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Abstract: The article presents the stochastic modeling of a particlylaamic of dengue cases for a constant population withiéalin
number of susceptible and infected members, a time-depéefalee of infection and a probability-generating funatifsom which

a linear partial differential equation (PDE) of first orderderived whose solution can assign probabilities to eadheofktates of
the model and the transitions between them. The force otfioie is estimated numerically based on a dynamic systentdinary

differential equations. The method of characteristicdiegfo find the analytical solution of the PDE and subseduehte marginal

probabilities of the stochastic process are derived aicalij. Furthermore, by applying the cumulative genemfianction, a system
of ordinary differential equations is derived, and the ntioa solution determines the values of statistical measowrer time. Finally
a comparison of the results of the simulations is undertadamderstand the probabilistic dynamics of the processfettion in a
population.
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1 Introduction study and understand more complex dynamics, even
being used to predict the future effects of an outbreak in a

Viral diseases transmitted by arthropods have todayParticular population and the probabilities over time of
become a global public health problem due to factors sucfihe states of a given disease. Many researchers have used
as climate Change' popu|ation increase, accumulation o$tOChaSt|C mode_ls to StUdy partlcular viral |nfect|0nstth_a
waste and pollutants, inadequate forms of recycling andave been a major global health problem; such as Bailey
insufficient controls on transmission. Dengue is an acutd1950) B, who studied the simplest process disease
viral disease caused by the dengue virus and transmitteBropagation, in which there are only two transition states:
to man by the mosquittAedes aegyptias its main  Susceptible and infected. Bailey analyzed the
transmitter. The virus is caused by four serotypesdeterministic and stochastic cases of the dynamics,
(DENV1, DENV2, DENV3, DENV4), which circulate Making a comparison and calculating the probability
simultaneously in tropical and subtropical areas, alttoug 9enerating functions and moments, as well as analysing
recent studies have confirmed the finding of a newthe behaviour in the limit. Gani and Purdue (1988), [
serotype called DENV51]. Serotypes do not trigger whp studied the simplest process disease propagation, in
cross-immunity, which means that individuals recoveringWhich there are only two transition states: studied the Sl
from one of them acquire permanent immunity against it,dynamics for a generalized infection, formulating a
but only temporary and partial immunity against the geometric matrix, and calculating the probability for
others PJ. It is estimated that there are between 50 andsurvivors of a certain epidemic, agreeing with Whittle’s
100 million cases of dengue worldwidg] [ stochastic threshold theorem. Also, Lounes and Arazoza
Different theories and mathematical models applied to(1998) E] who investigated the deterministic and
epidemiology have made it possible to understand theStochastic —dynamics ~with immigration for =~ two
dynamics of these viruses and their effects on thePOpulations corresponding to known cases of HIV-AIDS,
population. Also, important tools such as numerical &ccording to a health program implemented in Cuba.

methods and computational simulations have been used to
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More recent cases, such as that of Khan al algorithm for the Simpson method adapted for this
(2013)[7], who based their work on a deterministic model particular case, we estimate the force of infection over
of the dynamics of Dengue viruses, formulated atime (weeks) for a constant population (figure The IF
stochastic model using Markov chains in continuous timemodel consists of the product of two definite integrals
and observed stability and equilibrium characteristigs fo and, as mentioned, to generate their respective curves
the virus; and the case of Leet al (2012)B] who over time we use numerical methods in Matlab, in this
proposed an efficient and precise numeric scheme usingase of Simpson rule. The algorithm has been constructed
characteristic curves to determine probability-genetati based on the computational theory and implementation
functions that arise in the stochastic models of first-orderset out in Ojeda’s book (2011, p.166-168 and in
general reaction networks. Mora’s book (2014, p.174)[7].

In this investigation, a stochastic mathematical model
is formulated and analyzed on the basis of a QR 10|
system for an outbreak of dengue, with a force of
infection that varies over time and is estimated from a
dynamic model and parameters from the literature.

