential Equations (DDEs). Given
a parameterized DDE and experimental data, we estimate the parameters appearing in the model, using least squares approach. Some
issues associated with the inverse problem, such as nonlinearity and discontinuities which make the problem more ill-posed, are studied.
Sensitivity and robustness of the models to small perturbations in the parameters, using variational approach, are also investigated. The
sensitivity functions may provide guidance for the modelers to determine the most informative data for a specific parameter, and select
the best fit model. The consistency of delay differential equations with bacterial cell growth is shown by fitting the models to real
observations.
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1 Introduction

Delay differential equations (DDEs) are a class of
differential equations that have received considerable
attention and been shown to model many real life
problems, traditionally formulated by systems of ordinary
differential equations (ODEs), more naturally and more
accurately. Such class of DDEs are widely used for
analysis and predictions of systems with memory such as
population dynamics, epidemiology, immunology,
physiology, neural networks and systems with memory
[1,2,3,4,5]. In ODEs, the unknown function and its
derivatives are evaluated at the same time instant.
However, in a DDE the evolution of the system at a
certain time instant, depends on the state of the system at
an earlier time. The delay can be related to the duration of
certain hidden processes like the stages of the life cycle,
the time between infection of a cell and the production of
new viruses, the duration of the infectious period, the
immune period, and so on; See [6,7,8,9,10].

Identification of unknown parameters in DDEs, using
least squares estimator or maximum likelihood
estimation, has been studied and addressed by many
authors (see, e.g., [11,12,13,14,15,16,17]). In these
approaches, the dynamical system is simulated using
initial guesses for the parameters, first. Then, the model

predictions are compared with measured data and an
optimization algorithm updates the parameters. The
challenging problems related to parameter estimation in
nonlinear problems (such as ODEs or DDEs) are
numerous. One of the most important issues is the
unpredictable and inevitable existence of noise in
measurements. Some parameters are very sensitive to
noise which can make their estimation difficult and
sometimes even impossible. Another difficulty results
from the nonlinearity of the most relevant ODE/DDE
models, which complicates the adoption of most
optimization techniques. Moreover, parameter estimation
for systems of DDEs is more challenging due to frequent
discontinuities in the solution caused by the delay terms.
It is often desirable to have information about the effect of
nonlinearity of the parameters. Nonlinear regression
models differ from linear regression models in that, given
the usual assumption of an independent and identically
distributed normal stochastic term, linear models give rise
to unbiased, normally distributed, minimum variance
estimators; Whereas nonlinear regression models have
these properties only asymptotically (when the sample
size becomes very large) [18, Chap.2].

Sensitivity analysis, of a particular DDE model, is a
most important tool for investigating the quantitative (or
qualitative) influence of perturbing the parameters (or the
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data) on the model. The objective of a sensitivity analysis
is to determine systematically the effect of uncertain
parameters on system solutions and the effect of the noisy
data on the accuracy to which parameters may be
determined; see [19,20,21,22,23]. There are different
approaches to find the sensitivity functions. Rihan [19]
derives a general theory for sensitivity analysis of DDE
models by using adjoint equations and direct methods to
estimate the sensitivity equations with variable and
constant parameters, respectively. Zivaripiran [20]
develops a systematic collection of tools related to DDE
simulations, sensitivity analysis and parameter
estimation. The kinetic preprocessor (KPP) numerical
library is a comprehensive set of software tools for direct
and adjoint sensitivity analysis [21]. Another approach
which can be used to evaluate sensitivity equations is
automatic differentiation [23].

The goal of this paper is to develop a unified
framework for parameter estimation for both ODEs and
DDEs. In Section 2, we address this problem using an
ordinary/logarithmic least squares (OLS) method to find
the best fit parameters. Some related issues, such as
nonlinearity and discontinuities, are discussed in Sections
3 & 4. In Section 5, we provide the variation of
parameters technique to study sensitivity analysis and
evaluate the sensitivity functions due to small
perturbations in the parameters. Numerical simulations
and applications to cell growth dynamics are given in
Section 6. We then give discussion and remarks in
Section 7.

2 Parameter Estimation with DDEs

Parameter identification problem, to estimate the values
of the parameters which appear in model equations, is
considered as an inverse problem. We assume that we
have observed our system and collected data; we then
wish to determine the unknown parameters by fitting the
model equations to the data. Consider a general form of
predictive DDE model

y′(t) = f(t,y(t),y(t − τ);p), t ∈ [0,T],

y(t) = ψ(t,p), t ∈ [−τ,0].
(1)

This model is parameterized byp ∈ R
L which are

estimated using a given set of observations,{t j ;Yi
j }N

j=1.
We assume that, in (1), the vector functionf is sufficiently
smooth with respect to each arguments;y(t) ∈ R

M,
y(t − τ) ∈ R

M′
, p ∈ R

L, andτ ∈ R
L′ is positive constant

lag, which may have to be identified as a parameter
(L′ ≤ L, M′ ≤ M). ψ(t) is given continuous function. Iff
includesy′(t − τ), the equation is calledneutral delay
differential equation(NDDE). Our concern is to fit the
given data to the system of DDEs (1). The model-fitting
problem is then select a value or a set values forp for
which the function y(t; p̂) provides a ‘best’ fit, at
argumentst = t j , to the given set{Yi j }N

j=1 (1 ≤ i ≤ M).
The key part in fitting a model to data is the formulation

of the objective function to be optimized that depends on
the stochastic features of the errors in the data [13].

