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Abstract: In this paper, taking into account the possible development of serious disorders of the proliferation of the plasmatic 
cells, we focus on a dataset concerning the prediction among a chronic disease which has the higher risk of malignant 
transformation. The purpose of this paper is to argue in favour of the use of multiple correspondence analysis (MCA) as a powerful 
exploratory tool for such data. Following usual regression terminology, we refer to the primary variable as the response variable 

and the others as explanatory or predictive variables. As an alternative, a copula based methodology for prediction modeling and 
an algorithm to stimulate data are proposed. 
 
Keywords: multiple correspondence analysis, Burt matrix, regression table, regression analysis, barycentric coding, binary 
logistic regression, copulas. 

 

1 Introduction 

Many practical studies adhere to the following scheme: a set of observations I is described by a 

set of variables Q which can be subdivided into a set of predictive variables  and a set of 

response variables  The problem is to find and explain relationships (causal or not) between the 

variables of  and those of . In general, if  is reduced to only one variable, , several 

traditional methods of prediction are applicable, according to the type of variable  and to the 

types of variables of . For more details, see Rousseau et al. [31]. 

 

From the clinical point of view, the state of any healthy or sick subject could be completely 

described by the results of a set of examinations judiciously selected once and for all; the 

interpretation of the set of results would constitute the diagnosis; the prevision of the later states 

would be the pronostic. In addition to the traditional checkups, there exist complex sets of 

examinations which are systematically applied to explore a medical function. 

 

Of primary interest was the possible development of serious plasma cell proliferative disorders, 

however, the advanced age of many patients makes death from other causes a significant 

competing risk. Data thus produced may be regarded as a contingency table, where a large amount 

of data is usually collected on each patient entered, and each column standing for continuous 

explanatory or response predictors. It is from this point of view our study begins, which relates to 

the monoclonal gammopathy of undetermined significance (MGUS). These gammopathies 

correspond to an asymptomatic affection associated with a peak of serum monoclonal 

immunoglobulin, highlighted at 1% of the 50 year old population, 3% of people over the age of 

70 and 10% of the population of more than 80 years. 
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We refer to a dataset obtained from the private clinic Mayo (USA) where all the 241patients 

diagnosed, apparently with a benign monoclonal gammapathy before January 1, 1971, were then 

followed at the beginning of 1992. See (http://mayoresearch.mayo.edu/ mayo/ research/ biostat/ 

therneau-book.cfm). See also Kyle R.A. [20] and International Myeloma Working Group [19]. 

For more details about this paper, see Su-Myat [33]. 

 
Table 1: Selected variables: the categories for the 7 variables selected: 6 explanatory variables and 1 response 

variable. 
 

(1) Age at first diagnosis of MGUS AGE 

(2) Sex of the patient SEX: 1 = male, 2 = female 

(3) Type of plasma cell proliferative disorder 

systemic amyloidosis 

malignant lymphoproliferative disease 

macroglobulinemia 

multiple myeloma 

no plasma cell proliferative disorder 
 

 

AM 

LP 

MA 

MM 

NO 
 

(4) Albumin Level at MGUS diagnosis AL 

(5) Serum Creatinine Level at MGUS diagnosis SCL 

(6) Hemoglobin Level at MGUS diagnosis HL 

(7) Size of Monoclonal Protein Peak at MGUS diagnosis SIZE 

 

The remainder of the paper is organized as follows. In section 2, we give principal tools of 

correspondence analysis (CA), including regression with MCA and a barycentric coding in MCA. 

Section 3 describes an overview on copulas based models. In section 4, we apply CA, binary 

logistic regression and copulas models on the MGUS data. 

 

2 Exploratory Correspondence Analysis 

2.1 Principal Tools of Correspondence Analysis 

 

We will provide a concise summary of CA here, emphasizing geometrical and quantification 

aspects. For more geometrical details and proofs we refer to Benzécri [1], Cazes [4], Greenacre 

([16], [17]), Lebart et al. [24], Le Roux et al. [25], Murtagh [27] and van der Heijden et al. [35]. 

 

CA is a technique with which it is possible to construct a multi-dimensional representation of the 

dependence between the row and column variables of a two-way contingency table. This 

representation is found by allocating scores to the row and column categories and displaying the 

categories as points, where the scores are used as coordinates (also called factors) of these points. 

These scores can be normalized in such a way that distances between row points and between 

column points in Euclidean space are equal to chi-square (χ
2
) distances. 

 

CA offers the remarkable feature of jointly representing individuals and variables. As a result of 

such analysis, not only does one gain insight in the relationship amongst individuals and amongst 

variables, but one can also find an indication of which variables are important in the description 

of which individuals. See Gordon [15]. 
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Let I rows and J columns be collected into the I × J matrix N with elements . (For convenience 

of notation we will assume I ≥ J in this general discussion). A correspondence between these two 

finite sets I and J is defined by a function with positive integer values  on the product I × J 

what means to define a rectangular table of dimensions card (I) × card 

(J). 