Analytical formulas are derived for marginal probabilitie 0 ]
and particular probabilities are estimated numerically as § 4
the statistical measures of the random variables of the . < |
stochastic dynamic of dengue. |
g
. 8 a T T T T T T
2 Force of Infection ° 0 10 20 30 40 50

t
The force of infection (IF) is considered as a parameter
that delo,e”ds on time and represents thg way in which th%ig. 1: Estimated force of infectiom (t), witha=0.97, 8 =1,
§usceptlble members pf the _populatlt_)n (S) becomex20 = 39,5, = 200,Np = 1000,Yp = 239
infected (1) [L1]. There is no single defined model to
estimate or calculate the force of infection, and so both
simple and complex relationships have been used to
represent it. Some of these models can be found in such A(t) is an increasing function over time, for this
articles as Griffiths (1973),1p]; Shkedy, Aerts,et al particular case we take a bite ra®f 97%, a proportion
(2003) [L3]; or that of Massad et al (2008)4], which is ~ of bites that infect of 100%, a constant average total
precisely what is applied in the present investigation topopulation of 1000 people, a constant average total
estimate the force of infection. Thus the mathematicalnumber of de 239 mature mosquitos, an average number

model is as follows: of infectious people of 30 and an average number of
mosquitos carrying the virus of 200. The initial

At) = aB /t Xz_(S)ds/t yz_(S)dS conditions and parameters used for the estimation of the

7 Jo N(s) Jo Y(9) force of infection are the average number of people

infected per week according to the reports of the annual
where, X, is the average number of infectious people atnumber cases of dengue fever in tropical areas.
timet, y, is the average number of mosquitos carrying the  Thus, in the following, the estimated force of infection
virus at timet, N is the total human population changing is a time-dependent function in the stochastic model and
with time, Y is the average total population of mature the corresponding mathematical models derived from it. In
mosquitos at time, 3 is the proportion of mosquito bites addition it becomes a non-homogeneous Poisson process,
that infect humans, and is the rate at which mosquitos a situation that is explained later. For simulation purgose
bite humans. the force of infection is taken as a vector of data.

As is clear from the model, it is necessary to
determine each of the variables and parameters that make
it up, so we opt for the deterministic model of Lopetzal 3 SIR Stochastic Model
(2012, p.519)15, whose system of ordinary differential
equations does not consider controls or latency, that isThe model features three states of the Dengue dynamic:
U= Up=uz3=0andT =T, =T, =Tz =0. The model susceptible S, infected | and recoveredR{S—1). These
and its parameters can be consulted on page 518 of thstates are represented by the random variables Xi(t))
cited paper. Y(t) andZ(t) respectively, wittt > 0.

The solution of the system is found numerically by =~ The variables and parameters of the model are
applying the Runge-kutta method using Matlab. Thetherefore:X(t), the number of susceptible people at time
numerical values of the necessary variables for the IR; Y(t), the number of infected people at tiieZ(t), the
model are integrated as vectors, and then, using th@umber of recovered people at timieandA (t), the force
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of infection at timet; 68, the rate at which infected people

recover. Since the number of recovered people depends

only on the number of susceptible and infected, thePxy(t+At) = Z P{X(t+4t) =X.,Y(t+At) =y} pey(t)

stochastic analysis is performed only on the bivariate Xy

procesgX(t),Y(t)). (1)
To derive the stochastic model, it is necessary to

analyze  particular  probabilistic  characteristics ~ Where,P{X(t) =x,Y(t) =y} = pxy(t)

correspnding to the changes of state that each person

undergoes and the transitions from one r.v. to another, if At — 0, the difference quotient becomes the

following the path susceptible-infected-recovered. Thedifferential equation

dynamics over time of the infection process is random in

character because the number of people who are infected

(being bitten by a carrier mosquito) is random.