We assume that the dataY i satisfy the following
observation equation

Yi j = y j(ti)+σ jεi j (2)

whereσ j >0 measures the variance of the noise associated
with the jth component and is related to the scale of the
expected magnitude of thejth component,|Yj(t)|. Theεi j
are independent and standard Gaussian distributed random
variables. The principle of maximum-likelihood yields an
appropriate cost function which should be minimized with
respect to the parametersp to yield an approximation,̂p
to the true value. We define the cost function or objective
function by

Φ(P) =
M

∑
i=1

εT
i ωi(σ)εi ≡

1
N

M

∑
i=1

N

∑
j=1

[y j(ti ;p)−Yi j ]
2

2σ2
j

. (3)

We seek̂p that satisfies

Φ(p̂) =: min
p

Φ(p) ≡ max
p

L (p). (4)

whereL (p) = [exp(−ε2
i j /2σ2

j )]/
√

2πσ2
j is the likelihood

function; See [13].
If we adapt the Log Least Squares (LLS) approach, the

objective function may take the form

ΦL(p) =
1
N

M

∑
i=1

N

∑
j=1

[logy j(ti ,p)− logYi j ]
2/2σ2

j . (5)

The choice of LLS in model-fitting problem may decrease
the exponential nonlinearity of model predictions with
respect top. (It is assumed thaty j(ti ,p) > 0.) Another
significant feature of the LLS approach is that small
relative changes in large data values can be unduly
weighted.

The methods for minimizingΦ(p) are iterative in
nature. We start with a given pointp1 known as the initial
guess, and proceed to generate a sequence of points
p2,p3, . . . . which we hope that they converge to the point
p̂ at whichΦ(p̂) is minimum. (The computation ofpi+1
is called theith iteration.) In practice, one terminates the
sequence after a finite numberk of iterations, and one
acceptspk as an approximation tôp. The vector

δδδ i = pi+1−pi (6)

is called theith step. We wish each step to bring us closer
to the minimum. Since we do not know where the
minimum is, we cannot test for this condition directly. In
a sense, however, we may consider theith step to have
“improved” our situation if

Φi+1 < Φi , (7)

where Φ j = Φ(p j ) ( j = 1,2, . . .). We call the ith step
acceptableif equation (7) holds. An iterative method is
acceptable if all the steps of its procedures are acceptable.
We shall only consider acceptable methods. The methods
we consider are then based on following scheme:
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1.Seti = 1. An initial guessp1 must be provided.
2.The model solution values{y(t j ,p1)} are obtained

numerically.
3.Determine a vectorvi (see Theorem1) in the direction

of the proposedith step.
4.Determine a scalarρi such that the step

δδδ i = ρivi

is acceptable. That is, we take
pi+1 = pi +ρivi (8)
and require thatρi be chosen so that equation (7) holds.

5.Test whether the termination criterion

|pi+1, j −pi, j | ≤ ε j ( j = 1,2, . . . ,L),

wherepi, j is the jth component ofpi . If not, increasei
by one and return to step 3. Otherwise, acceptpi+1 as
the value of̂p.

2.1 Acceptability

Consider theith iteration of a minimization procedure.
Suppose we strike out frompi along some directionv,
generating the ray

p(ρ)≡ pi +ρv, (ρ ∈ R).

Along this ray, the objective function varies asρ is
changed, thus becoming a function ofρ alone. We
designate this function

Ψiv(ρ)≡ Φ(p(ρ)) = Φ(pi +ρv),

its derivative is given by

dΨiv/dρ = (∂Φ/∂p)T (∂p/∂ρ) = (∂Φ/∂p)T v.

The gradient vector ofΦ(p) is ∂Φ/∂p := q(p). Denoting
by qi the gradient vector evaluated atp = pi , we have

Ψ ′
iv ≡ dΨi/dρ |ρ=0 = qT

i v.

In the sequel, we assumeqi 6= 0.
The quantityΨ ′

iv is called thedirectional derivativeof
Φ relative topi . If Ψ ′

iv < 0, thenΦ(p) decreases in value
when one starts moving away frompi in the direction of
v. Therefore, ifρ is sufficiently small positive number, the
stepρv is acceptable. On the other hand, ifΨ ′

iv ≥ 0, there
may not exist any positive value ofρ for which ρv is an
acceptable step. We callv anacceptable directionif Ψ ′

iv <
0.

Theorem 1.A directionv is acceptable if and only if there
exists a positive definite matrix R such thatvi =−Rqi.

