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Abstract: Our attentions here is to show that (DNA-torsional model is reduced to the sine-Gordon SG and double sine-Gordon (DSG)
equations. The fractional order equations of the SG and (DSG), based on the Caputo derivative is considered. One of the main results
found here is to show that these equations of the fractional-order are reduced to partial differential equations (PDEs). Exact explicit
formulas of some solitary and periodic traveling wave solutions are obtained. The effects exhibited in the later case are illustrated. The
effects exhibited in the latter case are illustrated. Whilethe fractional space derivative leads the formation of “ parabolic” wave in the
transition state.
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1 Introduction

In recent years, it is presently realized that the
understanding of the dynamics of DNA may be one of the
most challenging problems posed to the human
knowledge. This fascinating suggestion attracted the
attention of many researchers, particularly that ones in
theoretical physics and nonlinear dynamics and also
triggered the formulation of several simple models of
nonlinear DNA dynamics.

From the theoretical point of view, DNA is usually
considered so far as three-dynamical motions, namely s
torsional, transverse and longitudinal motions. On the
important DNA- model is that one which describes the
rotational motion of DNA ( torsion models of DNA). See
also the (Y-model) where it is introduced by Yakushevich
) [1,2,3]. In this model each nucleotide
(sugar-phosphate-backbone) is described by two degrees
of freedom with a single angular variable ( i.e.
microscopic models) [4].

In this context, we study the case in the homogeneous
medium. That is both strands have the same mass density
and the interactions between bases at different sites are
equal). It describes the angle of rotation of bases about
the backbone (or between the atom-bridge Hydrogen
H-bond and the backbone) are considered [5,6].

The discrete torsion model of DNA is follows as:

I ψ̈n = ks(ψn+1+ψn−1−2ψn)− kp r2(sinψn cosχn) ,

I χ̈n = ks(χn+1+ χn−1−2χn)− kp r2(sinχn(cosψn − cosχn)) ,
(1)

whereψn andχn are the angles referring to the out of phase
(center of basses mass ) for each chain.I is the moment of
inertia of the bridge between two bases andks, kp are the
dimensional coupling constants [4].

To get the continuum version for the equation (1), we
write ψn(t) ≃ ψ(δn, t), χn(t) ≃ χ(δn, t) , with δn = x ,
whereδ is the distance between successiven sites along
the axis of the double helix (δ = 3.4Å )in B-DNA) [7,8].
We get the equations

ψtt = Ksψxx −Kp sinψ cosχ ,

χtt = Ksχxx −Kp sinχ(cosψ − cosχ) .
(2)

For symmetric angle between the bases (χ = 0) and

equation (2) reduces to the sine-Gordan SG equation

ψtt = Ksψxx −Kp sinψ , (3)
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For antisymmetric angles (ψ = 0), the equation (2), tends
to the double sine-Gordon (DSG) equation

χtt = Ksχxx −Kp sinχ(1−cosχ) , (4)

whereKs =
ksδ 2

I , Kp =
kpr2

I . IndeedKs =C2
0,C0 is the speed

of linear wave.

2 The second order fractional Caputo
derivative

The fractional order have recently proved to be valuable
tools to the modeling of many physical phenomena [9,
10-12] and here we use the right-Caputo-derivative for
nonlinear evolution equations (NLEs) [13, 14-16]

Dβ1
t f (x, t)−Dβ2

x f (x, t) = k(x, t) , (5)

where

Dβ1
t f (x, t) = 1

Γ (2−β1)

∫ t
0(t − t1)1−β1 ∂ 2

∂ t21
f (x, t1)dt1 ,

Dβ2
x f (x, t) = 1

Γ (2−β2)

∫ x
0 (x− x1)

1−β2 ∂ 2

∂x2
1

f (x1, t)dx1 ,

1< βi < 2, i = 1,2.
(6)