Furthermore, depending on the time interval over WhichdLy(t) = A(t)(X+ 1) pxs1y-1(t)

the phenomenon is observed, there may be subintervals in dt

which the rate at which people are bitten is higher + 0(y+ 1) pry+1(t) — A(O)XPey(t) — Oy pyy(t)
(periods of the day when there are more insects) and @)

therefore the rate of infection is higher. This example
indicates that the infectious process is not homogeneous which plays an important role in finding the
because the chances of becoming infected depend oprobabilistic model of the system, being used to

time. The distribution of the infected cases is alsodetermine the probability generating function (PGF) of
proportional to the interval, so if we take an infinitesimal the pivariate case.

time interval at most one infection occurs in the period,

with the probability proportional to the length of the

infinitesimal ir!terval. In addition., the.distril.oution oféh 4 Probability Generating Function (PGF)

number of infected cases in time intervals are

independent, i.e. in each new interval the process startlg

again. These characteristics make the SIR stochastic L .

dynamics of dengue a Poisson procekg which is, in probab|I|tyd|str|l?ut|on given byP{X(t)

addition, non-homogeneous because the PoissoRxy(t), the PGF is defined ad9] [20]

parameterA is a function that depends on time and is Wuvt) = WV Py (1)

represented by the force of infection over tiché). Y xyz>0 Pry (3)
By probabilistic methods, in an intervél,t + At) of .

infinitesimal length, the process can either undergo a Thisis absolutely convergentfarv e [—1, 1] and with

single change or stay the same. Thus for the bivariaténitial and boundary conditions given by:

stochastic  process {X(t), Y(t)};~o the transition

probabilities are: a

or the bivariate stochastic proces(t), Y(t)},o With
=XY

0=y} =

P(u,vit) =uowo; x(0) = xo,Y(0) = Yo
(0,0,t) = p{X(t)=0,Y(t) =0} =0 (4)
PX(t+At) =x—1LY({t+At) =y+1/X(t)=xY(t) =y) PL,1,t) =y p{X{t)=xY({t)=y} =1
— A(t)XAt + o(At) *
On differentiating the PGF with respectttave obtain
P(X(t+At) = X Y(t+At) =y—1/X (1) =x,Y(t) =) W -y uxvyd%@ 5)
= ByAt+o0(At) Xy=0

Replacing equatior2 in 5 results in the following
partial differential equation (PDE)

P(X(t+At) =xY(t+At) =y/X(t) =xY(t) =y)

oy oy oy
= 1— (A(t)x+ By) At + o(At) St ~AOV-wGEred-v = (6)
The derived PDE is a first-order linear equation in the
with initial conditionsX (0) = xo, Y(0) =yo y lim 0<AAtt> - variableau, vy t, with the Cauchy initial condition
At—0
0 P(u,v,0) = uov (7

By the law of total probability and by independence,
the joint probability of the bivariate process at the instan The process starts @at= 0 and therefore the initial
t+ At is given by: probability that the process is & y Yo is certain and
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equal to 1, while the joint probabilities that the random  Now, taking the fixed starting poirtp, vo), we want

variables take other initial values are zero. to obtain directly the value o (up,vp,t) fort > 0. The
The PDE can be written in vector form as value at(u(t), v(t)) is found by following the characteristic
curve back to the initial conditiofu(0),v(0)).
Y+ ARM)(Vv—u),0(v—1)]- [P, yn] =0 Since ¢ is constant on the characteristic curve and

taking equationg, we have
if r = [Yu, Y], the Cauchy problem becomes
Z(0) = z(t) (12)
Y +r0¢ =0 in(—=1,1)? x (0,00 ®) For any value of, we deduce from here that
@ = g(u,v,0) = wowo on(—1,1)? x {t = 0}

The above problem can be solved in a closed or ¥ (Uo,Vo,t) = ¥ (u(0),v(0),t) (13)
numerical way by the method of the characterist§ [ = (u(t),v(t),0) = g(u(t),v(t),0)
[8] which is expanded and developed in the following
section. for an initial position up = u(0) and vp = v(0),

(u(t),v(t)) € (-1,1)°yt>0
Finally, the solution of the PDE in terms of the initial
5 Solution of the PDE - Method of conditionsup Y Vo is given by
Characteristics
(o, Vo, t) = U vy’ (14)