For the proof; see Bard [13].
Therefore the basic equation of theith iteration in any

gradient method is
pi+1 = pi −ρiRiqi (9)
and various gradient method differ in the manner of
choosing theRi and ρi . If ρi = 1 andRi = H−1

i (where
H := ∂ 2Φ(p)/∂p∂pT , is the Hessian matrix), then
equation (9) defines the ith iteration of Newton (or
Newton-Raphson) method.

2.2 Convergence

SupposeΦ(p) is smooth as a function ofp in the
neighbourhood of the optimal parameterp̂, and let Φi
denote the value ofΦ(pi). If we select (at each iteration)
an acceptable point, then the sequence
{Φi} ≡ {Φ0,Φ1,Φ2, . . .} is monotone decreasing. If the
values of the objective function possess a lower bound,
and the sequence{pi} is bounded, then this sequence
must converge to a limitΦ∞. It follows from the
assumption of continuity ofΦ that Φ(p∞) = Φ∞, where
p∞ is any limit point of {pi}. In all practical cases, the
sequence{pi} is either unbounded (and has more than
one limit point), or converges to a pointp∞. The rate of
convergence, however, may be so slow that the sequence
appears non-convergent.

A stationary pointof the objective function is one at
which q(p) = 0. If pi is stationary, i.e.,qi = 0, then
equation (9) shows that allp j( j ≥ i) coincide with pi .
Convergence to the true minimum can be guaranteed only
if it can be shown that the objective function has no other
stationary points. In order to get a true minimum, the
initial guess of the parameter values should be sufficiently
close to the global minimum; See Figure4 that shows the
pairwise plots of parameter estimates.

3 Nonlinearity of Model Predictions

When the predictions are governed by differential
equation models, then theLS approach (even for models
linear in their parameters) generally leads to a nonlinear
minimization problem. This nonlinearity comes from a
combination of the quadratic transformation[.]2, the
ratios scaling functionF(.) and the solution function
y(t,p) of the mathematical model formulated as a
parameter-dependent differential system. The nonlinearity
of the fitness functionΦ(p) with respect top can lead to
several local minima. To decrease this nonlinearity of
Φ(p), the function F should be selected with this
behaviour ofy(t,p) in mind.

To illustrate the above ideas, we consider the simplest
case of the linear ODE model:y′(t) = py(t). Let the
model be exactly related to the observed process, and let
p∗ be the “true” parameter i.e., observations are described
by Y(t) = y0ep∗t . The solution of the model for a
perturbedp value is y0ept (with y(0) = y0). Then the
classical residual ofLS approach leads to the nonlinear
minimization problem for p:

Φ(p) = ∑M
j=1y2

0

(
ept j −ep̂t j

)2
, and the relative distance

LS approach results in the problem:

Φ(p) = ∑M
j=1

(
e(p− p̂)t j

)2
. Selecting the scaling function

F(.) as the logarithm formula (5), decreases the
exponential nonlinearity of model predictions with
respect top. With this choice, one arrives at the following
minimization problem:Φ(p) = ∑M

j=1 (p− p̂)2 t2
j . The last

formulation is the common linearLS problem
corresponding to the linear ODE model,y′(t) = py(t).
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The real situations may become much more
complicated due to inexactness of models, nonlinearity of
the differential system, noisy observation data, and
non-exponential behaviour of the solution. Nevertheless,
the LS criterion for relative distance can be scaled by a
logarithmic transformation,

Φ(p) =
1
N

M

∑
i=1

N

∑
j=1

[
log

(
Yi j

y j(ti ,p)

)]2

/2σ2
j .

The percentagebias in the values of the parameter
estimates is a good indicator of the quantitative effect of
nonlinearity [18]. To examine thebiasesin the values of
of the parameter estimates, due to the nonlinearity of the
parameters, we proceed as follows:

(i)Perturb the obtained solution of the model,
corresponding to the best-fit parametersp̂ with
normally distributed random errors of zero mean and
variance (see [13]),

s2 =
Φ(p̂)
N−L

.

(ii)Find new best-fit parameters̃p to the perturbed data
from (i).

(iii)Repeat this process a large number of times (500 or
preferably 1000 times) sufficiently often to generate a
statistically significant estimate of the mean value of
p̃.

(iv)If the relative biasessatisfy the relation,

‖p̂−mean{p̃}‖< 0.01‖p̂‖,

then the effect of non-linearity is not regarded as
significant and the experimenter can have confidence
in the parameter estimates, and their standard
deviations; see Tables2 & 5.

In other words, if theLS estimator of a nonlinear
regression model is onlyslightly biased (the relative
biases< 1%) with a distribution close to that of a normal
distribution and with a variance only slightly in excess of
the minimum variance bound, it seems reasonable to
consider the estimator as behavingclose to a linear
regression model. If, on the other hand, theLS estimator
has a large non-linear bias, with a distribution far from
normal and variance greatly in excess of the minimum
variance bound, the nonlinear regression model might be
far from a linear model in its behaviour. For more details
about the nonlinearity effects and issues related parameter
estimations, we may refer to [24]. Figure 4 shows the
degree of the closeness of those models to a linear
regression behaviour.

