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Abstract: The federal Government of Nigeria in a bid to prevent infant mortality introduced Immunization programme
whose aim is to prevent infectious diseases among the newly born children. However, the national programme on
immunization (NPI) suffers recurrent setbacks due to many factors including ethnicity and religious beliefs. Nigeria is
made up of 774 local Governments, 36 states with its federal capital in Abuja. The country is divided into six geo-political
zones; north central, North West, North-East, South-East, South-West and South-South. The population is unevenly
distributed across the country. The focus of this paper is to provide an understanding about the theoretical and practical
application of ARMA and GARCH models to Nigeria immunization data as well as looking at the gains derivable from
using either of the models. The paper compares the forecast performance of these two models and used performance
measure indices to test the adequacy of the model that perform better. The data used was obtained from University College
hospital, Ibadan annual reports on immunization. Augmented-Dickey Fuller test was used as a stationarity test for the
series used, at level the series were not stationary but at first difference they were stationary, thereafter, the analysis of the
data were performed. The results actually shown that the two models are good for modeling and forecasting the series
under investigation, however, GARCH model slightly outperformed ARMA as shown by the analysis.
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1 Introduction

Autoregressive Moving Average (ARMA) consists of two parts, an autoregressive (AR) part and a moving average
(MA) part. There are five types of traditional time series models that are commonly used in epidemic time series
forecasting and in other forecasting areas. They are autoregressive, Moving average (MA), Autoregressive moving
average (ARMA), Autoregressive integrated moving average (ARIMA), and Seasonal autoregressive integrated
moving average (SARIMA) models. AR model expresses the current value of the time series linearly in terms of its
previous values and the current residual; whereas MA model expresses the current value of the time series linearly
in terms of its current and previous residual series. ARMA model is a combination of AR and MA models, in which
the current value of the time series is expressed linearly in terms of its previous values and in terms of current and
previous residual series [1]. The time series defined in AR, MA, and ARMA models are stationary processes, which
means that the mean of the series of any of these models and the covariance among its observations do not change
with time. For non-stationary time series, transformation of the series to a stationary series has to be performed first.
ARIMA model generally fits the non-stationary time series based on the ARMA model, with a differencing process
which effectively transforms the non-stationary data into a stationary one. [2] Advanced Engle’s ARCH model to
Generalized Autoregressive Conditional Heteroskedasticity model (GARCH) to allow for changes in the time
dependent volatility, such as decreasing or increasing volatility in the same series. Since then, there have been
several derivations of the GARCH model, with letters from alphabet coming before the root name. The volatility
clustering implied by ARCH and GARCH models also implies thicker tails than normal [3]. [4] Estimate the
volatility of Egyptian and Sudanese markets for the period of January 2006 to November 2010 by employing
symmetric and asymmetric GARCH models. They report conditional volatility of returns of explosive and quite
persistent nature for both countries. [5] Uses GARCH, GJR-GARCH and EGARCH models to examine the
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volatility of stock indexes from five European emerging markets, namely Turkey, Bulgaria, Czech Republic, Poland
and Hungary. They find volatility shocks that are persistent at those markets and conclude that the impact of old
news is significant on volatility.

[5] Furthermore investigated whether the Nigerian stock market followed a random walk using GARCH model. The
results showed that it followed a random walk and persistent volatility clustering suggested weak-form efficiency in
the market. [6] Applied GARCH, EGARCH and TGARCH models to illustrate volatility of four Borsa Istanbul sub-
indexes for the period of 2011-2014. They find no significant asymmetric impact of shocks on the volatility of
banking shares, while all other sub-indices exhibit asymmetry. [7] Used random level shift model (incorporated into
GARCH) to simulate and forecast volatility of four US stock market indices including Nasdaq. Their findings show
that level shift model successfully captures long-memory and conditional heteroscedasticity, and it outperforms
GARCH (1,1) model in forecasting. On their part, [8] addressed limitations of [9] sequential estimation method for
modeling an intraday volatility process. With 10-min returns of the Nasdaq composite stock index from15 August
2005 to 12 September 2008, they search for better ARCH parameters, and propose an approach that considers the
interaction effect between the periodicity and the heteroscedasticity. [10] Study volatility of thirty most actively
traded Nasdaq stocks with after-hours information added to GARCH model. They find pre-open coefficients in the
model to be positive and significant for 23 of the 30 stocks, however the post-close variance to have less power in
predicting the future conditional volatility. [11] Examined volatility persistence and long-memory property of
Nasdag-100 index with daily data from January 2, 2001 to February 20, 2004. [12] Aimed in finding the response of
Pakistani and Indian stock markets to global financial crisis which started from last half of 2007 got severity in
2008. EGARCH model been applied for econometric analysis which illuminated that inertia of volatility clustering
prevailed in the stock markets of both countries. The study also revealed that negative shocks have more pronounced
impact on the volatility than positive shocks. [13] Examined the behaviour of tests of fit for the hypothesis of
normality of innovations in GARCH models. The procedures were natural extensions of well-known tests for
normality, which included classical goodness-of-fit tests based on the empirical distribution function.