It is worthy to mention that the time-fraction
derivative expresses the effects of the distributed time
delay on the evolution of the dynamical system. While the
space-fractional derivative exhibits the behavior of the
system in the transition from a state to another one’s. As
an example, the second equation in (6) shows the
behavior of the system in transition from the transnational
to the diffusion states. We put∂∂ t1

f (x, t1) = g(x,, t1) and
∂

∂x1
f (x1, t) = h(x1, t), Thus, we get respectively

Dβ1
t g(x, t1) =

1
Γ (2−β1)

∫ t
0(t − t1)1−β1 ∂

∂ t1
g(x, t1)dt1 ,

Dβ2
x h(x1, t) =

1
Γ (2−β2)

∫ x
0 (x−x1)

1−β2 ∂
∂ x1

h(x1, t)dx1

(7)

we writeαi = βi −1, t → t1, t1 → t2, x → x1,x1 → x2 and
by integrating both sides on[0, t] and [0, x] respectively,
we have

∫ t
0 Dα1

t g(x, t2)dt2 =
1

Γ (1−α1)

∫ t
0
∫ t1
0 (t1− t2)−α1 ∂

∂ t2
g(x, t2)dt2dt1 ,

∫ x
0 Dα2

x h(x2, t)dx2 = 1
Γ (1−α2)

∫ x
0
∫ x1
01
(x1−x2)

−α2 ∂
∂ x2

h(x2, t)dx2dx1 ,

(8)
by changing the limits of the internal integrals and by
permuting the inner with outer ones, so that the integral
on t1 is carried first and we get

∫ t
0 Dα1

t g(x, t2)dt2 =
∫ t

0
−α1

Γ (2−α1)
∂

∂ (t−t2)
g(x, , t2,τ).dt2 ,

τ = (T − t)α1 0≤ t ≤ T .

(9)

The equation (9) holds when

Dα1
t g(x, t2) =

−α1

Γ (2−α1)

∂
∂π

g(x, t2,τ). (10)

In the equation (10)t andt2 are replaced by andT and
t respectively. For convenience we may write the equation
(10) in the form

Dα1
t g(x, t) = α1

Γ (2−α1)
∂

∂π g(x, t,τ) ,
τ = T α1 − (T − t)α1 0≤ t ≤ T .

(11)

By bearingg(x, t,τ) = ∂
∂ t f (x, t,τ). A result similar to (10)

holds for the second equation in (8), namely

Dα2
x g(x, t,X) =− α2

Γ (2−α2)
∂

∂X g(x, t,X)

X = (M− x)α2, 0≤ x ≤ M.

, (12)

3 Solutions of the fractional models

Here we are interested to consider the equations(3)and(4)
with space-time- fractional derivatives.

3.1 Solution of sine-Gordon SG equation

By using the results for the equations (5)-(12), the
fractional SG equation (3) is

ρ1
∂ 2ψ
∂ t ∂τ −ρ2

∂ 2ψ
∂x∂X +Kp sinψ = 0,

ρ1 =
α1

Γ (2−α1)
, ρ2 =

α2C2
0

Γ (2−α2)
, αi = βi −1,

0< αi < 1, i = 1, 2.

(13)

We aim to solve the equation (13). To this end, we use the
transformationψ(x,X , t,τ) = u(z), z = κ x+η X +ω t +
ν τ. The equation (13) becomes

λ u′′+Kp sinu = 0,
λ = ρ1ω ν −ρ2κ η ,

(14)

whereω , υ , κ η arbitrary constants.
The traveling wave solutions (TWS) of equation (14)

are given in the following three cases:

Case− I
By integrating (14), and in terms of the original

variable the solution is

ψ(x, t) = 4tan−1
(

exp

(

√

− kp

λ1

(

−η(M−x)β2−1−ν(T − t)β1−1− tω −κx
)

))

λ1 =−λ .