4 Discontinuities Associated with the
Time-Delay

One obvious difficulty with such parameter estimation
problem is (from both the practical and the theoretical

viewpoints) that solutions of DDEs are not generally
differentiable with respect to the lagτ. In addition, some
discontinuities can arise and propagate in the solution of
DDE. Such discontinuities, when arising from the initial
point t0(p) (and the initial function ψ(t,p)), may
propagate intoΦ(p) via the solutiony(t,p), if it has a
jump at one of the data points{ζi}. Let us explain this
further: We have(

∂Φ(ti ;p)
∂ pl

)

±
=−2

M

∑
i=1

[Y(ti)− y(ti;p)]
(

∂y(ti ;p)
∂ pl

)

±
;(10)

(
∂ 2Φ(ti ;p)
∂ pl ∂ pm

)

±±
= 2

M

∑
i=1

[(
∂y(ti ;p)

∂ pl

)

±

(
∂y(ti ;p)

∂ pm

)

±

− [Y(ti)−y(ti ;p)]
(

∂ 2y(ti ;p)
∂ pl ∂ pm

)

±±

]
; (11)

∂
∂τ

y(ti − τ;p) =−y′(ti − τ;p). (12)

Then from equations (10), (11) and (12) that, unless
Y(ti) = y(ti ;p), jumps can arise in the first or the second
partial derivative ofΦ(p), with respect topl , if the first or
the second partial derivatives ofy(t,p) with respect topl
has a jump att = ti (one of the data-points). These jumps
can propagate into the second derivative ofΦ(p) if the
first derivative ofy(t;p), with respect topl , has a jump at
one of the data-pointst = ti even whenY(ti) = y(ti ;p).
Jumps can also arise in the derivatives ofΦ(p) if the lagτ
is considered as a parameter to be estimated and the
derivative ofy(t;p) (with respect tot) has a jump at one
of the data points. For more discussion about these issues,
we refer to [25].

As a result of the above remarks, we see that parameter
estimation in DDEs (1) mainly depends on:

1.differentiability of the solution,y(t;p), of the DDEs
with respect to the parameterp;

2.the existence and uniqueness of the solutiony which
depends on the initial functionψ and the parameterp;

3.existence and position of the jump discontinuity points
depending onτ;

4.the statistical nature of the observed data-points
{ti , ,Y(ti)}M

i=1.

One can also establish the connection between jumps
in the derivatives ofy(t;p), with respect tot, and the partial
derivatives (inΦ(p)) of y(t;p) with respect to somepl . Let
us rewrite, the scalar case of, (1) in the form:
y′(t,p) = f (t,y(t,p),y(σ(t),p);p), t ≥ t0,
y(t,p) = ψ(t;p), t ≤ t0

(13)

whereσ(t) = t− τ. Differentiating both sides of (13) with
respect topl , gives the variational system of the form:
d
dt

yl (t;p) =
∂ f

∂y(t,p)
(t,y(t,p),y(σ(t),p);p)

∂y(t,p)
∂ pl

+

∂ f
∂y(σ(t),p)

(t,y(t,p),y(σ(t),p);p)y′(σ(t),p)×

∂σ(t)
∂ pl

+
∂ f
∂ pl

(t,y(t,p),y(σ(t),p);p) , (14)

yl (t;p) = ψl (t;p), t ≤ t0,
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where yl (t;p)≡
∂y(t;p)

∂ pl
. Note that equations (13) and

(14), together, give a system ofneutral delay differential
equations (NDDEs). It is clear that the jumps in the
solution of this system are intimately related to the jumps
in the derivativesy(t,p) with respect tot in the delay
differential system. Such jumps can spread forward along
the integration interval.

In the case of state-dependent DDEs, the problem
may become more complicated. In this case, Hartung and
Turi [26] gave in the following theorem sufficient
conditions of differentiability of the solutions with respect
to the parameters:

Theorem 2.In case of state-dependent DDEs
(τ = τ(t,y(t);p)), the derivatives ofΦ(p), in (10)-(11),
and y′l (t;p) in (14) are exist if:

A1-f(t,u,v;p) is: (i) continuous, (ii) locally-Lipschitz
continuous in u, v and p, and (iii)
continuously-differentiable with respect to u, v andp.

A2-τ(t,ψ ;p) is: (i)continuous, (ii) locally-Lipschitz
continuous in ψ and p, (iii) continuously
differentiable with respect to t, ψ andp, and (iv) the
derivatives ∂τ

∂ t ,
∂τ
∂ψ , ∂τ

∂p are locally-Lipschitz
continuous inψ andp.

A3-ψ(t;p) is: (i) continuous, (ii) locally-Lipschitz
continuous inp, and (iii) continuously differentiable
with respect to t, andp.

Now we discuss how can the parameters uncertainty
affect the model state/populations?

