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Abstract: The article presents the stochastic modeling of a particular dynamic of dengue cases for a constant population with an initial
number of susceptible and infected members, a time-dependent force of infection and a probability-generating function from which
a linear partial differential equation (PDE) of first order is derived whose solution can assign probabilities to each ofthe states of
the model and the transitions between them. The force of infection is estimated numerically based on a dynamic system of ordinary
differential equations. The method of characteristics applied to find the analytical solution of the PDE and subsequently the marginal
probabilities of the stochastic process are derived analytically. Furthermore, by applying the cumulative generating function, a system
of ordinary differential equations is derived, and the numerical solution determines the values of statistical measures over time. Finally
a comparison of the results of the simulations is undertakento understand the probabilistic dynamics of the process of infection in a
population.
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1 Introduction

Viral diseases transmitted by arthropods have today
become a global public health problem due to factors such
as climate change, population increase, accumulation of
waste and pollutants, inadequate forms of recycling and
insufficient controls on transmission. Dengue is an acute
viral disease caused by the dengue virus and transmitted
to man by the mosquitoAedes aegypti, as its main
transmitter. The virus is caused by four serotypes
(DENV1, DENV2, DENV3, DENV4), which circulate
simultaneously in tropical and subtropical areas, although
recent studies have confirmed the finding of a new
serotype called DENV5 [1]. Serotypes do not trigger
cross-immunity, which means that individuals recovering
from one of them acquire permanent immunity against it,
but only temporary and partial immunity against the
others [2]. It is estimated that there are between 50 and
100 million cases of dengue worldwide [3].

Different theories and mathematical models applied to
epidemiology have made it possible to understand the
dynamics of these viruses and their effects on the
population. Also, important tools such as numerical
methods and computational simulations have been used to

study and understand more complex dynamics, even
being used to predict the future effects of an outbreak in a
particular population and the probabilities over time of
the states of a given disease. Many researchers have used
stochastic models to study particular viral infections that
have been a major global health problem; such as Bailey
(1950) [4], who studied the simplest process disease
propagation, in which there are only two transition states:
susceptible and infected. Bailey analyzed the
deterministic and stochastic cases of the dynamics,
making a comparison and calculating the probability
generating functions and moments, as well as analysing
the behaviour in the limit. Gani and Purdue (1984) [5],
who studied the simplest process disease propagation, in
which there are only two transition states: studied the SI
dynamics for a generalized infection, formulating a
geometric matrix, and calculating the probability for
survivors of a certain epidemic, agreeing with Whittle’s
stochastic threshold theorem. Also, Lounes and Arazoza
(1998) [6] who investigated the deterministic and
stochastic dynamics with immigration for two
populations corresponding to known cases of HIV-AIDS,
according to a health program implemented in Cuba.
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More recent cases, such as that of Khanet al
(2013)[7], who based their work on a deterministic model
of the dynamics of Dengue viruses, formulated a
stochastic model using Markov chains in continuous time
and observed stability and equilibrium characteristics for
the virus; and the case of Leeet al (2012)[8] who
proposed an efficient and precise numeric scheme using
characteristic curves to determine probability-generating
functions that arise in the stochastic models of first-order
general reaction networks.

In this investigation, a stochastic mathematical model
is formulated and analyzed on the basis of a SIR [9] [10]
system for an outbreak of dengue, with a force of
infection that varies over time and is estimated from a
dynamic model and parameters from the literature.
Analytical formulas are derived for marginal probabilities
and particular probabilities are estimated numerically as
the statistical measures of the random variables of the
stochastic dynamic of dengue.

2 Force of Infection

The force of infection (IF) is considered as a parameter
that depends on time and represents the way in which the
susceptible members of the population (S) become
infected (I) [11]. There is no single defined model to
estimate or calculate the force of infection, and so both
simple and complex relationships have been used to
represent it. Some of these models can be found in such
articles as Griffiths (1973), [12]; Shkedy, Aerts,et al
(2003) [13]; or that of Massad et al (2008) [14], which is
precisely what is applied in the present investigation to
estimate the force of infection. Thus the mathematical
model is as follows:

λ (t) = aβ
∫ t

0

x2(s)
N(s)

ds
∫ t

0

y2(s)
Y(s)

ds

where,x2 is the average number of infectious people at
time t, y2 is the average number of mosquitos carrying the
virus at timet, N is the total human population changing
with time, Y is the average total population of mature
mosquitos at timet, β is the proportion of mosquito bites
that infect humans, anda is the rate at which mosquitos
bite humans.