 

Let  and  denote the sum of the i-th row and j-th column, 

respectively, and denote the grand total of N. 

The mass of the i-th row is  i.e.  and likewise the mass of 

the j-th column is defined as  i.e.  where P is the so-

called correspondence matrix of relative frequencies in proportion form defined as  

with entries . In other words, the i-th row profile has mass equal to of that row 

in grand total. The mass center of the cloud of all row profiles is the centroid of the cloud and it is 

a profile that corresponds to the marginal row of P. 

 

We proceed by considering chi-square distances between rows. These distances are computed on 

the profiles of the rows of a matrix, where the profile of row i is the vector of conditional 

proportions . The “distributional distance” also called χ
2 
- distance between two rows i and 

 between each profile and the centroid is measured by the chi-squared distance (χ
2
) defined by  

 

   where     (2.0) 

 

All of CA is based on P and the matrix S with elements . We note here 

that this makes CA invariant to rescaling of the original matrix N. In other words, the CA solution 

can be found as follows: Let P be the matrix to be analyzed. Let us construct  and 

, the diagonal matrices whose diagonal entries are respectively the marginal row 

proportions and column proportions , where it is assumed that  and . 

 

Let E be the matrix with expected frequencies computed under the independence model. We can 

write , where t is a unit vector, the length of which depends on the context. Elements 

of E have the form 

      (2.1) 

 

The aim of the computational algorithm to obtain factor coordinates (or simply factors) of the 

row and column profiles with respect to principal axes, using the singular value decomposition 

(SVD), is as follows: 

 

The matrix is submitted to SVD whose elements have the 

values  ; they are proportional to standardized residuals. These residuals are 

decomposed as follows: 

 

     (2.2) 

 

where  is the diagonal matrix of (positive) singular values  in descending 

order: is the index for dimension and the matrices U and V are respectively the 
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row and column eigenvectors which consist of (left and right) singular vectors. Here, we define 

 U is of order , V is of order  and  is of order  and is 

non-singular. These singular vectors are then used to compute respectively unweighted row and 

column scores called standard coordinates and normalized as follows:  

 

      (2.3a) 

      (2.3b) 

 

Without going in the details, by substituting equations (2.3a) and (2.3b) into equation (2.2), we 

find 

 

     (2.4) 

 

which is known as a “reconstitution formula”. This formula shows that CA decomposes the 

departure from independence in matrix P.Whether this is the case or not can be tested by using the 

Pearson’s chi-squared statistic of the data matrix, (i.e. the sum of squares of the matrix S) as 

follows: 

 

      (2.5) 

 

     (2.6) 

 

where is the sample size. The relation between and the squared singular values in  

follows from equations (2.2) and (2.6) : 

     (2.7) 

 

In French publications  is often called the “total inertia”, a term from mechanics, which 

has however a precise meaning in CA, but does not have a sufficiently evocative power: 

 

   (2.8) 

 

In this context, the inertia is also the sum of squares of the singular values, i.e. the sum of the 

eigenvalues: 

 

   (2.9) 

 

where are the nonzero eigenvalues of SS
T
 and k 

its rank, i.e. k = 1, 2, . . . ,K. Squares of singular values of S also decompose total inertia: 

are principal inertias. 

 

The statistic  is also often referred to as “Pearson’s index of mean-square contingency”. 

Equation (2.8) shows that CA decomposes the chi-square value for testing independence in the 

matrix.  is Pearson’s chi-squared statistic of the data matrix, i.e. the sum of squares of the 

matrix S. 
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When the input data is in complete disjunctive form, CA is termed MCA. Complete disjunctive 

form is a form of coding where the response categories, or modalities, of an attribute have one and 

only one non-zero response. MCA is defined as an extension of CA to more than Q = 2 variables, 

which allows one to analyze the pattern of relationships of several categorical dependent 

variables. 

 

Suppose the original matrix of categorical data is , i.e., N cases and Q variables. The first 

form of MCA converts the cases-by-variables data to an indicator matrix Z where the categorical 

data have been recorded as dummy variables. If the q-th variable has  categories, this indicator 

matrix will have columns. Then the indicator version of MCA is the application of the 

basic CA algorithm defined above in sub-section 2. 1 to the matrix S, resulting in coordinates for 

the N cases and the J categories. 

 

The second form of MCA calculates the  table obtained as  of all two-way cross-

tabulations of the Q variables and is called the “Burt table”. Then the Burt version of MCA is the 

application of the same basic CA algorithm to the symmetric matrix B, resulting in coordinates for 

the J categories. 