5 Sensitivity Analysis

Of considerable importance in assessing the model (1), is
the sensitivity of the model solutiony(t,p) to small
variations in the parameterp. For example, if it can be
observed that a particular parameterp j has no effect on
the solution, it may be possible to eliminate it, at some
stage, from the modelling process. In this Section, we
provide the approach of variation of parameter to evaluate
the analysis of sensitivity for DDEs.

The variational approachis to derive, analytically,
general sensitivity coefficients for minor changes in the
parameters, time delays, and initial data in the model. The
use of this approach gives an expression for the sensitivity
functions in terms of the solution of an adjoint equation.
Variational approach has been used in Rihan [19,27] to
investigate the qualitative behaviour of the solution of a
dynamic system of DDEs due to small variations in the
parameters that appear in the model. We desire to
compute the sensitivity of the state variabley(t,p) to
small variations in the parameters which occur in the
DDE (1). The familiar first-order sensitivity functions for
constant parametersα, are defined by the partial
derivativesSi j (t

∗) = ∂yi(t
∗)/∂α j , whereα j represent the

parametersp j , the constant lagsτ or the initial values

y j(0). Then, the total variation inyi(t) due to small
variations in the parametersα j is such that

δyi(t) = ∑
j

∂yi(t)
∂α j

δα j +O(|α|2). (15)

The functional derivative sensitivity coefficients, however,
when the parameters are functions of time such as the
initial function, are defined byβi j (t, t

∗) = ∂yi(t
∗)/∂α j (t)

(wheret < t∗). Then the total variation iny(t∗) due to any
perturbation inα(t) is denoted byδy(t∗), such that:

δyi(t
∗) =

∫ t∗

0

∂y(t∗)
∂α j (t)

δα j(t)dt, t < t∗. (16)

The functional derivative sensitivity density function
∂yi(t

∗)/∂α j(t) measures the sensitivity ofyi(t) at
locationt∗ to variation inα j(t) at any locationt < t∗.

For simplicity in equation (1), we write

f(t) = f(t,y(t),y(t − τ),p); A∗(t) =
∂
∂y

f(t,y(t),y(t − τ),p);

B∗(t) =
∂

∂yτ
f(t,y(t),y(t − τ),p); D∗(t) =

∂
∂p

f(t,y(t),y(t − τ),p).
(17)

Theorem 3.If W(t) is an n-dimensional adjoint function
which satisfies the differential equation

W′(t) =−A∗(t)TW(t)−B∗(t)TW(t + τ), t ≤ t∗,

W(t) = W′(t) = 0, t > t∗;

W(t∗) = [0, . . . ,0,1ith,0. . . ,0]
T ,W′(t∗) = 0,

(18)

then the functional derivative sensitivity functions of DDEs
(1) can be expressed by the formulae

∂yi(t∗)
∂y0

= W(0), (19a)

∂yi(t∗)
∂p

=

∫ t∗

0
WT(t)D∗(t)dt, t ≤ t∗, (19b)

∂yi(t∗)
∂τ

= −
∫ t∗−τ

−τ
WT(t + τ)

[
B∗(t + τ)y′(t)

]
dt, (19c)

∂yi(t∗)
∂ψ(t)

= A∗(t + τ)W(t + τ), t ∈ [−τ,0). (19d)

Proof.See Rihan (2010).

The standard deviations of the estimates are then
evaluated by using the sensitivity functions, as indicated
the following Remak.

Remark.We can use the sensitivity coefficients
(si , i = 1, . . . ,L) to determine the covariance matrix[ςi j ],
of the estimates, as follows [13]:




ς11 ς12 . . . ς1L
ς21 ς22 . . . ς2L
ς31 ς32 . . . ς3L
.. .. . . . ..

ςR1 ςR2 . . . ςLL


= 2

Φ(p̂)
N−L

[H(p̂)]−1 ,
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where(N − L) is the number of degree of freedom and
H(p̂) is the Hessian matrix of the objective functionΦ(p̂).
The Hessian matrix can be written in the form

H(p̂) =
[

∂ 2

∂p∂pT Φ(p̂)
]
.

This matrix can be approximated, using the sensitivity
coefficients, as:

H(p̂)≈ H̃(p̂) := 2

[
N

∑
k=1

si(tk, p̂)sj(tk, p̂)

]

i, j=1,...,L

.

