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Abstract: The federal Government of Nigeria in a bid to prevent infant mortality introduced Immunization programme 
whose aim is to prevent infectious diseases among the newly born children. However, the national programme on 
immunization (NPI) suffers recurrent setbacks due to many factors including ethnicity and religious beliefs. Nigeria is 
made up of 774 local Governments, 36 states with its federal capital in Abuja. The country is divided into six geo-political 
zones; north central, North West, North-East, South-East, South-West and South-South. The population is unevenly 
distributed across the country. The focus of this paper is to provide an understanding about the theoretical and practical 
application of ARMA and GARCH models to Nigeria immunization data as well as looking at the gains derivable from 
using either of the models. The paper compares the forecast performance of these two models and used performance 
measure indices to test the adequacy of the model that perform better. The data used was obtained from University College 
hospital, Ibadan annual reports on immunization. Augmented-Dickey Fuller test was used as a stationarity test for the 
series used, at level the series were not stationary but at first difference they were stationary, thereafter, the analysis of the 
data were performed. The results actually shown that the two models are good for modeling and forecasting the series 
under investigation, however, GARCH model slightly outperformed ARMA as shown by the analysis. 
Keywords: ARMA model, GARCH model, Forecast, Immunization, Performance measure indices. 

 

1 Introduction 

Autoregressive Moving Average (ARMA) consists of two parts, an autoregressive (AR) part and a moving average 
(MA) part. There are five types of traditional time series models that are commonly used in epidemic time series 
forecasting and in other forecasting areas. They are autoregressive, Moving average (MA), Autoregressive moving 
average (ARMA), Autoregressive integrated moving average (ARIMA), and Seasonal autoregressive integrated 
moving average (SARIMA) models. AR model expresses the current value of the time series linearly in terms of its 
previous values and the current residual; whereas MA model expresses the current value of the time series linearly 
in terms of its current and previous residual series. ARMA model is a combination of AR and MA models, in which 
the current value of the time series is expressed linearly in terms of its previous values and in terms of current and 
previous residual series [1]. The time series defined in AR, MA, and ARMA models are stationary processes, which 
means that the mean of the series of any of these models and the covariance among its observations do not change 
with time. For non-stationary time series, transformation of the series to a stationary series has to be performed first. 
ARIMA model generally fits the non-stationary time series based on the ARMA model, with a differencing process 
which effectively transforms the non-stationary data into a stationary one. [2] Advanced Engle’s ARCH model to 
Generalized Autoregressive Conditional Heteroskedasticity model (GARCH) to allow for changes in the time 
dependent volatility, such as decreasing or increasing volatility in the same series. Since then, there have been 
several derivations of the GARCH model, with letters from alphabet coming before the root name. The volatility 
clustering implied by ARCH and GARCH models also implies thicker tails than normal [3]. [4] Estimate the 
volatility of Egyptian and Sudanese markets for the period of January 2006 to November 2010 by employing 
symmetric and asymmetric GARCH models. They report conditional volatility of returns of explosive and quite 
persistent nature for both countries. [5] Uses GARCH, GJR-GARCH and EGARCH models to examine the 
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volatility of stock indexes from five European emerging markets, namely Turkey, Bulgaria, Czech Republic, Poland 
and Hungary. They find volatility shocks that are persistent at those markets and conclude that the impact of old 
news is significant on volatility.  
[5] Furthermore investigated whether the Nigerian stock market followed a random walk using GARCH model. The 
results showed that it followed a random walk and persistent volatility clustering suggested weak-form efficiency in 
the market. [6] Applied GARCH, EGARCH and TGARCH models to illustrate volatility of four Borsa Istanbul sub-
indexes for the period of 2011-2014. They find no significant asymmetric impact of shocks on the volatility of 
banking shares, while all other sub-indices exhibit asymmetry. [7] Used random level shift model (incorporated into 
GARCH) to simulate and forecast volatility of four US stock market indices including Nasdaq. Their findings show 
that level shift model successfully captures long-memory and conditional heteroscedasticity, and it outperforms 
GARCH (1,1) model in forecasting. On their part, [8] addressed limitations of [9] sequential estimation method for 
modeling an intraday volatility process. With 10-min returns of the Nasdaq composite stock index from15 August 
2005 to 12 September 2008, they search for better ARCH parameters, and propose an approach that considers the 
interaction effect between the periodicity and the heteroscedasticity. [10] Study volatility of thirty most actively 
traded Nasdaq stocks with after-hours information added to GARCH model. They find pre-open coefficients in the 
model to be positive and significant for 23 of the 30 stocks, however the post-close variance to have less power in 
predicting the future conditional volatility. [11] Examined volatility persistence and long-memory property of 
Nasdaq-100 index with daily data from January 2, 2001 to February 20, 2004. [12] Aimed in finding the response of 
Pakistani and Indian stock markets to global financial crisis which started from last half of 2007 got severity in 
2008. EGARCH model been applied for econometric analysis which illuminated that inertia of volatility clustering 
prevailed in the stock markets of both countries. The study also revealed that negative shocks have more pronounced 
impact on the volatility than positive shocks. [13] Examined the behaviour of tests of fit for the hypothesis of 
normality of innovations in GARCH models. The procedures were natural extensions of well-known tests for 
normality, which included classical goodness-of-fit tests based on the empirical distribution function.  
The vision of EPI in Nigeria is to improve the health of Nigerian children by eradicating all the six killer diseases, 
which are polio, measles, diphtheria, whooping cough, tuberculosis, and yellow fever. Between 1985 and 1990, as 
outlined in the national health plan for that period, the objectives of EPI were to strengthen immunization, accelerate 
disease control and introduce new vaccines, relevant technologies and tools. In1995 in line with the above, Nigeria 
became a signatory to the World Health Assembly, adopted the World Health Assembly Resolution (WHAR) and 
United Nations General Assembly Special Session (UNGASS) goals for all countries to achieve by 2005 (i) polio 
eradication, (ii) measles mortality reduction and (iii) maternal and neonatal tetanus elimination (MNTE). Nigeria 
also adopted the millennium development goals (MDGs) calling for a two-third reduction in child mortality, as 
compared to 1990, the year 2005. In addition to the above, the country ratified the United Nations General Assembly 
Special Session (UNGASS) goals urging Nigeria to achieve by 2010 (i) ensure full immunization of children under 
one year of age at 90% coverage nationally with at least 80% coverage in every district or equivalent administrative 
unit, and (ii) vitamin A deficiency elimination. Immunization against childhood diseases such as diphtheria, 
pertussis, tetanus, polio and measles is one of the most important means of preventing childhood morbidity and 
mortality. Achieving and maintaining high levels of immunization coverage must therefore be a priority for all 
health systems. In order to monitor progress in achieving this objective, immunization coverage data can serve as an 
indicator of a health system’s capacity to deliver essential services to the most vulnerable segment of a population 
[13]. It is therefore the objective of this paper to determine the forecast ability of Autoregressive moving average 
(ARMA) and Generalized Autoregressive conditional heteroscedasticity (GARCH) models. At the empirical 
illustration level we want to determine which of these two models will give better forecast accuracy using some 
competitive criteria. 
 