As is clear from the model, it is necessary to
determine each of the variables and parameters that make
it up, so we opt for the deterministic model of Lopezet al
(2012, p.519)[15], whose system of ordinary differential
equations does not consider controls or latency, that is,
u1 = u2 = u3 = 0 andτ = T1 = T2 = T3 = 0. The model
and its parameters can be consulted on page 518 of the
cited paper.

The solution of the system is found numerically by
applying the Runge-kutta method using Matlab. The
numerical values of the necessary variables for the IF
model are integrated as vectors, and then, using the

algorithm for the Simpson method adapted for this
particular case, we estimate the force of infection over
time (weeks) for a constant population (figure1). The IF
model consists of the product of two definite integrals
and, as mentioned, to generate their respective curves
over time we use numerical methods in Matlab, in this
case of Simpson rule. The algorithm has been constructed
based on the computational theory and implementation
set out in Ojeda’s book (2011, p.166-169)[16] and in
Mora’s book (2014, p.174)[17].
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Fig. 1: Estimated force of infection:λ (t), with a= 0.97, β = 1,
x20 = 39,y20 = 200,N0 = 1000,Y0 = 239

λ (t) is an increasing function over time, for this
particular case we take a bite ratea of 97%, a proportion
of bites that infect of 100%, a constant average total
population of 1000 people, a constant average total
number of de 239 mature mosquitos, an average number
of infectious people of 30 and an average number of
mosquitos carrying the virus of 200. The initial
conditions and parameters used for the estimation of the
force of infection are the average number of people
infected per week according to the reports of the annual
number cases of dengue fever in tropical areas.

Thus, in the following, the estimated force of infection
is a time-dependent function in the stochastic model and
the corresponding mathematical models derived from it. In
addition it becomes a non-homogeneous Poisson process,
a situation that is explained later. For simulation purposes,
the force of infection is taken as a vector of data.

3 SIR Stochastic Model

The model features three states of the Dengue dynamic:
susceptible S, infected I and recovered R (R=S− I ). These
states are represented by the random variables (r.v.)X(t),
Y(t) andZ(t) respectively, witht ≥ 0.

The variables and parameters of the model are
therefore:X(t), the number of susceptible people at time
t; Y(t), the number of infected people at timet; Z(t), the
number of recovered people at timet; andλ (t), the force
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of infection at timet; θ , the rate at which infected people
recover. Since the number of recovered people depends
only on the number of susceptible and infected, the
stochastic analysis is performed only on the bivariate
process(X(t),Y(t)).

To derive the stochastic model, it is necessary to
analyze particular probabilistic characteristics
correspnding to the changes of state that each person
undergoes and the transitions from one r.v. to another,
following the path susceptible-infected-recovered. The
dynamics over time of the infection process is random in
character because the number of people who are infected
(being bitten by a carrier mosquito) is random.
Furthermore, depending on the time interval over which
the phenomenon is observed, there may be subintervals in
which the rate at which people are bitten is higher
(periods of the day when there are more insects) and
therefore the rate of infection is higher. This example
indicates that the infectious process is not homogeneous
because the chances of becoming infected depend on
time. The distribution of the infected cases is also
proportional to the interval, so if we take an infinitesimal
time interval at most one infection occurs in the period,
with the probability proportional to the length of the
infinitesimal interval. In addition, the distribution of the
number of infected cases in time intervals are
independent, i.e. in each new interval the process starts
again. These characteristics make the SIR stochastic
dynamics of dengue a Poisson process [18] which is, in
addition, non-homogeneous because the Poisson
parameterλ is a function that depends on time and is
represented by the force of infection over timeλ (t).

By probabilistic methods, in an interval(t, t +∆ t) of
infinitesimal length, the process can either undergo a
single change or stay the same. Thus for the bivariate
stochastic process {X(t), Y(t)}t≥0 the transition
probabilities are:

P(X(t +∆ t) = x−1,Y(t +∆ t) = y+1/X(t) = x,Y(t) = y)

= λ (t)x∆ t +o(∆ t)

P(X(t +∆ t) = x,Y(t +∆ t) = y−1/X(t) = x,Y(t) = y)

= θy∆ t +o(∆ t)

P(X(t +∆ t) = x,Y(t +∆ t) = y/X(t) = x,Y(t) = y)