The standard deviations for the parameter estimates are the
quantities

σi ≡ σ(p̂i) =
√

ςii (i = 1, . . . ,L). (20)

6 Fitting Models to Cell Growth Data

In this Section, we fit a general form of linear NDDE

y′(t) = ρ0y(t)+ρ1y(t − τ)+ρ2y
′(t − τ), t ≥ 0,

y(t) = ψ(t), y′(t) = ψ ′(t), t ∈ [−τ,0], y(0) = y0
(21)

to experimental data of cell growth, using nonlinear least
squares described above. Two representative examples of
a non-monotone cell growth are provided by thein vitro
system of synchronizedTetrahymena pyriformiscells [28]
andE.coli cells [29]. We demonstrate how a mathematical
model of cell growth that incorporated a time-lag in the
cell division phase provides both a qualitatively and
quantitatively consistency with the reality. Cell
population is an ensemble of individual cells, all of which
contribute in a different way to the overall observed
behaviour [30]. The heterogeneity of dividing cell
populations can be described by a wide range of
phenotypic and/or physical characteristics,e.g., the
doubling time, the position in the cell cycle. Various
proliferation assays are used to quantify the turnover of
growing cell populations. Cell growth kinetics is affected
by the cellular heterogeneity with respect to the division
rate, initial position in the cell cycle, etc. Broadly
heterogeneous cell populations display an exponential net
growth pattern (for as long as the necessary resources are
available), whereas initially synchronized cell cultures
with a low variability in their division characteristics
show, for some time, a non-monotone step-like growth
until they reach a ’steady exponential growth’.

One possible meaning of the parameters of (21) is
given in Table1, thatτ > 0 the average cell-division time;
ρ0 < 0 the rate of cell-death in culture; andρ1 the rate of
commitment to cell-division process; andρ2 is the
gradual dispersal of synchronization of cell-division
(ρ2 = 2 implies pure synchronization). The fitting of the
parametric growth models to the given experimental data
of Tables4 & 5 is obtained using the a Matlab program
andArchi code [31]. Nonlinear least square fits require
suitable starting values for the parameter values to be
estimated.

Table 1: One biological interpretation of the parameters in the
model (21).

Notation Biological interpretation Units
τ > 0; average cell-division time min
−ρ0 ≥ 0 rate of cell-death min−1

ρ1 ≥ 0 rate of commitment to cell-division min−1

0≤ ρ2 ≤ 2 gradual dispersal of synchronization
(ρ2 = 2 implies perfect synchronization)

Table 2: Parameter estimates, STDσ(.), Errors and their
nonlinear biases (NLB) of the growth model (22) that best fits
data of Table4.

Parameter estimates for Tetrahymena pyriformis growth model
Model ρ0 ρ1 ρ2 τ ‖Err‖2
Parameters - 0.0518 0.1054 – 96.33 34.41
σ(.) 0.0034 0.0082 – 0.0168
NLB(.) 0.0103% 0.0612% – 0.0220%

Example 1.We use the published data on the population
size of Tetrahymena pyriformisfunctions of time given
Table4 and Figure1 to estimate the parameters appearing
in the DDE model

y′(t) = ρ0y(t)+ρ1y(t − τ), t ≥ 0,

y(t) = ψ(t), t ∈ [−τ,0], y(0) = y0.
(22)

We adopt the LS approach (3) to fit the observations to
model (22) to evaluate the unknown parameters of the
model. We consider here a uniform initial function
ψ(t) = 25 for t ∈ [−τ,0), and initial valuey(0) = 50. The
graph of Figure1 displays model prediction for the best
fit parameters given in Table2. Prescott (1959) [28]
measured thegeneration times1 of a population of
Tetrahymena pyriformiscells under uniform conditions.
The distribution of generation times in the cell population
was displayed for a subpopulation of new born cells at a
given time from thesynchronizedcell population, all of
age zero. The mean generation timeτ̃ was 111 min,
which is close to the estimated value of the best fit,
τ = 96.33; see Table2. Thebiasesin the values of of the
parameter, due to the nonlinearity, NLB(:), of the
parameters, are estimated and displayed in Table2 as we
proceed in Section3. A Matlab program andArchi code
are used to estimate the parameters and simulate the
best-fit solutions.

1 Generation time, that varies from cell to cell, is defined as
the age at which a cell divides, where age is time measured from
birth of a cell.
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Fig. 1: The circles,Yi , represents the data for growth of
a population ofY0 = 50 of newborn cells ofTetrahymena
pyriformis. This data represents the multiplication of 25 cells
in perfect division synchrony at first population doubling.The
line, y(t, p), shows the prediction of the perfect model that based
on the DDE (22), with y(0) = 50, y(t) = 25 for t < 0, and best
fit parameters given in Table2. The initially synchronized cell
population becomes desynchronized over time.
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Fig. 2: Shows general sensitivity functions,
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for the NDDE (21).
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Fig. 3: Shows the data for synchronousE.coli growth (based on
[29, Fig.4]) & Best-fit model of NDDEy′(t) = ρ0y(t)+ρ1y(t −
τcell)+ρ2y′(t − τcell).

Section5. The adjoint equation of system (22) is

W′(t) =−ρ0W(t)−ρ1W(t + τ), t ≤ t∗,

W(t) = 0, t > t∗; W(t∗) = 1.
(23)

The analytical solution of the adjoint Eq (23) is then

(i)0 < t∗ ≤ τ

W(t) = e−ρ0(t−t∗), t ≤ t∗, (24)

(ii)τ < t∗ ≤ 2τ

W(t) =

{
e−ρ0(t−t∗)−ρ1(t − t∗+ τ)e−ρ0(t−t∗+τ), 0< t ≤ t∗− τ,

e−ρ0(t−t∗), t∗− τ < t ≤ t∗.
(25)

Here W(t + τ) = 0 for t∗ − τ < t ≤ t∗ and
W(t + τ) = e−ρ0(t−t∗+τ) for 0< t ≤ t∗− τ.

