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Abstract: Our attentions here is to show that (DNA-torsional modeétiuced to the sine-Gordon SG and double sine-Gordon (DSG)
equations. The fractional order equations of the SG and (Di8#Bed on the Caputo derivative is considered. One of tlie mesults
found here is to show that these equations of the fractiordgs are reduced to partial differential equations (PDEggact explicit
formulas of some solitary and periodic traveling wave sohs are obtained. The effects exhibited in the later casdlastrated. The
effects exhibited in the latter case are illustrated. Wthikefractional space derivative leads the formation of ‘apatic” wave in the
transition state.
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1 Introduction The discrete torsion model of DNA is follows as:

In recent years, it is presently realized that the | Yin = Ks(Wni1+ Yn-1— 2¢hn) — Kpr2(singy cosyn)
understanding of the dynamics of DNA may be one of the

most challenging problems posed to the human | xn=ks(Xni1+ Xn-1— 2Xn) — Kpr2(SinXn(COSWn — COSXn) ) ,
knowledge. This fascinating suggestion attracted the (1)
attention of many researchers, particularly that ones irwherey, andx, are the angles referring to the out of phase
theoretical physics and nonlinear dynamics and alsdcenter of basses mass ) for each chiiathe moment of
triggered the formulation of several simple models of inertia of the bridge between two bases &gdk, are the
nonlinear DNA dynamics. dimensional coupling constan#][

From the theoretical point of view, DNA is usually To get the continuum version for the equation (1), we
considered so far as three-dynamical motions, namely svrite gn(t) ~ ¢(on,t), xn(t) ~ x(dn,t) , with dn =x,
torsional, transverse and longitudinal motions. On thewhered is the distance between successivsites along
important DNA- model is that one which describes the the axis of the double helixd(= 3.4A )in B-DNA) [7,8].
rotational motion of DNA ( torsion models of DNA). See We get the equations
also the (Y-model) where it is introduced by Yakushevich
) [1,2,3]. In this model each nucleotide

(sugar-phosphate-backbone) is described by two degrees Ut = Kshx — Kpsing cosy,,
of freedom with a single angular variable ( i.e. . (2)
microscopic modelsy]. Xit = KsXxx — Kpsiny (cosy — cosy) .

In this context, we study the case in the homogeneous
medium. That is both strands have the same mass density For symmetric angle between the basgs=(0) and
and the interactions between bases at different sites ar
equal). It describes the angle of rotation of bases abou
the backbone (or between the atom-bridge Hydrogen
H-bond and the backbone) are considefs 6] Yt = Kt — Kpsiny, (3)

quation (2) reduces to the sine-Gordan SG equation
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For antisymmetric anglesi(= 0), the equation (2), tends The equation (9) holds when
to the double sine-Gordon (DSG) equation

Xit = KsXxx - Kpsinx(l —cosx), (4)

s S (
r2-ai) 0719
In the equation (10) andt; are replaced by antl and

Ditg(x,tp) = X,t2, T). (10)

ks 5 2
whereKs = ==, Kp = % Indeeds =C3, Cois the speed ¢ respectively. For convenience we may write the equation
of linear wave (10) in the form

. Dtg(x,t) = =L t 11
2 The second order fractional Caputo ;_ggj,l)_ ('|I'—(_t)al "O"SEX;’TT) (11)
derivative B -

By bearingg(x,t, 7) = f (x,t, 7). Aresult similar to (10)

The fractional order have recently proved to be valuabley, o 4s for the second equat|on in (8), namely

tools to the modeling of many physical phenomef@a [
10-12] and here we use the right-Caputo-derivative for

; : : DY2g(x,t,X) = — =22~ -2 g(x,t,X 12
nonlinear evolution equations (NLE<s)3, 14-16] x“gxt,X) r(2—ay) x9xt.X) (12)

X=(M-=x)%2,0<x<M.
D' f (x,t) — D& (x,t) = k(x,t), (5)

where 3 Solutions of the fractional models

Dtﬁlf (xt) = ﬁ Jot— )1— 1 0 f (X, t1)dty Here we are interested to consider the equati8jend(4)
. with space-time- fractional derivatives.