 

The standard coordinates of the categories are identical in both versions of MCA, and the 

principal inertias in the Burt version are the squares of those in the indicator version. Moreover, 

the eigenvalues obtained from CA of the Burt table give, in general, a better approximation of the 

inertia, explained by the factors, than the eigenvalues of Z. 

 

2.2 Regression with MCA 

 

We will provide a concise summary of Regression in the context of CA as proposed by Cazes 

([6], [7], [8]) whose methodology is at the heart of MCA, studying the regression problem 

between a response variable and a set of explanatory variables. For more geometrical details and 

proofs we refer particularly to Cazes [4]. See also de Tibeiro and d’Ambra [10] and de Tibeiro 

[11]. 

 

We suppose that all the variables  have been divided into 

classes, and we designate by  the set of categories of the 

 and by the unconnected union 

of , i.e. the set of all the explanatory categories (resp. to explain): 

If E designates the set of n observations, 

then we consider the complete disjunctive table (or indicator matrix)  that we note simply S, 

associated with variables xi of which the general term S(e, k) is defined by: 

 

  for,  

 

We have the same notation for  , (or simply T), the complete disjunctive table associated with 

variables yj. We designate  as the general term of T. 

 

Regression analysis with CA involves carrying out the following steps: 
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Step (1): After dividing into slices of variables xi and yj, we construct the table C = T
t
S (associated 

with the complete disjunctive table tE ( Y J) ), which gathers together the set of q p contingency 

tables crossing every variable  with every variable . 

 

Step (2): We carry out CA of data table C. We designate by  the α
th

 couple of factors 

associated with variance 1 (derived from this analysis) and by  the corresponding eigenvalue. 

 

Step (3): We add the table S to supplement C, i. e. we project on the r first factorial axes found in 

step (2) the profiles of the rows e in the table S. Let  be the factors of the row’s profile  

on the factorial axis α. 

 

Taking into account that , we obtain 

 

     (2.10) 

 

Moreover, it is well known that if one carries out CA of the complete disjunctive table S by 

keeping all the factors, the result of the regression is identical to the result of the analysis of 

variance. For more details, see Cazes [5] and Su-Myat [33]. See also de Tibeiro and d’Ambra 

[10].  

 

2.3 Barycentric coding in Multiple Correspondence Analysis 

 

Considering that we lose some information with coding in (0, 1), we propose in this paper to 

extend these considerations to barycentric coding: on the basis of p quantitative variables 

 measured on a set I of n individuals. Let us note xi j the value of the variable xj for the i. 

Let us indicate by X the table of the   xi j. One gives oneself r pivots, i.e r values 

. 

 

If  indicates the coding of xj for the individual i, one poses: 

 

If  

 

If  

 

If 

 

 

. 

 

With this type of coding, where both of the values  are not null, there are the relations, for 

xi j pertaining to the interval  and  the barycentre 

of the affected points ts of the masses k(i, js). For more details, see Cazes [7], Benzécri ([2], [3]) 

and Gallego [12]. 
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We propose indeed to apply this type of coding and then to carry out the usual linear regression 

with explanatory variables, of the factors resulting from MCA. To describe overall the 

connections between the variables, we propose to carry out CA of the Burt matrix with the 

“barycentric table” additional table. See Cazes ([4], [5], [7]) and Ouadrani [29]. 

 

Let qr the response variable and Qp the set of explanatory variables. We note: 

 

the set of categories of the 

response variable, 

 

: the set of the categories of predictive (or explanatory) variables. We 

note also 

 

. 

 

To describe the connections between qr and Qp, we propose to subject to CA, the data set table 

 crossing  and  and we associate in additional supplementary with , the 

“barycentric table” evoked above  (instead of the disjunctive table as proposed by Cazes 

[4]), associated with the explanatory variables. One thus obtains on the maps resulting from CA a 

representation of the connections between the response variable and the explanatory variables, as 

a “visualized regression”. 

 

This visualization is only obtained starting from the knowledge of the explanatory variables, i.e., 

starting from the “barycentric table” , associated with these variables. Let us note 

, the set of the coordinates of projections of elements  on the factorial axis 

 resulting from the table  called “regression table” or “connection table”. 

 

Let us suppose that  comes from cutting in classes of a quantitative variable y. Then to explain 

y, we can carry out a usual regression on the factors  associated with the preserved factorial 

axes. A formula of regression of the type is thus obtained: 

 

 ,where  represents the set of preserved factors. 

 

Let us suppose that one wants to do the prevision y for a new observation s for whom only the 

explanatory variables are known. It is enough to add s in supplementary row to with  (row 

of r and I following the explanatory categories taken by s) to have the  (factor of s on the 

axis and to apply the preceding formula. 