The analytical solution of the DDE (22), with an initial
functionψ(t) = ym, is

y(t) =

{
aeρ0t − ymξ , 0< t ≤ τ,

aeρ0t − [ymξ −aρ1(t − τ)+ ymξ 2]eρ0(t−τ)+ ymξ 2, τ < t ≤ 2τ,
(26)

wherea= (y0+ ymξ ), andξ =
ρ1

ρ0
.

Thus the functional derivative sensitivity density
function to the initial function, by using (19d), becomes:

(i)0 < t∗ ≤ τ

∂y(t∗)
∂ψ(t)

= ρ1W(t+τ)=
{

ρ1e−ρ0(t−t∗+τ), −τ < t ≤ t∗− τ,
0, t∗− τ < t ≤ 0.

(27)
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(ii)τ < t∗ ≤ 2τ

∂y(t∗)
∂ψ(t)

=





ρ1e−ρ0(t−t∗+τ)−
ρ1b(t − t∗+2τ)e−ρ0(t−t∗+2τ),− τ < t ≤ t∗−2τ,

ρ1e−ρ0(t−t∗+τ),t∗−2τ < t ≤ 0.
(28)
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Fig. 4: Pairwise plots of parameter estimates andΦ(p), in
five parameters neutral delay model. For each graph, contours
indicate the correlation of the parameter with each other and
the inference region of least square estimate. Closeness ofthe
contour to an ellipse, indicates the small degree of nonlinearity
of the model to the data.
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While the sensitivity function ofy(t) to the initial
conditiony(0), that given by the formula (19a), is

∂y(t∗)
∂y(0)

=W(0)=

{
eρ0t∗ , 0< t∗ ≤ τ,

eρ0t∗ +b(t∗− τ)eρ0(t
∗−τ), τ < t∗ ≤ 2τ.

(29)
The sensitivity function of y(t) to the constant

parameterρ0(≡
1
η
), by using (19b), takes the form:

∂y(t∗)
∂ρ0

=
∫ t∗

0
W(t)

∂F
∂ρ0

dt =
{
(at∗− ymξ η)eρ0t∗ + ymξ η , 0< t∗ ≤ τ,
I , τ < t∗ ≤ 2τ,

(30)

where

I =
∫ t∗−τ

0
W(t)

∂F
∂ρ0

dt+
∫ t∗

t∗−τ
W(t)

∂F
∂ρ0

dt

= (at∗− ymξ η)eρ0t∗ −2ymξ 2η −
[
[ymξ −ab(t∗− τ)+ ymξ 2+aρ2−bymξ η ](t∗− τ)

−ymξ η −2ymξ 2η
]
eρ0(t

∗−τ)

In the same manner, we can deduce∂y(t∗)/∂ρ1 &
∂y(t∗)/∂ρ2. By using (19c), we obtain the sensitivity of
y(t) to small perturbations in the time-lag parameterτ as:

∂y(t∗)
∂τ

= −
∫ t∗−τ

−τ
W(t + τ)

[
∂ f(t + τ)

∂yτ
y′(t)+

∂ f(t + τ)
∂y′τ

y′′(t)
]

dt

=

{
0, 0< t∗ ≤ τ,

−ρ0ρ1a(t∗− τ)eρ0(t∗−τ), τ < t∗ ≤ 2τ,
(31)

with a= (y0+ ymξ ).
We also use formula (20) to estimate the standard

deviation STDσ(:) of the parameters, which are also
displayed in Table2.

Figure1displays the best fit model (22) to the observed
experiment dat given in the Table4. We notice from the
formula (31) that, as expected,y(t) is sensitive to a change
in τ in the time intervalτ < t ≤ 2τ and is insensitive to
changes in the constant lagτ in the time interval [0,τ].
The plots (see Figure2) have a kink att = τ due to the
existence of the delay in the system. Thereafter, attention
has to be directed to the objective function whenτ is a
parameter to be estimated.

Example 2.In this example, we consider a synchronous
culture ofE.coli that exhibits prolonged step-like growth
[29] given in Table5 and Figure3. The cell population is
initially homogeneous and synchronized and becomes
desynchronized over time. The term ‘synchronous’ refers
to the fact that the cells in the culture are homogeneous
and synchronized [32]. We assume that:(i) All the cells
have the same division time.(ii) All the cells divide
simultaneously.(iii ) There is prolonged initial step-like
growth. (iv) The initial number,y0, of E.coli colonies is
an unknown which can be specified as a parameter to be

Table 3: Parameter estimates, STD, Errors and their nonlinear
biases (NLB) for E.coli growth model (21) that best fits data of
Table5.