In this section we present the method of the characteristics The method of the presented characteristics to find a
to solve a homogeneous first-order linear PDE at a giveryo|ytion of the linear first-order PDE homogeneous in the
point (o, Vo). variablesu, vt is applied to the PDEB with the initial

To describe the application of the method of ¢ongition7, to then find the probabilistic model for the
characteristics, the PDE ref sys53 is written as a typicalyyariate stochastic process of the SIR dynamics.

transport equatiorf] From equation 11 we establish two ordinary
differential equations (ODES) given by:

Y +r0¢ =0 in(—=1,1)? x (0,00 ©) du
¥ =g(u,v,0) = uowo on (—1,1)2 x {t = 0} 9= A(&)(u(&) —v(&)) (15)
Where the initial conditiong(u,v,0) is a function dv
continuous on(—1,1)2. It is assumed that the curve is 4~ O(v(&)—1) (16)
described parametrically by thg _ function ¢
s(¢) = (u(§),v(§)), where the parametef is in R. We From equatioi2we have thaf =t, and so the ODEs
now define the functiomas depending om with their respective initial conditions are:
Differentiatingz(& ) with respect taf t
du
— =A(t)(u—Vv); ugp=u(0 18
@ e owds ey o o = A O U=v); uo = u(0) (18)
dé ~ JdudE  dvdé ot The equations are solved analytically by the method
=r-0gu),vé)t—8) 1) of separable variables and the integral factor method

respectively. Thus the solutions fag andug in terms ofv
andu, respectively are:

— e (u(),v(é),t-¢&)=0

Thus,z(£) is a constant function of and, as a result, ot

for each point(u,vt). This implies thaty is also a Vo=(v-1)e " +1 (19)
constant function on the curve(u(é),v(é)) € R? on

(u(é),v(&)). Because the initial value ap is given for

some point of every curve, we can find the valuei@) y _fAds [ A(9)ds
V(&) everywhere irR? x (0,). It is important to observe  ug = ue 0 —/)\ (s) {(1—v) e 05— 1} eo ds
that in the general form of the method of characteristics, o

the coefficients of the gradient terms of equat®are (20)
never both zero. That i$A (t)(u—v))*+ (8 (v— 1)) £ 0 Replacing 19) and @0) in (14), we obtain the closed
becausel y v are in the open intervdh1,1). soluction for the PDEY
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Y(uo, Vo, t) =
fAGds Ads |
— sS)ds — S
ue 0 —//\()[(1 v)e bs 1}e<J ds

(21)

Y as well as being the analytical solution of the PDE is
the FGP of the SIR stochastic process, so from this we can

find the marginal probability distributions of the rX¢.and
Y; a process of higher-order partial differentiationyjof

6 Probability Distributions

By definition, the probability distribution for the random

variableX; is given by B] [22]

120 11t)if x=0,1
~Y = = { ﬁ X ’ e
X~ P =x) { %0 otherwise

(22)
Similarly, the probability distribution for the r.\ is
given by

128(1,00) s

T oW y=0,1,...

0 otherwise

Y~mww=w={
(23)

This means that we must necessarily partially derive

the function psi, k times with respect to the variableor
v, if we want to find the probabilities in time that or Y

respectively will be equal t&. It is then necessary to find
a formula for the derivatives of higher order with respect

to a single variable, by a recurrence relation.

As we follow a process of successive differentiation of

the functiony given by the equatiofl, it is convenient to
rewrite the equation as

W(uo,Vo,t) = [UAL — Ap +VAx + Ag) VAL + As]°  (24)
Where t .
— [A(9)ds t —0s—[A(s)ds
Aj=e 0 i Ap=[A(s)e o0 ds
0

t

Replacing the values d&;,A3, A4 Y As, we have the
k-th partial derivative ofiy with respect tau evaluated at
the point(0,1,t) is

My

S (0L =

(25)
Finally, the probability distribution for the r.vX
representing the number of people susceptible to Dengue
attimet, is

x=0,1,...