= 1− (λ (t)x+θy)∆ t +o(∆ t)

with initial conditionsX(0) = x0, Y(0) = y0 y lim
∆ t→0

o(∆ t)
∆ t =

0
By the law of total probability and by independence,

the joint probability of the bivariate process at the instant
t +∆ t is given by:

px,y (t +∆ t) = ∑
x′,y′

P
{

X(t+∆ t) = x′,Y(t +∆ t) = y′
}

px,y(t)

(1)

Where,P{X(t) = x,Y(t) = y}= px,y(t)

if ∆ t → 0, the difference quotient becomes the
differential equation

dpx,y(t)
dt

= λ (t)(x+1)px+1,y−1(t)

+ θ (y+1)px,y+1(t)−λ (t)xpx,y(t)−θypx,y(t)

(2)

which plays an important role in finding the
probabilistic model of the system, being used to
determine the probability generating function (PGF) of
the bivariate case.

4 Probability Generating Function (PGF)

For the bivariate stochastic process{X(t), Y(t)}t≥0 with
probability distribution given by:P{X(t) = x,Y(t) = y}=
px,y(t), the PGF is defined as [19] [20]

ψ(u,v, t) = ∑
x,y≥0

uxvypx,y(t) (3)

This is absolutely convergent foru,v∈ [−1,1] and with
initial and boundary conditions given by:











ψ(u,v, t) = ux0vy0; x(0) = x0,y(0) = y0
ψ(0,0, t) = p{X(t) = 0,Y(t) = 0}= 0
ψ(1,1, t) = ∑

x,y
p{X(t) = x,Y(t) = y}= 1

(4)

On differentiating the PGF with respect tot we obtain

∂ψ(u,v, t)
∂ t

= ∑
x,y≥0

uxvy dpx,y(t)
dt (5)

Replacing equation2 in 5 results in the following
partial differential equation (PDE)

∂ψ
∂ t

= λ (t)(v−u)
∂ψ
∂u

+θ (1− v)
∂ψ
∂v

(6)

The derived PDE is a first-order linear equation in the
variablesu,v y t, with the Cauchy initial condition

ψ(u,v,0) = ux0vy0 (7)

The process starts att = 0 and therefore the initial
probability that the process is atx0 y y0 is certain and
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equal to 1, while the joint probabilities that the random
variables take other initial values are zero.

The PDE can be written in vector form as

ψt +[λ (t)(v−u) ,θ (v−1)] · [ψu,ψv] = 0

if r = [ψu,ψv], the Cauchy problem becomes

{

ψt + r∇ψ = 0 in (−1,1)2× (0,∞)
ψ = g(u,v,0) = ux0vy0 on(−1,1)2×{t = 0}

(8)

The above problem can be solved in a closed or
numerical way by the method of the characteristics [21]
[8] which is expanded and developed in the following
section.

5 Solution of the PDE - Method of
Characteristics

In this section we present the method of the characteristics
to solve a homogeneous first-order linear PDE at a given
point(u0,v0).

To describe the application of the method of
characteristics, the PDE ref sys53 is written as a typical
transport equation [21]

{

ψt + r∇ψ = 0 in (−1,1)2× (0,∞)
ψ = g(u,v,0) = ux0vy0 on(−1,1)2×{t = 0}

(9)

Where the initial conditiong(u,v,0) is a function
continuous on(−1,1)2. It is assumed that the curve is
described parametrically by the function
s(ξ ) = (u(ξ ),v(ξ )), where the parameterξ is in R. We
now define the functionzas

z(ξ ) := ψ(u(ξ ),v(ξ ), t− ξ ) (10)

Differentiatingz(ξ ) with respect toξ

d
dξ

z(ξ ) =
∂ψ
∂u

du
dξ

+
∂ψ
∂v

dv
dξ

−
∂ψ
∂ t

= r ·∇ψ (u(ξ ),v(ξ ), t − ξ)
−ψt (u(ξ ),v(ξ ), t − ξ) = 0

(11)

Thus,z(ξ ) is a constant function ofξ and, as a result,
for each point(u,v, t). This implies thatψ is also a
constant function on the curver(u(ξ ),v(ξ )) ∈ R2 on
(u(ξ ),v(ξ )). Because the initial value ofψ is given for
some point of every curve, we can find the value ofu(ξ ) y
v(ξ ) everywhere inR2× (0,∞). It is important to observe
that in the general form of the method of characteristics,
the coefficients of the gradient terms of equation6 are
never both zero. That is,(λ (t)(u− v))2+(θ (v−1))2 6= 0
becauseu y v are in the open interval(−1,1).