The remaining part of the paper is organized as follow section 2 covers theory and methods on ARMA and GARCH 
models. Section 3 looks at model evaluation indices like RMSE, MAPE, MAD, MAE, and Theil’s U inequality 
(Bias, variance and covariance). Section 4 is results and discussion like descriptive statistics, Augmented Dickey 
Fuller tests (level and first difference), Estimation of ARCH and GARCH models, forecast performance of ARCH 
and GARCH models, forecast evaluation of ARCH and GARCH models, their variances and the optimal variance of 
the ARCH and GARCH models. Section 5 and 6 are Conclusion and References. 
 
2  Theory and Methods 
 

2.1 ARMA Process 
  
ARMA model is expressed in terms of both  and . The model parameters relate what happens in period  to 
both the past value and the random errors that occurred in past time periods. A general ARMA model can be written 

p q t
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as follow: 
 

 Equation above of the time series model will be simplified by a back a backward shift operator  to obtain 
 

The ARMA model is stable i.e., it has a stationary ‘solution’ if all roots of  are larger than one in 

absolute value. The representation is unique if all root  lie outside the unit circle and and  
do not have common roots. Stable ARMA models always have an infinite order. The process is invertible only when 
the roots of  lie outside the unit circle. Furthermore, a process is said to be causal when the root of   

lie outside the unit circle. To have  model, both ACF and PACF should show the pattern of 
decaying to zero. The eventually the ACF consists of mixed damped exponentials and sine terms. Similarly, the 
partial autocorrelation of an  process is determined at greater lags by the  part of the 
process. Thus, eventually the partial autocorrelation function will also consist of a mixture of damped exponentials 
and sine waves. 
Behaviour of the ACF and PACF for ARMA models. 
  