B 1 —pBp 02
DI (%,t) = oty Jo (X —x0)! BZW%f (xq,t)dXa,

3.1 Solution of sine-Gordon SG equation
1<B<2i=12
(6) By using the results for the equations (5)-(12), the
It is worthy to mention that the time-fraction fractional SG equation (3) is
derivative expresses the effects of the distributed time
delay on the evolution of the dynamical system. While the

space-fr.actional dgrivative exhibits the behavior of the platar PZaxax +Kpsing =0,
system in the transition from a state to another one’s. As
an example, the second equation in (6) shows the a a,C2 (13)
behavior of the system in transition from the transnational P1= Fmay) P2 = F—ap) =B-
to the diffusion states. We f(x,t1) = g(x,.t1) and
) Pyt f (o) ,g( ) O<ai<1i=12
7 f(x1,t) = h(xq,t), Thus, we get respectively
We aim to solve the equation (13). To this end, we use the
DA __1 _t,)1-B transformationy(x,X,t,7) = u(z),z= KX+ nN X + wt +
g(x,t1) L Jolt—t)r Pragx ty)dt, P A A L ’
> re=h) ) v T. The equation (13) becomes
B2 _ —B, 0
Di*h(xg,t) = F(ZEBZ) fa((X—Xl)l ﬁzd—xlh(XLt)dX]_ A+ KpSinU =0, (14)
we writed; = B — 1, t — t1, tg — to, X — X1,X1 — X and A = P10V — p2K 1],
by integrating both sides o[, t] and [0, X] respectively,

wherew, U, Kk n arbitrary constants.
The traveling wave solutions (TWS) of equation (14)
are given in the following three cases:

we have

fO Dt tg(x, tz)dtz— (l ) fO fO (t1—t2)~ o a6 g(x,t2)dtodts ,
Case—|

XD (xp,1) dxp = =L (X (X (xg — Xo) 92 2 (o, t)dXadlXy , By integrating (14), and in terms of the original

Jo Dx*h0xe, )X = 73255 Jo Jo, (Xa—X2) ™% i ke, t)dxa (18) variable the solution is

by changing the limits of the internal integrals and by PP S S
permuting the inner with outer ones, so that the mtegralw( t)=star (exp( *1( M=) V= @ KX)))

ont; is carried first and we get A=A

f(t) Dtal (X t2) dt2 - fo r 2 al) a(ta z)g(xﬂtZa T)'dt27 (9) (15)
T—(T—t)"10<t T. Case— 1
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By taking the transformations(z) = 2arctarfv(z)) and the solution of equation (13) is
[17, 18-20], the equation (14) is

2 - 11, (H tanh(Q+c1vA )2
R ) (16) WD) = cos 3 (- T
P
. . . o (H tanhQ+cl\/X)2)] ) (24)
the first integral of the equation (16) is Q <H (4Boca A +n(M—x)P2~ 141 w+V(T_t)Bll+KX)>
- 2VA

V2(2) = \/l(Kp(1+v2) +A(1+V2)2.  (17)

A wherecs, ¢, andBpare arbitrary constants.

(i) Whenp=1,k= 3, we take

In terms of the original variables the solution of equation
(13)is V(2) = a2¢%(2) + a9 (2) + o,
_ RanM—xP2 v 01 i wikx) , 3 2 (25)
Ww(xt)=4cotl|e x , ¢'(2) = c3¢°(2) + C20°(2) + C19(2) + Co.
Ao = Kp By substituting the equation (25) into equation (20) gives
(18)
Case— Il v(z) =i 2 4
By using the transformationg1, 22, 23]; - Zexp<\/k—p(GCzBlA(2clx/X+\/k—p)+z)> 1 )
: . VA
V() = exp(i @), u(z) = —iInv?(2) (26)
Zav2 2oy2 (19)  and the solution of equation (13) is
cosu = Y= sinu= Yo/
2
From the equation (19) into equation (14), we have Y(x.t) =cos™ <% ( (1* 2e°2+1) - (1_;2—)2)) ;
2e7+1
4A (W' —2v?) + Kp(V* — 1) = 0. (20)
p _ Vko(602B1A (2002 + ko) 41 (M—x)Pe Lt w+v(T-t)P114kx)
Here we use the unified method UN4, 25|, to find the B VA ’
solution of equation (20). _ _ (27)
Where the solution is taken to be polynomial with an WhereBx is arbitrary constant.
auxiliary functiong that satisfies an auxiliary equation: (i) In order to determine elliptic wave solutions when
. ) (k=2, p=2), we write
u2) =3y oai'(2), (21) i—a
) / 2 _ . i
k = .
9’2 =3%0ci9l(2), p=12 (¢°(2) j;cl (t)¢'(2) (28)
whereg;, ¢j are unknown parameters. ) ) .
In the cases, whep = land 2, the solution of the For particular values ofj j = 0,...,4 we get different