0 otherwise
(26)
Also, the recurrence formula for the k-th derivative of
psiwith respect tor is

X! Yo!
- % —un e ”WW—W
[uAl—A2+vA2+A3] Ak '
 VAL+ A0 A,

Then evaluating the partial derivative gisiof orderk
with respect tor at point(1,0,t), we obtain

oy B k ki ! N
e _i;’ (k=Dtit (o = (k=1)! (yo—D)!
A1 — Ag+ AgPo D AT [Ag PO A

In conclusion, the probability distribution for the .
representing the number of people infected with Dengue at
timet, is

t —[A(9)ds o o
Az=[A(s)e 0 ds;, Aq=e ", As=1-¢ POV () =) 1Y v X! vo!
Then we define a formula for the k-th derivativef =y Z} (y—i)H! (Xo— (y— i) (Yo—1i)!
with respect tas as (Ad— Ag + Ag/0 Ay .[ AgPO A
(27)
oKy Xo! Yok Ak Y fory=0,1,2,...
(@© 2018 NSP
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It is important in the infection process of the dengue
virus to analyze the behavior of those that recover, which
as already mentioned corresponds to the difference -
between susceptible and infected individuals over time.
Furthermore, as the two sets are mutually exclusive, that
is SN = {@}, then the probability distribution of the
recovered populatioR represented by the r.4(t), is

0.95 0.97 0.99
!

P(Z(t) =2) = P(X(t) = Y(t) =x—Y)
=P(X(t)=x)—P(Y(t) =y) (28)

With the calculated distributions, it is now possible to
make numerical simulations in Matlab of the probabilities
over time of susceptible, infected and recovered
individuals when there is an outbreak of dengue. The
probability of infectionA(t) estimated in section 1 is
included in the probabilistic models.

Figure 2a shows the behaviour over time of the
probabilities that the number of susceptible individuals
remain at least 20, 40 and 60 people, given an initial
susceptible population of 100 people with a single
infected person and an infection force estimatedif),
that is to say that
P(X(t) = 20); P(X(t) = 40); P(X(t) = 60) with
Xo=100yyp = 1.

It is observed that the probability of finding exactly 20
susceptible persons over time is greater than finding 40 or
60 people susceptible to the disease, because the infection
begins to spread in the population, since the model does
not consider migration or natural death of the susceptible
population. In addition, after 15 weeks the odds begin to 0 10 20 30 40 50
decrease more rapidly. A possible explanation is that the t
incubation period of dengue fever lasts from 1 to 2 weeks
per person, which implies that in the first weeks therig 2. probability over time of susceptible, infected and
number of infected individuals is very low, a situation that recovered individuals wit# (t)
is observed in figur@b corresponding to the probability
of finding exactly 20, 40 or 60 infected individuals over
time, under the same initial conditions. The probability of

finding exactly 20 infected is maximum and equal to 50% ;. jividuals is 50%, 60% and 61% occurring around 5, 18

around the 5th week of the process, and then decreaseg,y 33 weeks respectively after the infection process has
until it disappears as individuals recover from the ¢ taq.

infection.

Meanwhile, the probability of finding 40 infected
individuals reaches a maximum of 38% around 18 weeks
of the infection process and for 60 infected people, the7 Cumulant-Generating Function
maximum probability is almost 37% after aproximately
35 weeks before the probability vanishes as the infected
people move to a different state. In this way, the The cumulant-generating function (CGF) for the bivariate
probabilistic model reveals the behavior of Dengueprocess, taking the definitions and properties set forth in
dynamic states over time and more precisely with whatBailey (1990) R3] y Severini (2005) 24] is the natural
probability all or part of the population become infected logarithm of the PGF fou = €2 y v = €°. That is to say
and when this occurs. thatk (a,b,t) =Iny (u,v,t)

Given the probabilistic behavior over time of the from where,
susceptible and infected states, it is possible to simulate
the behavior of the probabilities of the recovered
population, as dipicted in figurgc. We observe that the gy ok Y L0k oy L0k
minimum probability of finding 20, 40 and 60 recovered 5~ = l,UE, 20 ye 22 ov ye b

00 02 04 06

04 06 08 1.0
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In consequence, a differential equation for the CGF is,agrees with the previous simulation which shows that the
probability of a particular number of infected individuals
grows initially but then vanishes. That is to say that the

oK _, ) (eb—ea) cadk g(l_eb)e—bd_k (20)  probability that a number of infected individuals is

ot Ja db maintained for all time is equal to zero.