The vision of EPI in Nigeria is to improve the health of Nigerian children by eradicating all the six killer diseases,
which are polio, measles, diphtheria, whooping cough, tuberculosis, and yellow fever. Between 1985 and 1990, as
outlined in the national health plan for that period, the objectives of EPI were to strengthen immunization, accelerate
disease control and introduce new vaccines, relevant technologies and tools. In1995 in line with the above, Nigeria
became a signatory to the World Health Assembly, adopted the World Health Assembly Resolution (WHAR) and
United Nations General Assembly Special Session (UNGASS) goals for all countries to achieve by 2005 (i) polio
eradication, (ii) measles mortality reduction and (iii) maternal and neonatal tetanus elimination (MNTE). Nigeria
also adopted the millennium development goals (MDGs) calling for a two-third reduction in child mortality, as
compared to 1990, the year 2005. In addition to the above, the country ratified the United Nations General Assembly
Special Session (UNGASS) goals urging Nigeria to achieve by 2010 (i) ensure full immunization of children under
one year of age at 90% coverage nationally with at least 80% coverage in every district or equivalent administrative
unit, and (i) vitamin A deficiency elimination. Immunization against childhood diseases such as diphtheria,
pertussis, tetanus, polio and measles is one of the most important means of preventing childhood morbidity and
mortality. Achieving and maintaining high levels of immunization coverage must therefore be a priority for all
health systems. In order to monitor progress in achieving this objective, immunization coverage data can serve as an
indicator of a health system’s capacity to deliver essential services to the most vulnerable segment of a population
[13]. Tt is therefore the objective of this paper to determine the forecast ability of Autoregressive moving average
(ARMA) and Generalized Autoregressive conditional heteroscedasticity (GARCH) models. At the empirical
illustration level we want to determine which of these two models will give better forecast accuracy using some
competitive criteria.

The remaining part of the paper is organized as follow section 2 covers theory and methods on ARMA and GARCH
models. Section 3 looks at model evaluation indices like RMSE, MAPE, MAD, MAE, and Theil’s U inequality
(Bias, variance and covariance). Section 4 is results and discussion like descriptive statistics, Augmented Dickey
Fuller tests (level and first difference), Estimation of ARCH and GARCH models, forecast performance of ARCH
and GARCH models, forecast evaluation of ARCH and GARCH models, their variances and the optimal variance of
the ARCH and GARCH models. Section 5 and 6 are Conclusion and References.

2 Theory and Methods
2.1 ARMA Process

ARMA model is expressed in terms of both p and ¢ . The model parameters relate what happens in period ¢ to
both the past value and the random errors that occurred in past time periods. A general ARMA model can be written
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as follow:

Yt:¢1Yz—1+¢2Yz—2+"'+¢th O, +0,6 ,+: qut q (1)
Equation above of the time series model will be simplified by a back a backward shift operator B to obtain
o ()Y, = 0(B)z,

The ARMA model is stable i.e., it has a stationary ‘solution’ if all roots of CD(B ) =0 are larger than one in

absolute value. The representation is unique if all root @ (B ) = 0 lie outside the unit circle and ® (B ) and & (B )
do not have common roots. Stable ARMA models always have an infinite order. The process is invertible only when

the roots of € (B ) lie outside the unit circle. Furthermore, a process is said to be causal when the root of @ (B )

lie outside the unit circle. To have ARMA( pP.q ) model, both ACF and PACF should show the pattern of
decaying to zero. The eventually the ACF consists of mixed damped exponentials and sine terms. Similarly, the
partial autocorrelation of an ARMA( DP,q ) process is determined at greater lags by the MA(C]) part of the

process. Thus, eventually the partial autocorrelation function will also consist of a mixture of damped exponentials

and sine waves.
Behaviour of the ACF and PACF for ARMA models.