    

 Tails off at lag  
 

Cuts off after lag  
 

Tails off at lag  
 

 Cuts off after lag  
 

Tails off at lag  
 

Tails off at lag  
 

 
An ARMA model in forecasting may be represented in three forms as follows: 
   Difference operator      (2) 

     Moving average form     (3) 

    Autoregressive form    (4) 

Here 
  and  

stand for the series expansions of the respective rational operators. 
In developing the theory of forecasting, we may consider infinite information 
Set   Knowing the parameters in  and enables us to recover the sequence 

from the sequence and vice versa; so either of these constitute the information 

set. This equivalence implies that the forecasts may be expressed in terms or in terms or as a combination 
of the elements of both sets. 
 
2.2 Generalized Autoregressive Conditional Heteroscedasticity (GARCH) Model 
 
 

One class of models which have proved useful in forecasting volatility in so many sphere of life is GARCH model 
and its extensions. 
The GARCH ( ) model is formulated as follows: 
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let  be the time series of an exchange rate return, then 

 
    

       (5)
 

    
    (6) 

Where  and innovation sequence is independent and identically distributed with 

=0 and =1. The main idea is that , the conditional variance of  given information available up 

to time  has an autoregressive structure and is positively correlated to its own recent past and to recent values 
of the squared return . This captures the idea of volatility being “persistent”, large (small) values of  are likely 
to be followed by large (small) values. The GARCH model formulation captures the fact that volatility is changing 
in time. The change corresponds to a weighted average among the long term average variance, the volatility in the 
previous period, and the fitted variance in the previous period as well. The model described in equation (6) is used to 
parameterize financial time series, and shall be used to compare the forecasting of equation (1) through (6) using the 
following performance adequacy measures 
 
3 Model Evaluation Indices 
 

Several error indices are commonly used in model evaluation; these include mean absolute error (MAE), root mean 
square error (RMSE), mean absolute deviation (MAD), mean absolute precision error (MAPE) and THEIL U. 
These indices are valuable because they indicate error in the units (or squared units) of the constituent of interest, 
which aids in analysis of the results. RMSE, MAE, MAPE, MAD and Theil U values of 0 indicate a perfect fit. 
    
3.1 Root Mean Square Error (RMSE) 

The root-mean-square error (RMSE) is a good measure of accuracy, used to measure the differences between 
values predicted by a model and the values actually observed. These individual differences are called errors when 
the calculations are performed over the data sample that was used for estimation, and are called prediction errors 
when computed out-of-sample. The RMSE serves to aggregate the magnitudes of the errors in predictions for 
various times into a single measure of predictive power. Although it is commonly accepted that the lower the RMSE 
the better the model performance.  

RMSE is given as:
 

3.2  Mean Absolute Percentage Error (MAPE) 

This is frequently used to evaluate cross-sectional forecasts So also MAPE has indispensable statistical properties in 
that it makes use of all observations and has the smallest variability from sample to sample. It is also useful for 
purposes of reporting because it is expressed in generic percentage terms that will be understandable to a wide range 
of users and very simple to calculate and easy to understand which attest to its popularity. It is given as:- 
 

3.3  Mean Absolute Error (MAE) 

The simplest measure of forecast accuracy is called Mean Absolute Error (MAE).  MAE is simply, as the name 
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suggests the mean of the absolute errors.  The absolute error is the absolute value of the difference between the 
forecasted value and the actual value.  MAE tells us on the average how big of an error we can expect from the 
forecast. This is mathematically given as:- 

 

3.4  Theil’s U Inequality Coefficient 

A more useful measure to evaluate the predictive accuracy of a model is Theil’s U inequality coefficient [14], which 
measures the root mean square error in relative terms, and is defined as 

        (10) 

The denominator imposes an upper bound to the U coefficient, which is bounded above by 1 and bounded below by 
0, that is, 0 ≤ U ≤ 1. This is particularly useful since it gives a threshold to evaluate the accuracy of a model and not 
only compare it to other models. The closer to 0 the coefficient is, the more accurate the model is, while a 
coefficient equal to 1 indicates that the forecast performance of the model is as bad as it could be. The U coefficient 
can be decomposed into three proportions that provide useful additional information on the performance of the 
model. 
Bias, 

       (11) 

Variance, 

       (12) 

Covariance, 

       (13) 

The bias proportion measures the systematic error of the forecast; it gathers the share of the simulation error that 
comes from bias, that is, the difference between the averages of the forecasted series and the actual series. The 
variance proportion is intended to provide a measure of how well our forecast replicates the volatility of the actual 
series. The covariance proportion offers a measure of the unsystematic error in the forecast. The ideal distribution of 
proportions for any non-zero inequality coefficient would be  and . 
 