(15)
Case− II
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By taking the transformationsu(z) = 2arctan(v(z))
[17, 18-20], the equation (14) is

λ (v′′−
2vv′2

1+ v2)+Kpv = 0, (16)

the first integral of the equation (16) is

v′2(z) =

√

1

λ
(Kp(1+ v2)+A0(1+ v2)2 . (17)

In terms of the original variables the solution of equation
(13) is

ψ(x, t) = 4cot−1

(

e
−

√
Kp(η(M−x)β2−1+ν(T−t)β1−1+t ω+κ x)√

λ

)

,

A0 = Kp
(18)

Case− III
By using the transformations [21,22,23];

v(z) = exp(i u(z)
2 ), u(z) =−i lnv2(z)

cosu = v2+v−2

2 , sinu = v2−v−2

2i .

(19)

From the equation (19) into equation (14), we have

4λ (vv′′−2v′2)+Kp(v
4−1) = 0. (20)

Here we use the unified method UM [24,25], to find the
solution of equation (20).

Where the solution is taken to be polynomial with an
auxiliary functionϕ that satisfies an auxiliary equation:

u(z) = ∑n
i=0 aiϕ i(z),

ϕ ′(z) = ∑kp
j=0c jϕ j(z), p = 1, 2

(21)

whereai, c j are unknown parameters.
In the cases, whenp = 1and 2, the solution of the

auxiliary equation gives rise to elementary or elliptic
(explicit or implicit) solutions respectively. In the
equation (21) the balance equation forn and k is
determined from the leading analysis between the higher
derivative and nonlinearity terms in the equation (20)
(n = k−1).

(i) Whenp = 1. In this case, exact solutions are found
as elementary functions andk = 2, 3.

(i1) Whenp= 1 ,k = 2, We now suppose that equation
(21) has the solution in the form

v(z) = a1ϕ(z)+ a0,

ϕ ′(z) = c2ϕ2(z)+ c1ϕ(z)+ c0
(22)

By substituting equation (22) into (20) with a computer
algebraic system, or otherwise we find

v(z) =−
i

(

H tanh

(

H (4c2B0λ+z)
2
√

λ

)

+c1
√

λ
)

√
kp

,

H =
√

c2
1λ − kp

(23)

and the solution of equation (13) is

ψ(x, t) = cos−1[1
2 (−

(H tanh(Q+c1
√

λ)2

kp

− kp

(H tanhQ+c1
√

λ)2 ) ] ,

Q =

(

H (4B0c2 λ+η(M−x)β2−1+t ω+ν(T−t)β1−1+κ x)
2
√

λ

)

(24)

wherec1, c2, andB0are arbitrary constants.
(i2) Whenp = 1 , k = 3, we take

v(z) = a2ϕ2(z)+ a1ϕ(z)+ a0 ,

ϕ ′(z) = c3ϕ3(z)+ c2ϕ2(z)+ c1ϕ(z)+ c0.

(25)

By substituting the equation (25) into equation (20) gives

v(z)= i









2

2exp

(√
kp(6c2B1 λ(2c1

√
λ+

√
kp)+z)√

λ

)

+1
−1









,

(26)
and the solution of equation (13) is

ψ(x, t) = cos−1

(

1
2

(

−
(

1− 2
2eP+1

)2
− 1
(

1− 2
2eP+1

)2

))

,

P =

√
kp(6c2 B1λ(2c1

√
λ+

√
kp)+η (M−x)β2−1+t ω+ν(T−t)β1−1+κ x)√

λ
,

(27)
whereB1 is arbitrary constant.

(ii) In order to determine elliptic wave solutions when

(k = 2, p = 2), we write

(ϕ ′(z))2 =
j=4

∑
j=0

c j(t)ϕ j(z) . (28)

For particular values ofc j j = 0, ...,4 we get different
solutions in Jacobi elliptic functions and by using
(according to the classification in [26,27]) namely:

c0 = 1, c2 =−1+m2, c4 = m2 ,

c1 = c3 = 0,

ϕ(z) = sn
(

z, m2
)

.