AR(P)s MA(Q)s ARMA(P,Q)s
ACF Tails off at lag ks Cuts off after lag Qs Tails off at lag ks
k=123,
PACF Cuts off after lag Ps Tails off at lag ks Tails off at lag ks
k=123,

An ARMA model in forecasting may be represented in three forms as follows:

a (L)y(t) = ,u(L)g (l‘) Difference operator #))
y( ) %y(t) =y (L)e (t) Moving average form )
(24
a(L

w(L)= y(t) = E(L)y(f) = E(t) Autoregressive form 4)

€2)
u(L)
Here
2 2
w(L)=[1+yL+yl +..| and 7(L)=[1-7L + 2L +...]
stand for the series expansions of the respective rational operators.
In developing the theory of forecasting, we may consider infinite information

Set [, = ( Vs Vit ytfz...) Knowing the parameters in & (L) and ,u(L) enables us to recover the sequence

(St, E1E,_ ) from the sequence (y, s Vi ,yt_z...)and vice versa; so either of these constitute the information

set. This equivalence implies that the forecasts may be expressed in terms (yt ) or in terms (Et ) or as a combination

of the elements of both sets.
2.2 Generalized Autoregressive Conditional Heteroscedasticity (GARCH) Model
One class of models which have proved useful in forecasting volatility in so many sphere of life is GARCH model

and its extensions.
The GARCH ( p, g ) model is formulated as follows:
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let (y( B ) be the time series of an exchange rate return, then

yl‘ :O-tgl

©)

p q

2 2 2
O, =0, + z :aiyt—l + Zﬂjat—j
i=1 j=1 (6)

Where &, > 0,0, 20 and innovation sequence {é‘}j(;OO is independent and identically distributed (iid ) with
E (6‘0 ) =0 and £ (85 ):1. The main idea is that 612 , the conditional variance of ), given information available up

to time # —1 has an autoregressive structure and is positively correlated to its own recent past and to recent values
of the squared return ;. This captures the idea of volatility being “persistent”, large (small) values of yt2 are likely

to be followed by large (small) values. The GARCH model formulation captures the fact that volatility is changing
in time. The change corresponds to a weighted average among the long term average variance, the volatility in the
previous period, and the fitted variance in the previous period as well. The model described in equation (6) is used to
parameterize financial time series, and shall be used to compare the forecasting of equation (1) through (6) using the
following performance adequacy measures

3 Model Evaluation Indices

Several error indices are commonly used in model evaluation; these include mean absolute error (MAE), root mean
square error (RMSE), mean absolute deviation (MAD), mean absolute precision error (MAPE) and THEIL U.
These indices are valuable because they indicate error in the units (or squared units) of the constituent of interest,
which aids in analysis of the results. RMSE, MAE, MAPE, MAD and Theil U values of 0 indicate a perfect fit.

3.1 Root Mean Square Error (RMSE)

The root-mean-square error (RMSE) is a good measure of accuracy, used to measure the differences between
values predicted by a model and the values actually observed. These individual differences are called errors when
the calculations are performed over the data sample that was used for estimation, and are called prediction errors
when computed out-of-sample. The RMSE serves to aggregate the magnitudes of the errors in predictions for
various times into a single measure of predictive power. Although it is commonly accepted that the lower the RMSE
the better the model performance.

RMSE is given as:

RMSE = {T‘ZT:(Y, —Y)} (7)

t=1

3.2  Mean Absolute Percentage Error (MAPE)

This is frequently used to evaluate cross-sectional forecasts So also MAPE has indispensable statistical properties in
that it makes use of all observations and has the smallest variability from sample to sample. It is also useful for
purposes of reporting because it is expressed in generic percentage terms that will be understandable to a wide range
of users and very simple to calculate and easy to understand which attest to its popularity. It is given as:-

f v v
MAPE:T*Z—Yf L

t=1 t

3.3  Mean Absolute Error (MAE)

X 100 (8)

The simplest measure of forecast accuracy is called Mean Absolute Error (MAE). MAE is simply, as the name
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suggests the mean of the absolute errors. The absolute error is the absolute value of the difference between the
forecasted value and the actual value. MAE tells us on the average how big of an error we can expect from the
forecast. This is mathematically given as:-

MAE =T zT:

t=1

Y,-¥, ©)

3.4 Theil’s U Inequality Coefficient

A more useful measure to evaluate the predictive accuracy of a model is Theil’s U inequality coefficient [14], which
measures the root mean square error in relative terms, and is defined as

1 C K aN2
3o on

U= 2 (10)

1 C 52 1 C a2

\/Z(Yt )"+ \/Z(Yt )

o no—
The denominator imposes an upper bound to the U coefficient, which is bounded above by 1 and bounded below by
0, that is, 0 < U < 1. This is particularly useful since it gives a threshold to evaluate the accuracy of a model and not
only compare it to other models. The closer to 0 the coefficient is, the more accurate the model is, while a
coefficient equal to 1 indicates that the forecast performance of the model is as bad as it could be. The U coefficient

can be decomposed into three proportions that provide useful additional information on the performance of the
model.