Parameter estimates for E.coli growth model
Model ρ0 ρ1 ρ2 τ ‖Err‖2
Par. -0.0257 0.0504 1.6847 20.2719 160.16
σ(.) 0.0038 0.0082 0.02062 0.0868
NLB(.) 0.070% 0.050% 0.006% 0.042%

estimated or can be estimated by backwards continuation
of the data.

Consider the NDDE model (21). The parameterρ2
has a natural interpretation, so the neutral delay term is
inviting for qualitative reasons. For the observed data
given in Table 5, the numerical values of parameter
estimates, and their standard deviations and nonlinear
biases, are given in Table3. Figure3 displays the best fit
model (21) to the observations5. While, Figure4 shows
the pairwise plots of the parameters. The regular
behaviour of the contours (such as ellipses) indicates
whether the model-data combinations are not badly
nonlinear in the five-parameter time-lag model. In
addition, the contours in Figure4, indicate the degree of
the closeness of those models to a linear regression
behaviour.

The numerical simulations in this paper have been
performed using Matlab Program andArchi code [31]
with the current values of the parameters to calculate the
corresponding objective functionΦ(p). The parameter
values are adjusted by the minimization routineE04USF2

fromNAG library; See [8].

7 Discussion and Conclusion

In this paper, we provided the theoretical and numerical
frameworks for parameter identification in DDEs. We
discussed some issues related issues associated with
inverse problem such as discontinuities due to the
presence of time-delays, nonlinearity of the problem and
sensitivity of the model. We adopted two mathematical
models of cell growth that incorporated a time-lag in the
cell division phase. The models are qualitatively and
quantitatively contestant in fitting certain reported data.
The use of DDE/NDDE models gives a direct estimate of
some relevant growth parameters of synchronous cultures
such as (i) the cell-division time, (ii) the fraction of cells
that are dividing, (iii) the rate of commitment of cells to

2 E04USF is designed to minimize an arbitrary smooth sum
of squares function subject to constraints (which may include
simple bounds on the variables, linear constraints and smooth
nonlinear constraints) using a sequential quadratic programming
(SQP) method.

c© 2018 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


72 F. A. Rihan et al.: An Inverse Problem for Delay Differential...

Table 4: Data for growth of a population of ciliates (Tetrahymena pyriformis) (See Fig 2 in Prescott (1959)).
Time(mins) 0.0 22.2 42.5 59.2 83.3 90.7 98.1 101.8 105.5 109.2 111.1
Cell no. 50 49 49 48 49 53 61 66 71 79 85
Time(mins) 114.8 118.5 122.2 125.9 133.3 138.8 151.8 168.5 181.4 190.7 196.2
Cell no. 90 93 96 99 102 101 100 101 101 102 105
Time(mins) 201.8 205.5 209.2 211.1 214.8 216.6 220.3 222.2 225.5 228.8 232.5
Cell no. 110 115 119 125 132 137 144 150 157 162 170
Time(mins) 235.1 238.8 243.7 248.1 254.8 259.2 266.6 274 279.6 288.8 296.2
Cell no. 175 179 184 187 191 194 197 197 198 200 215
Time(mins) 302.9 312.2 322.2 331.4 339.9 351.8 359 370.3 379.6 388.8 398.1
Cell no. 230 250 275 305 325 350 365 380 395 410 425

Table 5: Observed data of E.coli colonie growth [29, Fig.4]. A synchronous culture ofE.ecoliK12λ F− cells was prepared by loading
2×1010 cells from an exponential culture into a 15ml tube. The cellswere then centrifuged at 2500g for 20 minutes and the top 2% of
cells suspended in fresh growth medium.

Observed data of the growth of E.coli colonies
Time(mins) 4.85 9.96 15.1 19.6 24.6 29.5 34.6 39.4 43.9 49.2
Cells per ml 10.6 99 99 103 115 140 142 165 185 185
Time(mins) 54.3 59.2 64.5 69.5 74.9 79.8 85.0 89.7 95.2 99.7
Cells per ml 173 190 224 317 353 346 363 424 551 623
Time(mins) 105.0 110.0 115.0 120.0 125.0 130.0 135.0 140.0
Cells per ml 650 836 992 1105 1153 1556 1818 2100

cell division, (iv) the degree of synchronization of cells in
the population, and (v) the death rate of cells.

The estimated parameters are slightly biased with the
relative biases< 1% which means that the model-data
combination are not badly nonlinear; See Tables2 & 3.
An increase in the number of model parameters reduces
bias in the data fit. However, small data sets do not
support models with many parameters since the increase
in the number of parameters to be estimated. In Figure4,
the closeness of graph ofΦ(p) to a paraboloid indicates
the degree of nonlinearity of the model-data set
combination.

Sensitivity functions clearly demonstrate the measure
of the importance of the input parameters. We have
remarked how these functions enable one to assess the
relevant time intervals for the identification of specific
parameters and enhance the understanding of the role
played by specific model parameters in describing
experimental data. The kinks att = τ in the Figure2 are
due to the existence of the time-delay in the system.
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