Now, taking the fixed starting point(u0,v0), we want
to obtain directly the value ofψ (u0,v0, t) for t ≥ 0. The
value at(u(t),v(t)) is found by following the characteristic
curve back to the initial condition(u(0),v(0)).

Since ψ is constant on the characteristic curve and
taking equations7, we have

z(0) = z(t) (12)

For any value oft, we deduce from here that

ψ (u0,v0, t) = ψ (u(0),v(0), t)

= ψ(u(t),v(t),0) = g(u(t),v(t),0)
(13)

for an initial position u0 = u(0) and v0 = v(0),
(u(t),v(t)) ∈ (−1,1)2 y t ≥ 0

Finally, the solution of the PDE in terms of the initial
conditionsu0 y v0 is given by

ψ(u0,v0, t) = ux0
0 vy0

0 (14)

The method of the presented characteristics to find a
solution of the linear first-order PDE homogeneous in the
variablesu,v, t is applied to the PDE6 with the initial
condition 7, to then find the probabilistic model for the
bivariate stochastic process of the SIR dynamics.

From equation 11 we establish two ordinary
differential equations (ODEs) given by:

du
dξ

= λ (ξ )(u(ξ )− v(ξ )) (15)

dv
dξ

= θ (v(ξ )−1) (16)

From equation12we have thatξ = t, and so the ODEs
depending ont with their respective initial conditions are:

dv
dt

= θ (v−1); v0 = v(0) (17)

du
dt

= λ (t)(u− v); u0 = u(0) (18)

The equations are solved analytically by the method
of separable variables and the integral factor method
respectively. Thus the solutions forv0 andu0 in terms ofv
andu, respectively are:

v0 = (v−1)e−θt +1 (19)

u0 = ue
−

t
∫

0
λ (s)ds

−

t
∫

0

λ (s)
[

(1− v)e−θs−1
]

e
−

t
∫

0
λ (s)ds

ds

(20)
Replacing (19) and (20) in (14), we obtain the closed

soluction for the PDEψ
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ψ(u0,v0, t) =


ue
−

t
∫

0
λ (s)ds

−

t
∫

0

λ (s)
[

(1− v)e−θs−1
]

e
−

t
∫

0
λ (s)ds

ds





x0

·
[

(v−1)e−θt +1
]y0

(21)

ψ as well as being the analytical solution of the PDE is
the FGP of the SIR stochastic process, so from this we can
find the marginal probability distributions of the r.v.Xt and
Yt a process of higher-order partial differentiation ofψ .

6 Probability Distributions

By definition, the probability distribution for the random
variableXt is given by [8] [22]

X ∼ P(X(t) = x) =

{

1
x!

∂ xψ
∂ux (0,1, t) i f x = 0,1, ...

0 otherwise
(22)

Similarly, the probability distribution for the r.v.Yt is
given by

Y ∼ P(Y(t) = y) =

{

1
y!

∂ yψ
∂vy (1,0, t) si y= 0,1, ...

0 otherwise
(23)

This means that we must necessarily partially derive
the function psi, k times with respect to the variableu or
v, if we want to find the probabilities in time thatX or Y
respectively will be equal tok. It is then necessary to find
a formula for the derivatives of higher order with respect
to a single variable, by a recurrence relation.

As we follow a process of successive differentiation of
the functionψ given by the equation21, it is convenient to
rewrite the equation as

ψ(u0,v0, t) = [uA1−A2+ vA2+A3]
x0[vA4+A5]

y0 (24)

Where

A1 = e
−

t
∫

0
λ (s)ds

; A2 =
t
∫

0
λ (s)e

−θs−
t
∫

0
λ (s)ds

ds

A3 =
t
∫

0
λ (s)e

−
t
∫

0
λ (s)ds

ds; A4 = e−θt ; A5 = 1−e−θt

Then we define a formula for the k-th derivative ofψ
with respect tou as

∂ kψ
∂uk (0,1, t) =

x0!
(xo− k)!

[A3]
x0−kAk

1[A4+A5]
y0

Replacing the values ofA1,A3,A4 y A5, we have the
k-th partial derivative ofψ with respect tou evaluated at
the point(0,1, t) is

∂ kψ
∂uk (0,1, t) =

x0!
(xo− k)!





t
∫

0

λ (s)e
−

t
∫

0
λ (s)ds

ds





x0−k



e
−

t
∫

0
λ (s)ds





k
.