This equation allows us to derive the system of
ordinary differential equations whose solutions représen
the statistical measures sought. We use Taylor series and
the properties of moments of ordecentred at the origin.

By definition in descriptive statistics the first two
moments centered correspond to the expectation and
variance of a random variable.

The CGF is also approximately given 34

E(X(®)
19.6 20.0 20.4
|

a*bY .
k(a7 bat) = Z kx,y(t) F (30) T T T T T T
xy=0 Y 0 10 20 30 40 50
The expansion of which is t

2 b2
K(a,b,t) = akyo(t) + bkoy(t) + %km okoo-+ablg -

(31) "
where, % S
kio(t) = E[X(t)] = ux(t), koa(t) =E[Y(t)] = py (1), 0
koo =Var([X(t)] = a£(t), koz(t) =Var[Y(t)] = gd(t), o -

kua(t) = cov[X(t),Y(t)] . , 0 10 20 30 40 50
Now, differentiating equatiorB1 with respect to time,
expanding the functione®, e 2, &, e ® in Taylor series,
and substituting the expanded series in equafi®rwe
obtain a system of linear equations for the expected valuefig. 3: Expected value of the susceptible and infected
the variance and the covarianceXt) y Y (t) populations over time

The behaviour of the variances of the the susceptible

dux(®) _ A () ux(t) and infected populations is similar, being lower for the
du(itﬁ) A 1 (1) — B (t infected individuals. In addition, the spread of the
4 t<t) =AOHx(t) — Ouy (1) population figures for susceptible and infected individual

X0 = A(t)Hx (t) — 2A (t) 0Z (1) is very small, almost negligible, as can be seen in figure
doy(t) _ Finally, figure 5 indicates that the covariance of the
ngE,XY(t_ 27 (1) cover(t) +A (t)u;(t) susceptible and the infected populations is negative over

dt —AOHx(1) Aok (t) — A (t) covy(t) time because they are inverse processes, that is, the
_QCOVXY(t) greater the number of infected individuals, the fewer

L . (32) susceptible individuals there are.

with initial conditions px(0) = Xo, Hy(0) = Yo,
02(0) =0,02(0) =0y cowy(0) =0

The system can be solved numerically in Matlab, by 8 Conclusion
applying Runge-Kutta because the force of infectigh)
is an estimated vector. This follows below the simulatedCombining deterministic and stochastic models when
scenarios of statistical measures such as the expectediudying phenomenon of an epidemiological type makes
value, variance and covariance with an initial populationthe results closer to reality and therefore they become
of 100 people, that i = 100, and a single infected tools that can be used to solve many problems caused by
individual, yo = 1 who interacts with the susceptible viruses in a community of susceptible individuals. In
population via the mosquito vector. particular, this investigation demonstrates this

Figure 3 shows that the expected value of the combination in the deterministic model used to estimate
susceptible population over time is 20 people and more othe force of infection over time and the stochastic model
less a constant value, while the expected value of thdormulated from the SIR dynamics of dengue with their
infected population decreases to zero over time. Thigespective probability distributions over time.
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Var(X(t))

0.02
!

Var(Y(t))

0.004
!

0.04
!

0.00
!

o
=
o
N
o
w
o
N
o
a
o

0.008
I

0.000
!

o
=
o
N
o
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o
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o
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o

type of equation in the modeling, not only of
epidemiological phenomena but also of other types of
natural phenomena which they represent a world that can
be explored and exploited using numerical methods. The
calculation of both theoretical and numerical probaleiiti
over time and the estimation of basic statistical measures
such as expected value, variance and covariance give
another facet to the analysis and understanding of the
Dengue SIR dynamics.
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