4  Results and Discussions 
 
The data for the study comprises of BCG (Bacilli Calmette Guerin) OPV (Oral Polio Vaccine) and DPT (Diphtheria, 
pertusis, tetanus), were obtained from annual records of University College Hospital, U.C.H, Ibadan reports on 
immunization.  The table below (Table 1) provides summary statistics of all the series used in the paper, it reveals 
the presence of excess kurtosis and very large size of Jarque-Bera statistics which made us to conclude that the 
series are not normally distributed. The unit root tests conducted using Augmented Dickey-Fuller test (tables 2 and 
3), shows that at level all series are not stationary but stationary at first difference, with this we proceeded to the 
analysis of the data. 
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Table 1: Descriptive Statistics 
 

Statistics DPT3 MV OPV3 
Mean 33677.47 44881.30 34153.28 

Median 25118.00 37393.00 25645.00 
Maximum 208403.0 166007.0 150570.0 
Minimum 28.00000 2774.000 1277.000 
Std. Dev. 31444.66 31115.53 28439.66 
Skewness 2.794408 1.578633 1.891450 
Kurtosis 13.80567 5.981015 7.078726 

Jarque-Bera 696.8211 88.77458 145.7057 
Probability 0.000000 0.000000 0.000000 

Observations 113 113 113 
 

Table 2:  Augmented Dickey-Fuller Test (Level) 
 

Series ADF-Test statistic Critical value (5%) Mackinnon prob  
DPT3 -2.964652 -3.4900 0.0415 
MV -9.0413 -3.4900 0.0000 

OPV3 -9.5818 -3.4900 0.0000 
 

Table 3:  Augmented Dickey-Fuller Test (First Difference) 
 

Series ADF-Test statistic Critical value (5%) Mackinnon prob  
DPT3 -16.1913 -2.8892 0.0000 
MV -6.7093 -2.8892 0.0000 

OPV3 -7,2178 -2.8892 0.0000 
 

 

 4.1  Estimation of ARMA Model 
Table 4:  ARMA Analysis of DPT3. 

Variable Coefficient   Std. Error t-Statistic Prob.   
AR(1) 0.992074 0.015529 63.88554 0.0000 
MA(1) -0.814379 0.064260 -12.67320 0.0000 

  S.E. of regression  29109.98 
 

Table 5:  ARMA Analysis of MV. 
Variable Coefficient Std. Error t-Statistic Prob.   
AR(1) 1.004819 0.002610 384.9656 0.0000 
MA(1) -0.978341 0.015745 -62.13584 0.0000 

  S.E. of regression  30661.77 
 

Table 6:  ARMA Analysis of OPV3. 
Variable Coefficient Std. Error t-Statistic Prob.   
AR(1) 1.006448 0.003354 300.0400 0.0000 
MA(1) -0.978296 0.019613 -49.88028 0.0000 

   S.E. of regression 27716.24 
 

•

•



J. Stat. Appl. Pro. Lett. 8, No. 1, 41-49 (2021) / http://www.naturalspublishing.com/Journals.asp  47 
 

 
© 2021 NSP 
Natural Sciences Publishing 
Cor. 

 

 
 
 
 
 
 
4.2 Estimation of Classical GARCH Model 
 

Table 7: GARCH Analysis of DPT3 
 

 Coefficient Std. Error z-Statistic Prob.   
DPT3 0.000679 7.33E-05 9.272139 0.0000 

 Variance Equation   
C 3.574598 6.042990 0.591528 0.5542 

RESID(-1)^2 0.111640 0.177275 0.629758 0.5289 
GARCH(-1) 0.931875 0.170281 5.472559 0.0000 

 

  S.E. of regression 47.13951 
 
 

Table 8:  GARCH Analysis of MV 
 Coefficient Std. Error z-Statistic Prob.   