 

Also let us note that if we indicate by  the  couple of factors associated with 

variance 1 resulting from , we obtain: 

 

 
 

and thus the regression formula can be written in the form : 

 

where  . For more details, see 
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Cazes ([4], [7]). 

 

As  is worth 1, if i has adopted the modality j and 0 if not, the regression formula takes the 

following simple form:  where q(i) indicates, let us recall it, 

the modality of Jq taken by i. 

 

It can be thus satisfactory to note that a factor is narrowly correlated with a variable which does 

not appear explicitly in the data set table where it is resulting. It will be necessary to remember 

that an estimate of the parameters of the linear model becomes constraining when the explanatory 

variables of Jp are highly correlated linearly. To circumvent this difficulty, it is generally advised 

to resort to a regression on principal components. If the variables are very dependent not linearly, 

it is extremely useful to proceed by a regression on the factors resulting from MCA allowing to 

capture as well as possible the non-linear interrelations. 

 

Finally, we note that when there are a large number of predictors, we can obtain a model with too 

many parameters, and one unavoidably duplicates the error. To avoid such an over- 

parametrization, the Partial Least Square (PLS) regression may be introduced. As the PLS 

components depend on the connection between the response variables and the predictors, we 

cannot calculate the variances of the regression coefficients with a simple formula. For more 

details, see Tenenhaus [34] and Cazes [5]. See also de Tibeiro and d’Ambra [10]. 

3 Copulas 

Copulas are alternative probability measures of stochastic dependence and powerful tool for 

simulating joint probability distributions. Copulas are functions that join or couple multivariate 

distribution functions to their one-dimensional marginal distribution functions.  Advantages of 

using copulas in modeling dependence are: (i) allowance to model both linear and non-linear 

dependence, (ii) arbitrary choice of marginal distributions and (iii) capable of modeling extreme 

endpoints.  Among several contributions on copula based models and applications, few are 

mentioned by Clayton [9], Genest, Ghoudi and Rivest [13], Genest and MacKay [14], Herath and 

Kumar [18], Kumar [21, 22, 23], Nelson [28], Schweizer and Sklar [32].  

 

The problem of specifying a probability model for independent bivariate observations 

 from a population with distribution function H(x, y) can be simplified by 

expressing H(x, y) in terms of its marginal probability distributions F(x) and G(y), and its 

associated dependence function, i.e., copula C implicitly defined through the identity: 

. 

 

A natural way of analyzing bivariate data thus consists of estimating the dependence function and 

the marginal distributions separately. This two-step approach to stochastic modeling is often 

convenient, because many tractable models are readily available for the marginal distributions. 

See Plackett [26] and Clayton [9]. A more general solution to the problem of choosing an 

appropriate parametric family of dependence functions is using the Archimedean family of 

copulas. The basic assumption is that the data can be suitably modeled by an Archimedean 

copula, which implies that on the unit square, the appropriate dependence function is of the form:  

 

 
for some convex decreasing function  defined on (0, 1] in such a way that . 
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By convention, is taken equal to 0 whenever . These conditions are necessary 

and sufficient for C(u, v) to be a distribution function and are equivalent to the requirement that 

 be a unimodal distribution function on  with mode at 0. For more details, see 

Schweizer and Sklar [28], Theorem 5.4.8. There are several copulas belonging to Archimedean 

family of copulas which have simple closed form expressions. See Nelsen [24]. 

 

Some examples of commonly used Archimedean bivariate copulas: 

 

(i) Clayton copula: Copula generating function ; Copula 

 

 
 

(ii) Gumbel copula: Copula generating function ; Copula 

 

 
 

(iii) Frank copula: Copula generating function  ; Copula 

 

 
 

There are different approaches considered to estimation of copulas. Genest et al. [13] estimate a 

parametric family by maximum likelihood. See Genest and MacKay [14] for motivation, 

elementary properties, and convergence results concerning sequences of Archimedean copulas. 

4 Sequence of the analyses 

4.1. “Visualized Regression” or CA of the “Regression Table”  resulting from the 

“regression table”  as described in section 2.2. 

 

According to steps (1) and (2) of section 2.2., we have created a table  

whose 5 first rows are principal elements and the 187 last rows are supplementary elements. This 

additional table  is precisely a complete disjunctive form associated with the 6 explanatory 

variables (AGE, SEX, AL, SCL, HL, SIZE). 