(25)
Finally, the probability distribution for the r.v.Xt

representing the number of people susceptible to Dengue
at timet, is

X ∼ P(X(t) = x) =







































x0!
(xo−x)!x!





t
∫

0
λ (s)e

−
t
∫

0
λ (s)ds

ds





x0−x



e
−

t
∫

0
λ (s)ds





x

i f x = 0,1, ...

0 otherwise
(26)

Also, the recurrence formula for the k-th derivative of
psi with respect tov is

∂ kψ
∂vk =

k

∑
i=0

k!
(k− i)!i!

x0!
(x0− (k− i))!

y0!
(y0− i)!

[uA1−A2+ vA2+A3]
x0−(k−i) Ak−i

2

· [vA4+A5]
y0−iAi

4.

Then evaluating the partial derivative ofpsiof orderk
with respect tov at point(1,0, t), we obtain

∂ kψ
∂vk

(1,0, t) =
k

∑
i=0

k!
(k− i)!i!

x0!
(x0− (k− i))!

y0!
(y0− i)!

· [A1−A2+A3]
x0−(k−i)Ak−i

2 [A5]
y0−iAi

4

In conclusion, the probability distribution for the r.v.Yt
representing the number of people infected with Dengue at
time t, is

P(Y(t) = y) =
1
y!

y

∑
i=0

y!
(y− i)!i!

x0!
(x0− (y− i))!

y0!
(y0− i)!

[A1−A2+A3]
x0−(y−i) ·Ay−i

2 [A5]
y0−iAi

4
(27)

for y= 0,1,2, ...
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It is important in the infection process of the dengue
virus to analyze the behavior of those that recover, which
as already mentioned corresponds to the difference
between susceptible and infected individuals over time.
Furthermore, as the two sets are mutually exclusive, that
is S∩ I = {φ}, then the probability distribution of the
recovered populationR represented by the r.v.Z(t), is

P(Z(t) = z) = P(X(t)−Y(t) = x− y)

= P(X(t) = x)−P(Y(t) = y) (28)

With the calculated distributions, it is now possible to
make numerical simulations in Matlab of the probabilities
over time of susceptible, infected and recovered
individuals when there is an outbreak of dengue. The
probability of infection λ (t) estimated in section 1 is
included in the probabilistic models.

Figure 2a shows the behaviour over time of the
probabilities that the number of susceptible individuals
remain at least 20, 40 and 60 people, given an initial
susceptible population of 100 people with a single
infected person and an infection force estimated byλ (t),
that is to say that
P(X(t) = 20); P(X(t) = 40); P(X(t) = 60) with
x0 = 100 yy0 = 1.

It is observed that the probability of finding exactly 20
susceptible persons over time is greater than finding 40 or
60 people susceptible to the disease, because the infection
begins to spread in the population, since the model does
not consider migration or natural death of the susceptible
population. In addition, after 15 weeks the odds begin to
decrease more rapidly. A possible explanation is that the
incubation period of dengue fever lasts from 1 to 2 weeks
per person, which implies that in the first weeks the
number of infected individuals is very low, a situation that
is observed in figure2b corresponding to the probability
of finding exactly 20, 40 or 60 infected individuals over
time, under the same initial conditions. The probability of
finding exactly 20 infected is maximum and equal to 50%
around the 5th week of the process, and then decreases
until it disappears as individuals recover from the
infection.

Meanwhile, the probability of finding 40 infected
individuals reaches a maximum of 38% around 18 weeks
of the infection process and for 60 infected people, the
maximum probability is almost 37% after aproximately
35 weeks before the probability vanishes as the infected
people move to a different state. In this way, the
probabilistic model reveals the behavior of Dengue
dynamic states over time and more precisely with what
probability all or part of the population become infected
and when this occurs.

Given the probabilistic behavior over time of the
susceptible and infected states, it is possible to simulate
the behavior of the probabilities of the recovered
population, as dipicted in figure2c. We observe that the
minimum probability of finding 20, 40 and 60 recovered
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Fig. 2: probability over time of susceptible, infected and
recovered individuals withλ (t)

individuals is 50%, 60% and 61% occurring around 5, 18
and 33 weeks respectively after the infection process has
started.