auxiliary equation gives rise to elementary or elliptic Solutions in Jacobi elliptic functions and by using
(explicit or implicit) solutions respectively. In the (according to the classification i2$,27]) namely:

equatiqn (21) the balance equati'on far and k is. Co=1c=—1+mP cq=nP, (29)
determined from the leading analysis between the higher c1=C3=0,
derivative and nonlinearity terms in the equation (20)
(n=k-1). | , 9(2) = sn(z m?).
(i) Whenp = 1. In this case, exact solutions are found o .
as elementary functions ad= 2, 3. We have the elliptic solutions
(i1) Whenp=1,k=2, We now suppose that equation V(z) = imsn(z, m?),

(21) has the solution in the form

_ ~1 [ —mPsn((M=x)P21n4xk+(T-t)Pr Lyt o, m?)*—1
V(z) = a1 (2) + ao, Y(xt) =cost ( _ — )
22 ’ 2msn((M—x)P2-tn4+xk —(T—t)Pr-2v+t w,m?)2

¢'(2) = c20%(2) +c1¢(2) + o (22) t ) (30)

By substituting equation (22) into (20) with a computer Wherem(0 < m < 1) denotes the modulus of the Jacobi
algebraic system, or otherwise we find elliptic function. _

The figures 1 (a) and (b) illustrate the delay of the
i(H tanh(WLW)Hl\/x) time-fraction solution is slowing down due to the
v(z) = — 2 ; , (23) distributed time delay than classical (TWS) solution.
vk While the parabolic wave is confirm for the space-fraction

H=,/c2A —kp effect in the figures 2.
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The solutions of equations (33) are obtained by using the
UM They are found as:

(I) When usingp = 1,k = 2, into equation (21) the
solutions of equation (31) is

_ 101 _ 2VA
X(xt) = arcco$§(1 VKo (4R Co+n(M—x)P2 Lt w+v(T—t)Pri4k )
T ) -
\/K—p(4A202+n((M—x)'BZ’l)JAw+v((T—t)ﬂ1’1)+Kx)
(34)
(I At p=1,k=3, wefind
_ 10q_ 2VA
t t X(xt) = arccog; (1 VKp(27A3G+n(M—x)Pa= 4t v (T—t)PLrt 4k x)
Fig. 1. Figs. 1 (a) and (b) The solution of equation +17 lm )]
(15) is displayed against— axis when the free parameters Ve (2t en (M—0P2 1) st (T-0P1 1) kx)
are Kp=15,Co=12, T=M=10,v=— 0.8,k=05,n=0.4, =04 _ (35)
and = 1.5 for the different values ofjand B, namely B, =  WhereAandAg are integral constants.
1.6, B, = 1.3 (dashed curve) and f@ = 3, = 2 ( solid curve )
in (1a). In (1b) the same values are taken, But= 1.8, B, = 2 ]
(dashed curve). 4 Conclusions

In the present work, we have shown that the (PDESs) of
any order of fractional orders can be reduced to retarded
(PDEs). The time-fractional equation expresses for the
distributed time delay. While space fractional equation
describes the state of a dynamical system in transition
from translate to the diffusion or from the later state to the
dispersion state. In the present work as the solution is
solitary, we have found the time-fractional solution leads
to delay (TWS). While in the case of space fractional
drive it leads to the formation of parabolic “ in the
1 ‘ , M transition state. These results reveal new charactexistic
! § 10 motivating further research on the dynamics of fractional
r r equations in different branches of sciences.

Fig. 2: Figs. 2 (a) and (b) are the solution of equation (15), is
displayed against— axis when the free parameters are the same
caption in figurel, butT=M=15,v=— 0.5 andt = 0.5 for the References
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