 
Table 2: Principal inertias (eigenvalues) 

 
dimension principal inertia % of inertia cum % scree plot 
1 0. 037461 51. 393 51. 393 ************ 
2 0. 014469 19. 850 71. 243 **** 
3 0. 010686 14. 661 85. 904 *** 
4 0. 010275 14. 096 100. 000 *** 
Total 0. 072891 100. 000 100. 000  
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   Figure 1: Correspondence Analysis factor map (1,2) of the "Regression Table"  

 

  Figure 1: Cloud of 32 categories in the  plane. Five categorical response variables 

are represented in capital letters and 27 categorical explanatory variables are represented in 

small tiny letters. 

 

The percentages of inertia explained by the top-ranked are 51.4%, 19.9%, 14.6% and 14.1%. Axis 

1 therefore accounts for more than half of the total inertia of the cloud. Thus the first two 

dimensions account for almost 71.3% of the inertia.  

 

The first factor F1, clearly standing apart , is a general attitude, a 

factor of general level i.e. the first eigenvalue which is associated to the first axis is more 

important than the three subsequent ones joined. We also note that the first three factors explain a 

little bit more than 86 % of the dispersion of observed values. We will admit that the essential part 

of structural links between the data is contained in the space of the first three dimensions. 

 

According to factor projections, contributions and correlations, this first axis  is the axis 

of the categorical response variable AM (systemic amyloidosis), a type of plasma cell proliferative 

disorder, which detaches itself from the other categorical explanatory and response variables. We 

observe secondarily on the same half plane  four groups: 

 

 A GROUP of categorical explanatory variables associated with the categorical response 

variable MM (multiple myeloma): a low Serum Creatinine level at MGUS diagnosis (scl1) and the 

gender female of the patient. 

 

 A GROUP of categorical explanatory variables located in the fourth quadrant on the lower 

right: a high Albumin level at MGUS diagnosis (al4), a high level size of the Monoclonal Protein 

Peak at MGUS diagnosis (siz4), a high Hemoglobin level at MGUS diagnosis (hl4), and a low-

median age at first diagnosis of MGUS (age2, age3). 

 

 A GROUP of low Hemoglobin level at MGUS diagnosis (hl2) associated with the 

categorical response variable LP (malignant lymphoproliferative disease).  

 

 A GROUP of categorical explanatory variables (age1, siz1, siz2, scl2, scl3, siz3) moving 

up, to the (0, 0) location at the centre of the display.  
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On the side of the negative first axis , the categorical response variable NO (no plasma 

cell proliferative disorder) is associated with a high size of the Monoclonal Protein Peak at MGUS 

diagnosis (siz5), a high age at first diagnosis of MGUS (age5), a low hemoglobin level at MGUS 

diagnosis (hl1) and the gender male of the patient. 

 

The interpretation of the first factor is then clear: at MGUS diagnosis, more the age of the male 

patient is advanced (age5: more than 74 years), more the size of the monoclonal protein peak at 

MGUS diagnosis is raised (siz5) and less is the hemoglobin level (hl1). 

 

Axis 2 is dominated by the categorical response variable MA (type of plasma cell proliferative 

disorder called also “macroglobulinemia”), which detaches itself from the other categorical 

explanatory and response variables. The categorical response variable MA is opposed to all the 

categorical response variables except AM, whose contribution and correlation are negligible. 

 

We have displayed the simultaneous representation (1, 2) plane of the categorical explanatory and 

response variables in Figure 1 which is almost sufficient for the interpretation. It shows the 

samples spread out on a parabolic crescent which is known as the Guttman effect. The five points 

corresponding to the categorical response variables (MA, NO, MM, LP, AM) closely follow the 

parabolic curve. This is an index of a steep gradient within the data: these are arranged according 

to a series which is patently obvious not only on the axis 1 but in the plane . The first axis 

opposes the extreme values and the second one opposes the intermediate values to the extreme 

values. All the information is almost given by this first factor. We will admit here that the 

essential part of structural links between the data is contained in the space of the two first 

dimensions. 

 

Let us follow the parabola of the samples from the negative extremity of the axis 1 to the other 

extremity. We find on the negative side , the categorical explanatory variables scl4, al4, 

male, emanating from high level categories, and on the positive side , the categorical 

explanatory variables female, al5, siz3.This means in other terms, that at MGUS diagnosis, more 

the albumin level, and size of the monoclonal protein peak are advanced, more there are strong 

chances that relates to the female sex.  

 

According to step (3) in section 2.2., we perform an estimation of the response variable from the 

“Regression Table”. One adds up the indicator matrix  [supplementary rows or vectors of 

description in (0, 1) of all the individuals of the basic sample] as supplementary to , while 

projecting on the first four (non-trivial) factorial axes found the profiles of the rows of table S. CA 

of the full Table obtained where each modality of the categorical response variable is 

regarded as a numeric variable, that one seeks to express in linear combination of the data 

variables, replaced here by the factors resulting from CA of the table in (0, 1) or of the 

“Regression Table”. See Figure 2 where are projected the observations (patients) as 

supplementary points. 
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 Figure 2:  Correspondence Analysis factor map (1,2) of the table .  