7 Cumulant-Generating Function

The cumulant-generating function (CGF) for the bivariate
process, taking the definitions and properties set forth in
Bailey (1990) [23] y Severini (2005) [24] is the natural
logarithm of the PGF foru = ea y v = eb. That is to say
thatk(a,b, t) = lnψ (u,v, t)

from where,

∂ψ
∂ t

= ψ
∂k
∂ t

,
∂ψ
∂u

= ψe−a ∂k
∂a

,
∂ψ
∂v

= ψe−b ∂k
∂b
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In consequence, a differential equation for the CGF is,

∂k
∂ t

= λ (t)
(

eb−ea
)

e−a ∂k
∂a

+θ (1−eb)e−b ∂k
∂b

(29)

This equation allows us to derive the system of
ordinary differential equations whose solutions represent
the statistical measures sought. We use Taylor series and
the properties of moments of orderk centred at the origin.
By definition in descriptive statistics the first two
moments centered correspond to the expectation and
variance of a random variable.

The CGF is also approximately given by [25]

k(a,b, t) = ∑
x,y≥0

kx,y(t)
axby

x!y! (30)

The expansion of which is

k(a,b, t) = ak10(t)+bk01(t)+
a2

2!
k20+

b2

2!
k02+abk11+ · · ·

(31)

where,
k10(t) = E [X(t)] = µX(t), k01(t) = E [Y(t)] = µY(t),
k20 =Var[X(t)] = σ2

X(t), k02(t) =Var[Y(t)] = σ2
Y(t),

k11(t) = cov[X(t),Y(t)]
Now, differentiating equation31 with respect to time,
expanding the functionsea, e−a, eb, e−b in Taylor series,
and substituting the expanded series in equation29 we
obtain a system of linear equations for the expected value,
the variance and the covariance ofX(t) y Y(t)

dµX(t)
dt =−λ (t)µX(t)

dµY(t)
dt = λ (t)µX(t)−θ µY(t)

dσ2
X(t)
dt = λ (t)µX(t)−2λ (t)σ2

X(t)
dσ2

Y(t)
dt = 2λ (t)covXY(t)+λ (t)µX(t)

dcovXY(t)
dt =−λ (t)µX(t)+λ (t)σ2

X(t)−λ (t)covXY(t)
−θcovXY(t)

(32)
with initial conditions µX(0) = x0, µY(0) = y0,

σ2
X(0) = 0, σ2

Y(0) = 0 y covXY(0) = 0
The system can be solved numerically in Matlab, by

applying Runge-Kutta because the force of infectionλ (t)
is an estimated vector. This follows below the simulated
scenarios of statistical measures such as the expected
value, variance and covariance with an initial population
of 100 people, that isx0 = 100, and a single infected
individual, y0 = 1 who interacts with the susceptible
population via the mosquito vector.

Figure 3 shows that the expected value of the
susceptible population over time is 20 people and more or
less a constant value, while the expected value of the
infected population decreases to zero over time. This

agrees with the previous simulation which shows that the
probability of a particular number of infected individuals
grows initially but then vanishes. That is to say that the
probability that a number of infected individuals is
maintained for all time is equal to zero.
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Fig. 3: Expected value of the susceptible and infected
populations over time

The behaviour of the variances of the the susceptible
and infected populations is similar, being lower for the
infected individuals. In addition, the spread of the
population figures for susceptible and infected individuals
is very small, almost negligible, as can be seen in figure4.

Finally, figure5 indicates that the covariance of the
susceptible and the infected populations is negative over
time because they are inverse processes, that is, the
greater the number of infected individuals, the fewer
susceptible individuals there are.

8 Conclusion

Combining deterministic and stochastic models when
studying phenomenon of an epidemiological type makes
the results closer to reality and therefore they become
tools that can be used to solve many problems caused by
viruses in a community of susceptible individuals. In
particular, this investigation demonstrates this
combination in the deterministic model used to estimate
the force of infection over time and the stochastic model
formulated from the SIR dynamics of dengue with their
respective probability distributions over time.
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Fig. 4: Variance of the susceptible and infected populations over
time
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Fig. 5: Covariance over time of the r.v.X(t) andY(t)

The calculation of the probability distributions for the
random variables that represent the susceptible, infected
and recovered populations from the solution of a partial
differential equation shows the great importance of this

type of equation in the modeling, not only of
epidemiological phenomena but also of other types of
natural phenomena which they represent a world that can
be explored and exploited using numerical methods. The
calculation of both theoretical and numerical probabilities
over time and the estimation of basic statistical measures
such as expected value, variance and covariance give
another facet to the analysis and understanding of the
Dengue SIR dynamics.
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