Bias,
s _—a 2
UM _ 1 (nY Y) (11)
;Z(Yti _ Yta)Z
t=1
Variance,
2
vt == (0 o,) (12)
DA A
no
Covariance,
2(1-
ye - _2-pjoo, (13)

IS —vey
no

The bias proportion measures the systematic error of the forecast; it gathers the share of the simulation error that
comes from bias, that is, the difference between the averages of the forecasted series and the actual series. The
variance proportion is intended to provide a measure of how well our forecast replicates the volatility of the actual
series. The covariance proportion offers a measure of the unsystematic error in the forecast. The ideal distribution of

proportions for any non-zero inequality coefficient wouldbe U” =U* =0 and U =1.

4 Results and Discussions

The data for the study comprises of BCG (Bacilli Calmette Guerin) OPV (Oral Polio Vaccine) and DPT (Diphtheria,
pertusis, tetanus), were obtained from annual records of University College Hospital, U.C.H, Ibadan reports on
immunization. The table below (Table 1) provides summary statistics of all the series used in the paper, it reveals
the presence of excess kurtosis and very large size of Jarque-Bera statistics which made us to conclude that the
series are not normally distributed. The unit root tests conducted using Augmented Dickey-Fuller test (tables 2 and
3), shows that at level all series are not stationary but stationary at first difference, with this we proceeded to the
analysis of the data.
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Table 1: Descriptive Statistics
Statistics DPT3 MV OPV3
Mean 33677.47 44881.30 34153.28
Median 25118.00 37393.00 25645.00
Maximum 208403.0 166007.0 150570.0
Minimum 28.00000 2774.000 1277.000
Std. Dev. 31444.66 31115.53 28439.66
Skewness 2.794408 1.578633 1.891450
Kurtosis 13.80567 5.981015 7.078726
Jarque-Bera 696.8211 88.77458 145.7057
Probability 0.000000 0.000000 0.000000
Observations 113 113 113
Table 2: Augmented Dickey-Fuller Test (Level)

Series ADF-Test statistic Critical value (5%) Mackinnon prob @
DPT3 -2.964652 -3.4900 0.0415
MV -9.0413 -3.4900 0.0000
OPV3 -9.5818 -3.4900 0.0000

Table 3: Augmented Dickey-Fuller Test (First Difference)

Series ADF-Test statistic Critical value (5%) Mackinnon prob @
DPT3 -16.1913 -2.8892 0.0000
MV -6.7093 -2.8892 0.0000
OPV3 -7,2178 -2.8892 0.0000

4.1

Estimation of ARMA Model

Table 4: ARMA Analysis of DPT3.

Variable Coefficient | Std. Error t-Statistic Prob.
AR(1) 0.992074 0.015529 | 63.88554 0.0000
MA(1) -0.814379 0.064260 | -12.67320 0.0000

S.E. of regression 29109.98
Table 5: ARMA Analysis of MV.

Variable Coefficient Std. Error | t-Statistic Prob.
AR(1) 1.004819 0.002610 | 384.9656 0.0000
MA(1) -0.978341 0.015745 | -62.13584 0.0000

S.E. of regression 30661.77
Table 6: ARMA Analysis of OPV3.

Variable Coefficient Std. Error t-Statistic Prob.
AR(1) 1.006448 0.003354 300.0400 0.0000
MA(1) -0.978296 0.019613 -49.88028 0.0000

S.E. of regression 27716.24
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4.2  Estimation of Classical GARCH Model
Table 7: GARCH Analysis of DPT3

Coefficient Std. Error z-Statistic Prob.
DPT3 0.000679 7.33E-05 9.272139 0.0000
Variance Equation
C 3.574598 6.042990 0.591528 0.5542
RESID(-1)"2 0.111640 0.177275 0.629758 0.5289
GARCH(-1) 0.931875 0.170281 5.472559 0.0000