 

 Figure 2: Cloud of 219 categories in the  plane. Five categorical response variables 

are represented in capital letters, 27 categorical explanatory variables and 187 

supplementary individuals are represented in small tiny letters. 

 

These two maps (Figure 1 and Figure 2) clearly demonstrate a degree of separation between male 

 and female patients . There could exist some larger male-female differences. 

This, in fact, leads us in the following sub-section to carry out a separate study of the two groups: 

male and female. Let us announce however that in Figure 1, the lack of independence is evident in 

the fact that no categorical response variables except NO are plotted near the (0, 0) location at the 

centre of the display. 

 

 
Figure 3: Correspondence Analysis factor map (1,2) of the table . 

 

 

 Figure 3: Cloud of 31 categories in the   plane. Four categorical response variables 

are represented in capital letters and 27 categorical explanatory variables are represented 

in small tiny letters. 

 

In Figure 3, we propose to superimpose NO to be predicted as a supplementary categorical 

response variable. This response category has no influence on the geometric orientation of the 

axes; rather, it supports and complements the interpretation of the configuration of active response 

categories. This point in Table 3, will have zero mass and thus plays no role in the analysis apart 

interpreting its position. 
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Table 3: Principal inertias (eigenvalues) 

 
dimension principal inertia % of inertia cum % scree plot 

1 0. 0936 43. 41 43. 41 ************ 
2 0. 0647 30. 01 73. 41 ****** 

3 0. 0573 26. 59 100. 00 **** 

 

The percentages of inertia explained by the top-ranked are 43.41%, 30.01% and 26.59%. Axis 1 

therefore accounts for more almost the half of the total inertia of the cloud. Thus the first three 

dimensions account for 100.00% of the total inertia. 

 

The    plane which explains close to 75% of total inertia, opposes on the first axis the 

categorical response variables AM (CTR = 56. 9%) and MA (CTR = 29. 2%), located at the two 

extremities of the first two quadrants. On the side of the negative first axis , we have 

noted the proximity of the categorical response variable MA with categorical explanatory 

variables: siz5 (high size of the Monoclonal Protein Peak at MGUS diagnosis), scl5, scl4 (high 

Serum Creatinine Level at MGUS diagnosis of MGUS), hl5 (high hemoglobin level at MGUS 

diagnosis and the gender male of the patient. 

 

On the side of the positive first axis , the categorical response variable AM is associated 

with a high Albumin Level at MGUS diagnosis (al4), a low size of the Monoclonal Protein Peak 

at MGUS diagnosis (siz2), a low Serum Creatinine Level at MGUS diagnosis (scl2), a low 

hemoglobin level at MGUS diagnosis (hl2) and the gender female of the patient. 

 

These two categorical response variables (AM and MA) in opposition on the first axis are now 

opposed to the other response variables except the categorical response variable MM located at 

the centre of gravity of the cloud, are now associated on the half plane  in opposition 

with the categorical response variable LP, associated with (age5: more than 74 years), a high age 

at first diagnosis of MGUS. 

 

4.2 “Visualized Regression” or CA of the “Regression Tables” and  

resulting from the “regression table”  as described in section 2. 2. 

 

We are interested in the relationship within a set of variables from the original table  where 

187 is the number of observations and 7 is the number of the variables retained in section 2 : One 

response variable TYPE (AM, LP, MA, MM, NO) and 6 explanatory variables (AGE, SEX, AL, 

SCL, HL, SIZE). See Table 1 in section 1. 

 

The division of this data set into two groups: men and women, before an analysis is completed, 

reveals a priori that the categorical response variable LP (malignant lymphoproliferative disease) 

is not related to the gender “male”. In a similar way, the categorical response variable MA 

(macroglobulinemia) is not related to the gender “female”. 

 

4.2.1 “Visualized Regression” or CA of the “Regression Table”  

 

From this table , we consider first the table  crossing the 105 male patients and all 

the explanatory variables except SEX and the response variable TYPE. Alternatively, from the 

“responses” of the patients, we construct the “barycentric” table  crossing the 105 male 

patients and the  response categories. More precisely, we create the table 
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where the 4 first columns AM, MA, MM, NO are categorical response variables and the 15 

following column categories are associated to the five explanatory variables (AGE, AL, SCL, HL, 

SIZE). 

 

We believe more useful to subject the 6 variables retained (5 explanatory and 1 response 

variables) of the original data set to a “barycentric” coding according to the “the personal 

equation”. In each block Jq, an individual i has generally non null notes in two successive 

modalities. That means, i occupies an intermediate position. Thus, the coding of each notation j 

according to three categories {j +, j =, j -}, from which is built a generalized Burt matrix 

 . For more details, see Benzécri ([2], [3]) and McGibbon et al. [26]. 