MV 0.000924 6.50E-05 14.21751 0.0000 
 Variance Equation   

C 1043.421 371.4334 2.809175 0.0050 
RESID(-1)^2 0.524634 0.249033 2.106682 0.0351 
GARCH(-1) -0.112744 0.223894 -0.503561 0.6146 

  S.E. of regression 40.83912 
 

Table 9:  GARCH Analysis of OPV3 
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1) 
 

 Coefficient Std. Error z-Statistic Prob.   
OPV3 0.000452 4.99E-05 9.042898 0.0000 

 Variance Equation   
C 3.505743 6.550124 0.535218 0.5925 

RESID(-1)^2 0.228558 0.348418 0.655988 0.5118 
GARCH(-1) 0.822089 0.348350 2.359950 0.0183 

  S.E. of regression    52.26624 
Table 10: Forecast Performances of ARMA Model 

SERIES RMSE MAE MAPE THEIL-U U-BIAS VAR. COVAR. 
DPT3 41475.96 27698.76 469.5084 0.7667 0.3990 0.5029 0.0981 
MV 35827.60 23737.75 58.2654 0.4426 0.2874 0.5682 0.1443 

OPV3 32176.23 19709.62 68.2440 0.5143 0.2696 0.5898 0.1405 
 

Table 11: Forecast Performances of GARCH Model 
SERIES RMSE MAE MAPE THEIL-U U-BIAS VAR. COVAR. 
DPT3 51.3244 42.5593 73.1627 0.0602 0.6377 0.1447 0.2178 
MV 40.1032 31.4955 111.3275 0.3467 0.1367 0.0084 0.8549 

OPV3 46.2901 37.6460 68.7438 0.4799 0.5253 0.0567 0.4198 
 

*
* * *

* * *

*
* * * * *

*
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4.3    The Forecast Evaluation Indices of the two Models 
In tables 10 and 11, the asterisks numbers are selected for being the best among the various forecast performance 
listed in the tables for the two models used. From these tables (10 and 11), table 12 was formed, from where we 
picked our optimum model. 
 

4.4 Forecast Evaluation 
 

Forecast performance of the ARMA and GARCH models for the series under investigation were evaluated using the 
measures of comparison described in section 3.0 above and are presented below: 
 

Table 12: Forecasts Evaluation for ARMA and GARCH Models 
FORECAST INDICES ARMA GARCH 
Root mean square error 32176.23 40.1032 
Mean absolute error 19709.62 31.4955 
Mean absolute percent error 58.2654 68.7438 
Theil inequality coefficient 0.4426 0.3467 
Bias proportion 0.2696 0.1367 
Variance proportion 0.5029 0.0002 
Covariance proportion 0.0084 0.8549 

 
From the table 12, the value of Theil inequality for the two models are 0.4426 for ARCH and 0.3467 for GARCH 
showing that the two models have good fit, the values of both bias proportion and variance proportion are somehow 
close to zero (0.2696 for ARCH) and (0.1367 for GARCH), indicating that level of bias are very negligible, the 
variance  
 
proportion of ARMA (0.5029) is very high compare to that of GARCH which is just (0.0002). The covariance 
proportion of ARCH model (0.0088) is very poor compare to the variance of GARCH model (0.8549). Showing that 
the forecast performance of ARCH model is very poor and that the performance of GARH is very good. 

4.5 Variances of the Models 
All asterisks minimum variances for these two models were pooled together in table (14), from this we select the 
optimum for GARCH model. The optimum variance value here is 40.83912, produced by GARCH Model. The 
minimum variance for ARCH model was 27716.24 as shown in table 13 while the minimum variance for GARCH 
model was 40.83912 as shown in table 14. The two minimum variance pooled together produced table 15. The 
minimum of these two variances produced the optimal results, which is 40.83912. 

 
Table 13: Variances of ARMA model for all series. 

SERIES MODEL VARIANCE 
DPT3 29109.98 
 MV 30661.77 
OPV3 27716.24 

 
Table 14: Variances of GARCH model for the series 

SERIES MODEL VARIANCE 
DPT3 47.13951 
 MV 40.83912 
OPV3 52.266124 

 

Table 15:  Optimal variance for the two models 
SERIES MODEL VARIANCE 
ARMA 27716.24 
 GARCH 40.83912 

 
 
 

*

*

*
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5 Conclusions 
 

This paper focuses on modeling and forecasting immunization in Nigeria using ARMA and GARCH models, we 
examined the stationarity of the series by both ADF test and Graph, from where we discovered that the series are 
non-stationary at level and appeared stationary after differencing the data, thereafter we analyzed the data using 
ARMA (1,1) and GARCH (1,1). We equally subjected the forecast power of the models to adequacy tests like 
RMSE, MAE, MAD, MAPE and others, from where we discovered that GARCH model is far better than ARCH 
model as shown by tables (12) and (15). 
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