S.E. of regression47.13951

Table 8: GARCH Analysis of MV
Coefficient | Std. Error z-Statistic Prob.
MV 0.000924 6.50E-05 14.21751 0.0000
Variance Equation
C 1043.421 371.4334 2.809175 0.0050
RESID(-1)"2 0.524634 | 0.249033 2.106682 0.0351
GARCH(-1) -0.112744 | 0.22389%4 -0.503561 0.6146
S.E. of regression40.83912
Table 9: GARCH Analysis of OPV3
GARCH = C(2) + C(3)*RESID(-1)"2 + C(4)*GARCH(-1)
Coefficient | Std. Error z-Statistic Prob.
OPV3 0.000452 4.99E-05 9.042898 0.0000
Variance Equation
C 3.505743 6.550124 0.535218 0.5925
RESID(-1)"2 0.228558 | 0.348418 0.655988 0.5118
GARCH(-1) 0.822089 | 0.348350 2.359950 0.0183

S.E. of regression  52.26624
Table 10: Forecast Performances of ARMA Model

SERIES RMSE MAE MAPE THEIL-U U-BIAS VAR. COVAR.
DPT3 41475.96 27698.76 469.5084 0.7667 0.3990 *0.5029 0.0981

MV 35827.60 23737.75 * 58.2654 *0.4426 0.2874 0.5682 *0.1443
OPV3 *32176.23 *19709.62 68.2440 0.5143 *0.2696 0.5898 0.1405

Table 11: Forecast Performances of GARCH Model

SERIES RMSE MAE MAPE THEIL-U U-BIAS VAR. COVAR.
DPT3 51.3244 42.5593 73.1627 *0.0602 0.6377 0.1447 0.2178
MV *40.1032 * 31.4955 111.3275 0.3467 *0.1367 *0.0084 * 0.8549

OPV3 46.2901 37.6460 * 68.7438 0.4799 0.5253 0.0567 0.4198
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4.3 The Forecast Evaluation Indices of the two Models

In tables 10 and 11, the asterisks numbers are selected for being the best among the various forecast performance
listed in the tables for the two models used. From these tables (10 and 11), table 12 was formed, from where we
picked our optimum model.

4.4 Forecast Evaluation

Forecast performance of the ARMA and GARCH models for the series under investigation were evaluated using the
measures of comparison described in section 3.0 above and are presented below:

Table 12: Forecasts Evaluation for ARMA and GARCH Models
FORECAST INDICES ARMA GARCH
Root mean square error 32176.23 40.1032
Mean absolute error 19709.62 31.4955
Mean absolute percent error 58.2654 68.7438
Theil inequality coefficient 0.4426 0.3467
Bias proportion 0.2696 0.1367
Variance proportion 0.5029 0.0002
Covariance proportion 0.0084 0.8549

From the table 12, the value of Theil inequality for the two models are 0.4426 for ARCH and 0.3467 for GARCH
showing that the two models have good fit, the values of both bias proportion and variance proportion are somehow
close to zero (0.2696 for ARCH) and (0.1367 for GARCH), indicating that level of bias are very negligible, the
variance

proportion of ARMA (0.5029) is very high compare to that of GARCH which is just (0.0002). The covariance
proportion of ARCH model (0.0088) is very poor compare to the variance of GARCH model (0.8549). Showing that
the forecast performance of ARCH model is very poor and that the performance of GARH is very good.

4.5 Variances of the Models

All asterisks minimum variances for these two models were pooled together in table (14), from this we select the
optimum for GARCH model. The optimum variance value here is 40.83912, produced by GARCH Model. The
minimum variance for ARCH model was 27716.24 as shown in table 13 while the minimum variance for GARCH
model was 40.83912 as shown in table 14. The two minimum variance pooled together produced table 15. The
minimum of these two variances produced the optimal results, which is 40.83912.

Table 13: Variances of ARMA model for all series.
SERIES MODEL VARIANCE
DPT3 29109.98
MV 30661.77
OPV3 *27716.24
Table 14: Variances of GARCH model for the series
SERIES MODEL VARIANCE
DPT3 47.13951
MV *40.83912
OPV3 52.266124
Table 15: Optimal variance for the two models
SERIES MODEL VARIANCE
ARMA 27716.24
GARCH *40.83912

© 2021 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. Lett. 8, No. 1, 41-49 (2021) / http://www.naturalspublishing.com/Journals.asp % 49

5

Conclusions

This paper focuses on modeling and forecasting immunization in Nigeria using ARMA and GARCH models, we
examined the stationarity of the series by both ADF test and Graph, from where we discovered that the series are
non-stationary at level and appeared stationary after differencing the data, thereafter we analyzed the data using
ARMA (1,1) and GARCH (1,1). We equally subjected the forecast power of the models to adequacy tests like
RMSE, MAE, MAD, MAPE and others, from where we discovered that GARCH model is far better than ARCH
model as shown by tables (12) and (15).
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