 

From the contingency table , we take the sub-table  on which we add the table  

. We obtain a “Regression Table” . For more details, see Cazes [4] and 

Su-Myat [33]. 

 

General view of the results 

 

The eigenvalues and the percentages of inertia (in parenthesis) associated to the four first axes are 

relatively small:  ;   and  

 ). 

 

According to factor projections, contributions and correlations, the first axis indicates a cleavage 

between Systemic Amyloidosis AM and Macroglobulinemia MA which contribute most to this 

axis (52.5% and 45.6%), respectively. 

 

On the side of the negative first axis , MA is particularly associated with the categorical 

explanatory variables:  and  . On the side of the positive first axis , AM is 

particularly associated with . MA has higher association with  and . This 

means in other terms that the patient has the higher risk of possible development of serious 

plasma cell proliferative disorders when the size of the monoclonal protein peak at MGUS 

diagnosis is advanced and the age of the male patient is less. 

 

The second factor contrasts the categorical response variable NO, with the categorical response 

variables AM and MA. The categorical response variable NO is related particularly to the 

categorical explanatory variable . The categorical response variables AM and MA, located 

on the positive side of this axis, are not particularly associated with the other categorical 

explanatory variables. 
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    Figure 4:  Correspondence Analysis factor map (1,2) of the "Regression Table" . 

 

 Figure 4. H-Flou-TPMGUS 

 

Table 4: First Group: 105 male patients. The categories for the 5 explanatory variables and 1 

response variable. 

 
Variable Levels Variable Levels 
variable AGE  variable  HL  
variable  AL  variable  SIZE  
variable  SCL  variable  TYPE  
 

4.2.2 “Visualized Regression” or CA of the “Regression Table”  

 

From table , we consider the table  crossing the 82 female patients and all the 

explanatory variables except obviously SEX and the type of plasma cell proliferative disorder. 

Alternatively, from the “responses” of the patients, we construct the “barycentric” table  

crossing the 82 female patients and the  response categories. More precisely, we 

create the table where the 4 first columns AM, LP, MM, NO are categorical response 

variables and the 15 following columns categories are associated to the explanatory variables 

(AGE, AL, SCL, HL, SIZE). From this table  , we retain the sub-table  on which we 

add the table included in . We obtain a “Regression 

Table” . 

 

 
Figure 5:  Correspondence Analysis factor map (1,2) of the "Regression Table" . 
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 Figure 5. F-Flou-TPMGUS 

 

Table 5: Principal inertias (eigenvalues) 

 

   

   

   
 

Thus, the axis 1 represents more than half of the total inertia of the cloud. This axis indicates a 

contrast between NO and AM (Systemic Amyloidosis). On the side of the positive first axis 

, AM is particularly associated with AGE =. On the side of the negative first axis 

, NO is related to the predictive categories:  and . 

 

Here we confirm again a result of CA of “Regression Table”  in the sub-section 4.2.1: 

 the age between the two extremes is the only predictive category being able to have a 

relatively important relationship with NO, the absence of any of the clinical signs of malignant 

MGUS. 

 

Table 6: Second Group: 82 female patients. The categories for the 5 explanatory variables and 1 

response variable. 

 
Variable Levels Variable Levels 
variable AGE  variable  HL  
variable  AL  variable  SIZE  
variable  SCL  variable  TYPE  
 

4.3 Logistic Regression Analysis 

 

4.3.1 Binary Logistic Regression 

 

We have run the preliminary analysis including estimating marginal distributions of the predictive 

variables (AL, SCL, HL, SIZE). Parametric and non-parametric, both, measures of correlation  

 suggest that pair (AL, HL) is 

significant and rest of pairs are not. 

 

Three parametric forms of distributions which fit close to these data are: 

 

(i)  

 

(ii)  

 

(iii)  

 

We can consider (AL, HL) as variables of interest. Using copulas, we will use Hemoglobin Level 

(HL at MGUS diagnosis) to be the predictor variable which makes a better sense in the context of 

this data set. 
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4.4 Copulas 

 

4.4.1 Prediction of probabilities that patient has plasma cell proliferative disorder (Y) given 

AL levels (X) 

 

We have estimated the prediction probabilities of patients with plasma cell proliferative disorder 

given AL level from the data set of 187 patients and the 50 Gumbel simulations of (AL and Y = 1, 

if plasma disorder present; else 0, if plasma disorder absent). 