(29)

We have the elliptic solutions

v(z) = imsn
(

z, m2
)

,

ψ(x, t) = cos−1
(

−m2sn((M−x)β2−1η+xκ+(T−t)β1−1ν+t ω ,m2)4−1

2msn((M−x)β2−1η+xκ−(T−t)β1−1ν+t ω ,m2)2

)

(30)
wherem(0 < m < 1) denotes the modulus of the Jacobi
elliptic function.
The figures 1 (a) and (b) illustrate the delay of the
time-fraction solution is slowing down due to the
distributed time delay than classical (TWS) solution.
While the parabolic wave is confirm for the space-fraction
effect in the figures 2.
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Fig. 1: Figs. 1 (a) and (b) The solution of equation
(15) is displayed againstt − axis when the free parameters
are Kp=1.5,C0=1.2, T=M=10,ν=− 0.8,κ=0.5,η=0.4,ω=0.4
andx = 1.5 for the different values ofβ1and β2, namelyβ1 =
1.6, β2 = 1.3 (dashed curve) and forβ1 = β2 = 2 ( solid curve )
in (1a). In (1b) the same values are taken, butβ1 = 1.8, β2 = 2
(dashed curve).

Fig. 2: Figs. 2 (a) and (b) are the solution of equation (15), is
displayed againstx−axis when the free parameters are the same
caption in figure1, butT=M=15,ν=− 0.5 andt = 0.5 for the
different values ofβ1andβ2. In (2a) to consider the same solution
β1 = 1.6, β2 = 1.3 (dashed)β1 = β2 = 2 (solid). In fig (2b)β1 = 2
andβ2 = 1.5 (dashed).

3.2 Solution of double sine-Gordon (DSG)
equation

In this section, we consider the fractional solution of the
(DSG) equation (4)

∂ 2χ
∂ t ∂τ −

∂ 2χ
∂x∂X −Kp(sinχ − 1

2 sin2χ) = 0, (31)

and by using transformationχ(x,X , t,τ) = w(z), z = κ x+
η X +ω t +ν τ. Thus we have

λ w′′(z)−Kp(sinw(z)−
1
2

sin2w(z)) = 0. (32)

Here , we use the transformationw(z) = exp(iθ (z)), and
the equation (32) reduces to

4λ (θ θ ′′−2θ ′2)+2Kpθ (θ 2−1)−Kp(θ 4−1)= 0. (33)

The solutions of equations (33) are obtained by using the
UM They are found as:
(I) When using p = 1, k = 2, into equation (21) the
solutions of equation (31) is

χ(x, t) = arccos[ 1
2(1−

2
√

λ√
Kp(4A2 c2+η(M−x)β2−1+t ω+ν(T−t)β1−1+κ x)

+ 1
1− 2

√
λ√

Kp(4A2 c2+η((M−x)β2−1)+t ω+ν((T−t)β1−1)+κ x)

)] .

(34)
(II) At p = 1, k = 3, we find

χ(x, t) = arccos[ 1
2(1−

2
√

λ√
Kp(27A3 c2

3+η(M−x)β2−1+t ω+ν(T−t)β1−1+κ x)
+ 1

1− 2
√

λ√
Kp(27A3 c2

3+η((M−x)β2−1)+t ω+ν((T−t)β1−1)+κ x)
)]

(35)
whereA2andA3 are integral constants.

4 Conclusions

In the present work, we have shown that the (PDEs) of
any order of fractional orders can be reduced to retarded
(PDEs). The time-fractional equation expresses for the
distributed time delay. While space fractional equation
describes the state of a dynamical system in transition
from translate to the diffusion or from the later state to the
dispersion state. In the present work as the solution is
solitary, we have found the time-fractional solution leads
to delay (TWS). While in the case of space fractional
drive it leads to the formation of parabolic “ in the
transition state. These results reveal new characteristics
motivating further research on the dynamics of fractional
equations in different branches of sciences.
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