 

Summary statistics of the given data set: n = 187, mean (AL) = 3.2, mean (Y) = 0.2353, standard 

deviation (AL) = 0.4739, standard deviation (Y) = 0.4253, correlation r (AL, Y) = 0. 089, Kendall’s 

AL, Y) = 0.06. Estimated Marginal distributions: Y ~ Bernoulli ( 0.2352) and AL ~ Gamma 

(45.773, 0.07). Estimated copula parameters:  (Gumbel) = 1. 0650, (Clayton) = 0.1299, 

(Frank) = 0. 5518. 

 

Distance from empirical copula: (Gumbel) = 1.581, Clayton = 1.636, Frank = 1.600. Which is the 

most appropriate copula in this case? Gumbel copula since minimum distance = 1.581. 
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Figure 6:  Clayton, Gumbel and Frank coplas. 

 

 Figure 6: Clayton, Gumbel and Frank copulas 

 

Plasma cell disorder prediction model estimated from data n = 187 

 

 
 

Predicted probability that a patient will have plasma cell disorder 

 

 
 

Thus, the probability that a patient who have AL level at 3 will have plasma cell proliferative 

disorder = 0.2170. Plasma cell disorder prediction model estimated from Gumbel copula 

 

 
 

and the predicted probability that a patient will have plasma cell disorder 
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Figure 6 presents the predicted probabilities that patient will have plasma cell proliferative 

disorder given AL levels. These probabilities are based on fifty Gumbel copula simulations. 
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Figure 7:  Predicted probabilities based on Gumbel copula. 

 

 Figure 7: Predicted probabilities based on Gumbel Copula. 

 

4.4.2 Link between the copula results and previous CA’s results 

 

We have already discussed results from MCA. Now referring to how to connect the copula results 

in the context of present data analysis, we have indicated from MCA results: 

 

(i) The more the age of male patient is advanced; the more the size of Monoclonal Peak at MGUS 

is raised. This confirms the results found in the Binary Logistic Regression. 

 

(ii) MA is associated with explanatory variables gender, AL and SIZE. One way of introducing 

copula in this context could be to consider prediction of size at MGUS using age as the 

explanatory variable for gender male. Thus it may show a relevant connection. 

 

An important issue in prediction modeling of multivariate data is the measure of dependence 

structure. The use of Pearson’s correlation as a dependence measure has several pitfalls and hence 

application of correlation models may not be an appropriate methodology. As an alternative, a 

copula based methodology for prediction modeling and an algorithm to simulate data are useful. 

This algorithm based on the marginal distributions of random variables is applied to construct the 

Archimedean copulas. Monte Carlo simulations are carried out to replicate data sets, estimate 

prediction model parameters. 

 

We will continue later the validation of the prediction model by Lin’s concordance measure. 

From skewness and kurtosis values, there is an indication that both age and size variables are 
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slightly skewed negatively and positively respectively and hence have some departures from 

symmetry. 

5 Concluding Remarks: Perspectives, Limitations and Interest of the Study 

The main thrust of this research project is to be found in the duality, the “cohabitation” and the 

complementarity of the exploratory and modeling approaches including some models based on 

Archimedean copulas as the appropriate measure of association. 

 

More than just a simple pleasure of discovering results, at the end of a simulation computation, 

we expected to connect a “functional model of continuous correspondence” through the 

“regression table” with the binary logistic regression and barycentric linear coding. 

 

Traditionally, MCA has been used prevalently on categorical data in the social sciences, but its 

application has been extended also to (positive) physical quantities. We have shown that MCA 

applied to medical data provides as informative and concise means of visualizing this data, a 

capacity for revealing relationships both among either patients or laboratory continuous values 

(variables) and between patients and variables. 

 

Visualization by using MCA is based on representing  distance among “individuals” and 

variables, thus representing a decomposition of the value of the  statistic. Emphasis is placed on 

the “individuals” and variables that contribute to this value through their association. 

 

In this respect, the use of a “Regression Table” for MCA to analyze the type of plasma cell 

proliferative disorder for MGUS revealed an excellent discrimination according to the sex and the 

age of the patients accidentally discovered during the process of being examined for other 

indications. More precisely, the greater the male patient’s age (more than 74 years), the larger 

the size of monoclonal protein peak at MGUS diagnosis and less the Hemoglobin level. 

 

According to the p-values obtained from the model  of 

Binary Logistic Regression (containing all explanatory variables except sex), we find that age and 

size are the most interesting variables. 

 

From this result, we could propose, as an alternative approach, some models based on the 

currently popular idea of Archimedean copulas as an appropriate measure of association. For 

illustration, we introduced copulas in this context and estimated prediction model for predicting 

the size of MGUS using age as the explanatory variable for the male gender. However copulas are 

applicable to the multivariate data situations as well which will be considered somewhere else in 

future. 
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